- Supporting Information -

Pyridyl-Acyl Hydrazone Rotaxanes and Molecular Shuttles

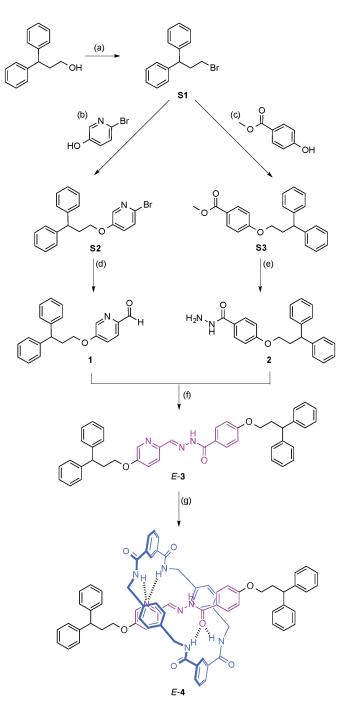
David A. Leigh*, Vanesa Marcos, Tugrul Nalbantoglu, Iñigo J. Vitorica-Yrezabal, F.Tuba Yasar, Xiaokang Zhu

School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL (UK)

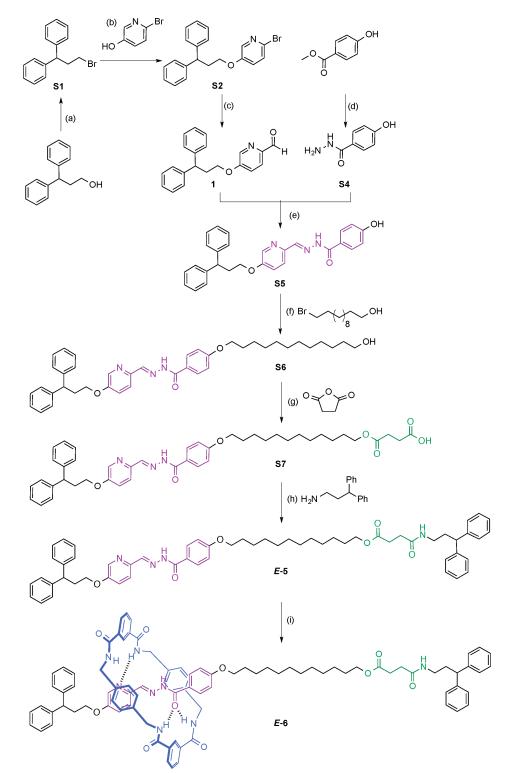
* E-mail: david.leigh@manchester.ac.uk

Table of Contents

1.	Experimental Section	S3
	1.1. General Methods	S3
	1.2. Synthetic Overview of [2]Rotaxane and Molecular shuttle	S4
	1.3. Synthetic Procedures and Characterization Details	S6
	1.4. General Procedures for Photo- and Thermal Isomerizations	S12
2.	NMR Spectra	S15
3.	Stackplot NMR Spectra	S32
	3.1. Stackplot NMR Spectra for the Synthesis of Rotaxanes	
	3.2. Stackplot NMR Spectra for Photo/Thermal isomerization studies	S33
4.	Mass Spectra for rotaxanes	S35
5.	X-Ray Crystal Structure Experimental Details	S37
6.	Reference and Notes	S38


1. Experimental Section

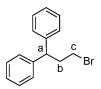
1.1. General Methods


Unless stated otherwise, all reagents and solvents were purchased from Sigma-Aldrich Chemicals and used without further purification. Compound E-4 and E-6 were prepared according to the modified literature procedure.^{S1} Dry THF, DMF, CH₂Cl₂, and CH₃CN were obtained by passing the solvent (HPLC grade) through an activated alumina column on a Phoenix SDS solvent drying system (JC Meyer Solvent Systems, CA, USA). Anhydrous MeOH was purchased from Sigma-Aldrich. Column chromatography was carried out using Aldrich Si 60 (particle size 40-63µm) as the stationary phase, and TLC was performed on precoated silica gel plates (0.25 mm thick, 60 F₂₅₄, Merck, Germany) and observed under UV light. Preparative TLC was carried out on Merck preparative plates (SiO₂, 2000 μm) and observed under UV light. NMR spectra were recorded on a Bruker Avance III (equipped with a cryoprobe) instrument with an Oxford AS600 magnet. Chemical shifts are reported in parts per million (ppm) from high to low frequency and referenced to the residual solvent resonance. Coupling constants (J) are reported in hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, m = multiplet, br = broad. ¹H assignments were made using 2D NMR methods (COSY, HSQC, HMBC). Low resolution ESI mass spectrometry was performed with a Thermo Scientific LCQ Fleet or an Agilent Technologies 1200 LC system with 6130 single quadrupole MS detector mass spectrometer. High resolution ESI (electrospray ionization) and EI (electron ionization) mass spectrometry were carried out by the EPSRC National Mass Spectrometry Service Centre (Swansea, UK).

1.2. Synthetic Overview

1.2.1. Synthetic overview of *E*-4 rotaxane

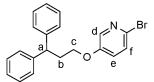
Scheme S1: Synthesis of one-station [2]rotaxane (*E*-4). Reagents and conditions: (a) CBr₄, PPh₃, RT, 4 h, quantitative; (b) 2-Bromo-5-hydroxypyridine, Cs₂CO₃, MeCN, reflux, 18 h, 92 %; (c) Methyl 4-hydroxybenzoate, Cs₂CO₃, MeCN, reflux, 18 h, 90 %; (d) *n*BuLi, THF, DMF, -78 °C, 18 h, 70 %; (e) N₂H₄·H₂O, reflux, 18 h, 99 %; (f) AcOH (cat.), EtOH, RT, 18 h, 80 %; (g) *p*-xylylenediamine, isophthaloyl dichloride, Et₃N, CHCl₃, RT, 18 h, 85 %.



1.2.2. Synthetic overview of E-6 molecular shuttle

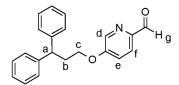
Scheme S2: Synthesis of Molecular Shuttle (*E*-6). Reagents and conditions: (a) CBr₄, PPh₃, CH₂Cl₂, RT, 4 h, quantitative; (b) S2, Cs₂CO₃, MeCN, reflux, 18 h, 92 %; (c) *n*BuLi, THF, DMF, -78 °C, 18 h, 70 %; (d) N₂H₄·H₂O, reflux, 18 h, 99 %; (e) AcOH (cat.), EtOH, RT, 18 h, 80 %; (f) 12-Bromo-1-dodecanol, K₂CO₃, DMF, 60 °C, 18 h, 48 %; (g) Succinimide, Et₃N, CH₂Cl₂, RT, 18 h, quantitative; (h) 3,3-Diphenylpropylamine, 4-DMAP, EDCI.HCl, CH₂Cl₂, RT, 18 h, 88 %; (i) *p*-xylylenediamine, isophthaloyl dichloride, Et₃N, CHCl₃, RT, 18 h, 70 %.

1.3 Synthetic Procedures and Characterization Details


Synthesis of S1

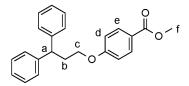
A solution of 3,3-diphenyl-1-propanol (4.70 g, 22.13 mmol, 1.00 eq) and carbon tetrabromide (8.81 g, 26.55 mmol, 1.20 eq) in CH₂Cl₂ (60 mL) was cooled to 0 °C, and triphenylphosphine (6.96 g, 26.55 mmol, 1.20 eq) was added. The resulting mixture was stirred at room temperature for 4 h and then the solvent was removed under reduced pressure. The residue was purified by column chromatography (SiO₂, Et₂O/Petroleum ether 0:100 \rightarrow 20:80) to afford compound **S1** (6.09 g, 22.13 mmol, quantitative) as colourless oil

¹H NMR (600 MHz, CDCl₃): $\delta = 7.37 - 7.19$ (m, 10H, H_{*Ar*}), 4.23 (t, J = 7.7 Hz, 1H, H_{*a*}), 3.35 (t, J = 6.7 Hz, 2H, H_{*c*}), 2.61 (q, J = 7.0 Hz, 2H, H_{*b*}). ¹³C NMR (151 MHz, CDCl₃): $\delta = 143.55$, 128.78, 128.00, 126.69, 49.23, 38.41, 32.20. HRMS (ESI⁺): m/z = 274.0365 [M]⁺ (calcd. 274.0357 for C₁₅H₁₅Br).


Synthesis of S2

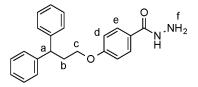
A solution of **S1** (6.11 g, 22.20 mmol, 1.00 eq) in MeCN (40 mL) was added to a solution of 2-bromo-5-hydroxypyridine (3.86 g, 22.20 mmol, 1 eq) and Cs_2CO_3 (8.68 g, 26.64 mmol, 1.20 eq) in MeCN (80 mL). The resulting mixture was refluxed overnight under a N₂ atmosphere and then concentrated under reduced pressure. The mixture was diluted with CH_2Cl_2 (3 x 200 mL) and washed with H_2O (3 × 200 mL) and brine (3 × 200 mL). The organic layer was dried over MgSO₄ and concentrated under vacuum to afford **S2** (7.53 g, 20.44 mmol, 92 %) as a light brown solid.

¹H NMR (600 MHz, CDCl₃): $\delta = 8.01$ (d, J = 3.2 Hz, 1H, H_d), 7.34 (d, J = 8.8 Hz, 1H, H_f), 7.33 – 7.20 (m, 10H, H_{dr}), 7.02 (dd, J = 8.8, 3.2 Hz, 1H, H_e), 4.24 (t, J = 7.9 Hz, 1H, H_a), 3.93 (t, J = 6.3 Hz, 2H, H_c), 2.56 (dt, J = 7.9, 6.3 Hz, 2H, H_b).¹³C NMR (151 MHz, CDCl₃): $\delta = 154.78$, 143.83, 137.61, 132.05, 128.67, 128.09, 127.83, 126.55, 124.75, 66.74, 47.09, 34.70. HRMS (ESI⁺): m/z = 368.0647 [M+H]⁺ (calcd. 368.0645 for C₂₀H₁₈BrNO).


Synthesis of 1

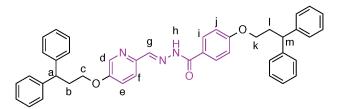
*n*BuLi (0.51 mL, 1.6 M in hexanes, 0.81 mmol, 1.20 eq) was slowly added to a stirring solution of **S2** (250 mg, 0.67 mmol, 1.00 eq) in dry THF (10 mL) at -78 °C under inert atmosphere. After 2 h, DMF (0.5 mL) was added and then the mixture was stirred at room temperature for 18 h. The mixture was quenched by addition of NH₄Cl_{aq} (10 mL) and extracted with Et₂O (3 × 30 mL). The combined organic layers were dried over MgSO₄, and the solvent removed under reduced pressure. The residue was purified by column chromatography (SiO₂, EtOAc/ hexane 20:80) to afford **1** (148 mg, 0.47 mmol, 70%) as brown oil.

¹H NMR (600 MHz, CDCl₃): δ = 10.01 (s, 1H, H_g), 8.40 (d, *J* = 2.8 Hz, 1H, H_d), 7.94 (d, *J* = 8.6 Hz, 1H, H_f), 7.35 – 7.19 (m, 11H, H_{*Ar+e*}), 4.27 (t, *J* = 8.0 Hz, 1H, H_a), 4.05 (t, *J* = 6.3 Hz, 2H, H_c), 2.62 (dt, *J* = 8.0, 6.3 Hz, 2H, H_b). ¹³C NMR (151 MHz, CDCl₃): δ = 191.98, 158.39, 146.15, 143.68, 138.79, 128.72, 127.80, 126.63, 123.41, 120.49, 66.86, 47.13, 34.58. HRMS (ESI⁺): *m*/*z* = 318.1484 [M+H]⁺ (calcd. 318.1489 for C₂₁H₁₉NO₂).


Synthesis of S3

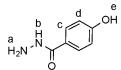
A solution of **S1** (1.00 g, 3.63 mmol, 1.00 eq) in MeCN (80 mL) was added to a degassed solution of methyl-4-hydroxybenzoate (552 mg, 3.63 mmol, 1.00 eq) and Cs_2CO_3 (1.42 g, 4.36 mmol, 1.20 eq) in MeCN (40 mL). The resulting mixture was refluxed overnight under a N₂ atmosphere and then the solvent removed under reduced pressure. The mixture was diluted with CH_2Cl_2 (3 x 200 mL) and washed with H_2O (3 × 200 mL) and brine (3 × 200 mL). The organic layer was dried over MgSO₄ and concentrated under vacuum to afford **S3** (1.13 g, 3.26 mmol, 90 %) as a light brown solid.

¹H NMR (600 MHz, CDCl₃): δ = 7.98 (d, *J* = 8.8 Hz, 2H, H_e), 7.42 – 7.17 (m, 10H, H_{Ar}), 6.87 (d, *J* = 8.8 Hz, 2H, H_d), 4.27 (t, *J* = 7.8 Hz, 1H, H_a), 3.97 (t, *J* = 6.3 Hz, 2H, H_c), 3.91 (s, 3H, H_f), 2.58 (dt, *J* = 7.8, 6.3 Hz, 2H, H_b). ¹³C NMR (151 MHz, CDCl₃): δ = 166.90, 162.70, 144.06, 131.57, 128.63, 127.89, 126.46, 122.50, 114.11, 66.07, 51.89, 47.18, 34.78. HRMS (ESI⁺): *m*/*z* = 347.1641 [M+H]⁺ (calcd. 347.1642 for C₂₃H₂₃O₃).


Synthesis of 2

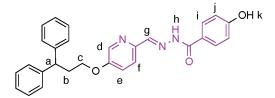
Under N₂ atmosphere, **S3** (500 mg, 1.44 mmol, 1.00 eq) was dissolved in dry MeOH (20 mL) and hydrazine hydrate (360 μ L, 11.55 mmol, 8.00 eq) was added. The reaction mixture was refluxed overnight and then the solvent removed under reduced pressure.. The mixture was diluted with CH₂Cl₂ (50 mL) and washed with H₂O (50 mL) and brine (50 mL). The organic layer was dried over MgSO₄ and concentrated under vacuum to afford **2** (493 mg, 1.42 mmol, 99%) as a colourless solid.

¹H NMR (600 MHz, CDCl₃): δ = 7.68 (d, *J* = 8.8 Hz, 2H, H_e), 7.34 – 7.20 (m, 10H, H_{Ar}), 6.89 – 6.86 (m, 2H, H_d), 4.26 (t, *J* = 7.8 Hz, 1H, H_a), 4.08 (brs, 2H, H_f), 3.95 (t, *J* = 6.4 Hz, 2H, H_c), 2.57 (dt, *J* = 7.8, 6.4 Hz, 2H, H_b). ¹³C NMR (151 MHz, CDCl₃): δ = 168.36, 161.86, 144.04, 128.62, 128.58, 127.87, 126.46, 124.76, 114.49, 66.08, 47.17, 34.76. HRMS (ESI⁺): *m*/*z* = 347.1755 [M+H]⁺ (calcd. 347.1754 for C₂₂H₂₃O₂N₂).


Synthesis of *E*-3

Aldehyde 1 (100 mg, 0.31 mmol, 1.00 eq) and hydrazine 2 (110 mg, 0.31 mmol, 1.00 eq) were combined in EtOH (5 mL) and catalytic amount of acetic acid was added and the mixture was stirred at room temperature overnight. Evaporation of solvent and recrystallization in EtOH afforded the product (163 mg, 0.25 mmol, 80 %, E/Z = 98 %) as a brown solid.

¹H NMR (600 MHz, CDCl₃): δ = 9.11 (s, 1H, H_h), 8.24 (d, *J* = 2.8 Hz, 1H, H_d), 8.03 – 7.94 (brs, 1H, H_f), 7.78 (brs, 2H, H_i), 7.29 (m, 17H, H_{Ar+g}), 7.19 (m, 5H, H_{Ar+e}), 6.92 (d, *J* = 8.8 Hz, 2H, H_j), 4.27 (td, *J* = 8.0, 4.0 Hz, 2H, H_{a+m}), 3.99 (dt, *J* = 12.7, 6.3 Hz, 4H, H_{c+k}), 2.58 (dtd, *J* = 8.7, 6.4, 2.3 Hz, 4H, H_{b+l}). ¹³C NMR (151 MHz, CD₂Cl₂): δ = 167.71, 163.69, 162.14, 155.09, 145.57, 144.46, 144.18, 137.93, 136.51, 129.46, 128.80, 128.71, 127.95, 127.87, 126.65, 122.11, 114.56, 66.97, 66.31, 47.40, 47.31, 34.74, 34.61. HRMS (ESI⁺): *m/z* = 646.3051 [M+H]⁺ (calcd. 646.3064 for C₄₃H₄₀N₃O₃).


Synthesis of S4

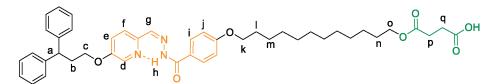
Hydrazine hydrate (8.2 mL, 263 mmol, 8.00 eq) was added to methyl 4-hydroxy benzoate (5 g, 32.88 mmol, 1.00 eq) and the mixture refluxed overnight. The solid obtained was washed with hexane to afford the **S4** (4.94 g, 32.47 mmol, 99 %) as a light brown solid.

¹H NMR (600 MHz, DMSO-*d*₆): δ= 9.80 (brs, 1H, H_{*e*}), 9.49 (s, 1H, H_{*b*}), 7.68 (d, *J* = 8.6 Hz, 2H, H_{*c*}), 6.77 (d, *J* = 8.6 Hz, 2H, H_{*d*}), 4.38 (brs, 2H, H_{*a*}). ¹³C NMR (151 MHz, DMSO-*d*₆): δ= 166.36, 160.44, 129.27, 124.41, 115.27. HRMS (ESI⁺): m/z = 153.0655 [M+H]⁺ (calcd. 153.0659 for C₇H₉N₂O₂).


Synthesis of S5

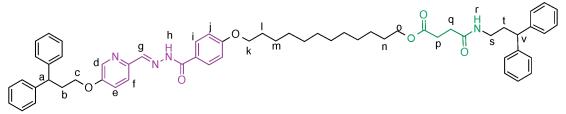
Aldehyde 1 (398 mg, 1.25 mmol, 1 eq) and hydrazide S4 (190 mg, 1.25 mmol, 1 eq) were combined in EtOH (5 mL) and catalytic amount of acetic acid was added. The reaction mixture was stirred at room temperature overnight. Evaporation of solvent and recrystallization in EtOH afforded the S5 (451 mg, 1.00 mmol, 80%) as a brown solid.

¹H NMR (600 MHz, DMSO-*d*₆): $\delta = 11.70$ (s, 1H, H_{*h*}), 10.20 (br s, 1H, H_{*k*}), 8.39 (s, 1H, H_{*d*}), 8.26 (d, *J* = 2.8 Hz, 1H, H_{*f*}), 7.87 (d, *J* = 8.2 Hz, 1H, H_{*e*}), 7.80 (d, *J* = 8.3 Hz, 2H, H_{*i*}), 7.41 (dd, *J* = 8.8, 2.8 Hz, 1H, H_{*g*}), 7.37 (d, *J* = 7.6 Hz, 4H, H_{*Ar*}), 7.30 (t, *J* = 7.6 Hz, 4H, H_{*Ar*}), 7.18 (t, *J* = 7.3 Hz, 2H, H_{*Ar*}), 6.86 (d, *J* = 8.2 Hz, 2H, H_{*j*}), 4.24 (t, *J* = 8.0 Hz, 1H, H_{*a*}), 3.99 (t, *J* = 6.4 Hz, 2H, H_{*c*}), 2.54 (q, *J* = 6.9 Hz, 2H, H_{*b*}). ¹³C NMR (151 MHz, DMSO-*d*₆): δ = 162.90, 161.47, 155.19, 145.44, 144.743, 138.33, 137.12, 129.73, 129.02, 128.29, 128.07, 126.77, 123.12, 116.17, 66.16, 47.14, 34.22. HRMS (ESI⁺): *m/z* = 452.1962 [M+H]⁺ (calcd. 452.1969 for C₂₈ H₂₆N₃O₃).


Synthesis of S6

12-bromo-1-dodecanol (210 mg, 0.79 mmol, 2 eq) was added to a solution of **S5** (179 mg, 0.39 mmol, 1 eq) and K₂CO₃ (110 mg, 0.79 mmol, 2 eq) in dry DMF (10 mL). The resulting mixture was stirred at 60 °C overnight under a N₂ atmosphere and then concentrated under reduced pressure. The residue was purified by a flash column chromatography (SiO₂, MeOH/CH₂Cl₂ 0:100 \rightarrow 5:95) to afford **S6** (121 mg, 0.19 mmol, 48%) as a colourless oil.

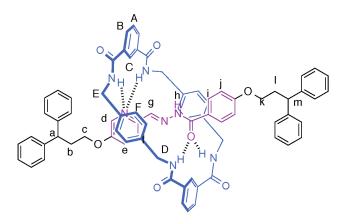
¹H NMR (600 MHz, CD₂Cl₂): δ = 15.12 (s, 1H, H_h), 8.38 (d, *J* = 2.9 Hz, 1H, H_d), 7.92 (d, *J* = 8.8 Hz, 2H, H_i), 7.44 (d, *J* = 8.8 Hz, 1H, H_f), 7.41 (s, 1H, H_g), 7.33 – 7.18 (m, 11H, H_{Ar+e}), 7.00 (d, *J* = 8.4 Hz, 2H, H_j), 4.26 (t, *J* = 7.9 Hz, 1H, H_a), 4.04 (t, *J* = 6.4 Hz, 4H, H_{c+k}), 3.58 (t, *J* = 6.6 Hz, 2H, H_o), 2.60 (dt, *J* = 8.0, 6.2 Hz, 2H, H_b), 1.81 (dt, *J* = 14.7, 6.9 Hz, 2H, H_l), 1.55 – 1.50 (m, 2H, H_n), 1.49 – 1.43 (m, 2H, H_m), 1.41 – 1.22 (m, 14H, H_{aliphatic}). ¹³C NMR (151 MHz, CD₂Cl₂): δ = 155.48, 146.03, 144.71, 144.59, 136.94, 129.88, 129.19, 129.15, 128.29, 128.28, 127.58, 127.05, 126.98, 122.50, 114.94, 68.85, 67.38, 67.14, 63.36, 47.73, 35.10, 35.03, 33.43, 30.24, 30.17, 30.14, 30.11, 30.07, 30.04, 29.99, 29.90, 29.80, 29.67, 29.60, 26.50, 26.43, 26.31. HRMS (ESI⁺): *m*/*z* = 636.3783 [M+H]⁺ (calcd. 636.3796 for C₄₀H₅₀N₃O₄).


Synthesis of S7

To a stirred solution of **S6** (1.21 g, 1.90 mmol, 1 eq) in CH₂Cl₂ (150 mL), Et₃N (270 μ L, 1.93 mmol, 1 eq) and a solution of succinic anhydride (190 mg, 1.99 mmol, 1 eq) in CH₂Cl₂ (20 mL) were added. The reaction mixture was stirred at room temperature for 16h and then concentrated under reduced pressure. The residue was purified by a flash column chromatography (SiO₂, MeOH/CH₂Cl₂ 0:100 \rightarrow 10:90) to afford **S7** (1.40 g, 1.90 mmol, 100 %) as a colourless oil.

¹H NMR (600 MHz, CD₂Cl₂): δ = 15.21 (s, 1H, H_h), 8.42 (d, *J* = 2.9 Hz, 1H, H_d), 7.96 (d, *J* = 8.7 Hz, 2H, H_i), 7.50 (s, 1H, H_f), 7.48 (s, 1H, H_g), 7.38 – 7.24 (m, 11H, H_{*Ar+e*}), 7.04 (d, *J* = 8.4 Hz, 2H, H_j), 4.30 (t, *J* = 7.9 Hz, 1H, H_a), 4.14 – 4.03 (m, 6H, H_{*c+k+o*}), 2.67 – 2.59 (m, 6H, H_{*b+q+p*}), 1.85 (quin, *J* = 6.8 Hz, 2H, H_i), 1.62 (q, *J* = 6.7 Hz, 2H, H_n), 1.51 (quin, *J* = 7.8 Hz, 2H, H_m), 1.42 – 1.25 (m, 14H, H_{*aliphatic*). ¹³C NMR (151 MHz, CD₂Cl₂): δ = 172.36, 172.30, 162.37, 155.02, 144.09, 144.03, 136.46, 129.41, 128.64, 128.58, 127.73, 126.51, 126.42, 121.93, 114.46, 68.26, 66.85, 64.88, 47.18, 34.47, 29.44, 29.41, 29.31, 29.20, 29.17, 29.09, 29.00, 28.95, 28.55, 28.49, 28.47, 25.83, 25.81. HRMS (ESI⁺): *m/z* = 734.3793 [M-H]⁻ (calcd. 734.3811 for C₄₄H₅₂N₃O₇).}

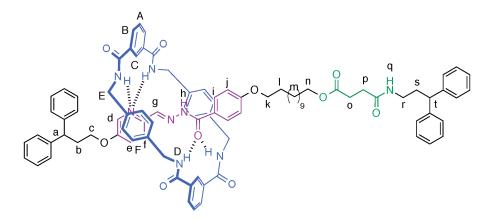
Synthesis of E-5


To a stirring solution of **S7** (64.0 mg, 0.09 mmol, 1.00 eq), 3,3-diphenylpropyl amine (18.4 mg, 0.09 mmol, 1.00 eq) and 4-DMAP (13.4 mg, 0.11 mmol, 1.23 eq) in anhydrous CH_2Cl_2 (13 mL) at 0 °C was added EDCIHCl (18.7 mg, 0.10 mmol, 1.15 eq) and stirred at room temperature for 16 h. The reaction mixture was washed with a saturated solution of citric acid (3 x 50 mL) and H₂O (3 x 50 mL). The organic layer was dried over anhydrous MgSO₄, filtrated and evaporated under reduced pressure and charged in a flash column chromatography (SiO₂, MeOH/CH₂Cl₂ 0:100 \rightarrow 15:85) to give the **S7** (71.3 mg, 0.08 mmol, 88 %, 77:23 *E/Z* ratio) as a colourless oil.

¹H NMR (600 MHz, CD₂Cl₂, major isomer (*E*)): $\delta = 11.20$ (s, 1H, H_h), 8.47 (s, 1H, H_d), 7.88 (s, 2H, H_i), 7.40 (d, *J* = 8.7 Hz, 1H, H_f), 7.35 – 7.16 (m, 22H, H_{Ar+e+g}), 6.95 (d, *J* = 8.3 Hz, 2H, H_j), 5.86 (s, 1H, H_r), 4.09 – 3.95 (m, 6H, H_{c+k+o}), 3.80 (m, 1H, H_a), 3.62 (t, *J* = 7.8 Hz, 1H, H_v), 3.15 – 3.12 (m, 2H, H_s), 2.64 – 2.56 (m, 4H, H_{b+p}), 2.38 (t, *J* = 6.8 Hz, 2H, H_q), 2.37 (t, *J* = 6.8 Hz, 2H, H_t), 2.25 (q, *J* = 7.4 Hz, 2H, H_l), 1.81 (m, 2H, H_n), 1.40 (m, 2H, H_m), 1.39 – 1.27 (m, 14H, H_{aliphatic}). ¹³C NMR (151 MHz, CD₂Cl₂): δ = 173.47, 171.59, 164.09, 162.82, 155.47, 146.03, 145.10, 144.59, 138.22, 136.94, 129.89, 129.19, 129.08, 128.28, 128.21, 127.58, 127.05, 126.86, 126.02, 122.51, 114.94, 112.52, 68.85, 67.37, 65.28, 49.49, 47.72, 38.84, 35.61, 35.03, 31.42, 30.09, 30.06, 30.05, 29.90, 29.80, 29.68, 29.15, 26.50, 26.42, 16.75. HRMS (ESI⁺): *m*/*z* = 929.5204 [M+H]⁺ (calcd. 929.5212 for C₅₉H₆₉N₄O₆).

General procedure for the preparation of benzylic amide macrocycle rotaxanes. ^{S1}

The corresponding thread (1.00 eq) and triethylamine (16.00 eq) were dissolved in anhydrous chloroform (ethanol-free, stabilized with amylenes, 100 mL) and stirred vigorously whilst solutions of p-xylylenediamine (8.00 eq) in anhydrous chloroform (40 mL) and isophthaloyl dichloride (8.00 eq.) in anhydrous chloroform (40 mL) were simultaneously added over a period of 2 h using motor driven syringe pumps. After further 18 h of stirring the resulting suspension was filtered through a pad of celite and the filtrate was concentrated under reduced pressure to afford the rotaxane product as a crude mixture that was purified using column chromatography (See Supporting Information, Section 3.1).

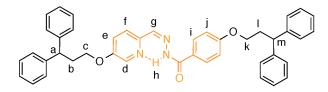

Synthesis of E-4

Rotaxane *E*-4 was prepared from thread *E*-3 (500 mg, 0.78 mmol, 1.00 eq) according to the general procedure for the preparation of benzylic amide macrocycle [2]rotaxanes. The crude material was purified through a flash column chromatography (SiO₂, MeOH/CH₂Cl₂ 0:100 \rightarrow 2:98) to obtain the desired compound (775 mg, 0.66 mmol, 85%, *E*/*Z* = 98 %) as a colourless solid.

¹H NMR (600 MHz, CD₂Cl₂): $\delta = 10.18$ (s, 1H, H_h), 8.78 (s, 2H, H_c), 8.19 (d, J = 7.8 Hz, 4H, H_B), 7.97 (d, J = 8.5 Hz, 2H, H_i), 7.84 (s, 4H, H_D), 7.82 (s, 1H, H_d), 7.67 (t, J = 7.8 Hz, 2H, H_A), 7.37 (s, 1H, H_g), 7.33 – 7.21 (m, 20H, H_A), 7.11 (d, J = 8.8 Hz, 1H, H_f), 6.97 (d, J = 8.5 Hz, 2H, H_j), 6.81 (s, 8H, H_F), 6.74 (d, J = 7.2 Hz, 1H, H_e), 4.53 (m, 4H, H_E), 4.27 (m, 5H, H_{E+a}), 4.22 (t, J = 7.9 Hz, 1H, H_m), 4.04 (t, J = 6.6 Hz, 2H, H_c), 3.89 (t, J = 6.5 Hz, 2H, H_k), 2.63 (q, J = 6.6 Hz, 2H, H_b), 2.54 (q, J =6.5 Hz, 2H, H_l).¹³C NMR (151 MHz, CD₂Cl₂): $\delta = 166.30$, 164.68, 162.60, 156.15, 144.27, 143.97, 137.37, 134.40, 130.84, 129.98, 129.23, 128.63, 128.60, 127.93, 127.78, 127.69, 126.50, 126.44, 125.70, 114.23, 66.79, 66.32, 47.27, 47.10, 43.87, 34.58, 34.31. HRMS (ESI⁺): m/z = 1178.5156[M+H]⁺ (calcd. 1178.5175 for C₇₅H₆₈N₇O₇).

Synthesis of E-6

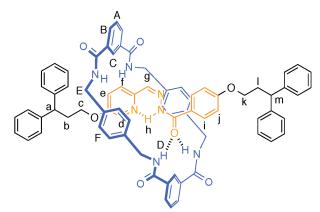
Rotaxane *E*-6 was prepared from thread 5 (20 mg, 0.02 mmol, 1.00 eq) according to the general procedure for the preparation of benzylic amide macrocycle [2]rotaxanes. The crude material was purified through a flash column chromatography (SiO₂, MeOH/CH₂Cl₂ 0:100 \rightarrow 10:80) to obtain the desired compound (24 mg, 0.016 mmol, 70%, > 95 %, *E*/*Z* = 98 %) as a colourless oil. The reported yield of *E*-6 was calculated on basis of the E/Z mixture (77:23) of thread 5.


¹H NMR (600 MHz, CD₂Cl₂): δ = 10.26 (s, 1H, H_h), 8.80 (s, 2H, H_c), 8.20 (d, *J* = 7.6 Hz, 4H, H_B), 8.01 (d, *J* = 7.8 Hz, 2H, H_i), 7.91 (s, 1H, H_d), 7.90 (s, 4H, H_D), 7.67 (t, *J* = 7.7 Hz, 2H, H_A), 7.45 (s, 1H, H_g), 7.31 – 7.18 (m, 21H, H_{Ar+e}), 7.03 (d, *J* = 8.0 Hz, 2H, H_j), 6.82 (s, 8H, H_F), 6.77 (d, *J* = 8.0 Hz, 1H, H_j), 5.76 (brs, 1H, H_p), 4.53 (m, 4H, H_E), 4.28 (m, 4H, H_E), 4.22 (t, *J* = 7.8 Hz, 1H, H_a), 4.10 (t, *J* = 6.3 Hz, 2H, H_k), 4.05 (dt, *J* = 29.7, 6.3 Hz, 2H, H_m), 3.95 (t, *J* = 7.8 Hz, 1H, H_s), 3.90 (t, *J* = 7.8 Hz, 2H, H_c), 3.16 (m, 2H, H_q), 2.55 (m, 4H, H_{b+n}), 2.33 (m, 2H, H_o), 2.25 (q, *J* = 7.5 Hz, 1H, H_r), 1.86 (q, *J* = 7.1 Hz, 2H, H_l), 1.62 (q, *J* = 7.0 Hz, 2H, H_m), 1.40 – 1.22 (m, 16H, H_{aliphatic}). ¹³C NMR (151 MHz, CD₂Cl₂): δ= 172.97, 171.30, 166.30, 164.72, 162.87, 156.11, 155.00, 144.46, 143.99, 143.99, 137.41, 134.42, 130.88, 130.04, 129.20, 128.88, 128.65, 128.54, 127.99, 127.74, 127.69, 127.63, 126.49, 126.34, 114.19, 68.35, 66.86, 64.79, 53.82, 53.64, 53.45, 53.27, 53.10, 48.93, 47.10, 43.86, 38.36, 34.99, 34.33, 30.82, 29.39, 29.14, 29.01, 28.56, 25.87, 25.82. HRMS (ESI⁺): *m/z* = 1461.7299 [M+H]⁺ (calcd. 1461.7322 for C₉₁H₉₇N₈O₁₀).

1.4. Isomerization studies of threads and rotaxanes

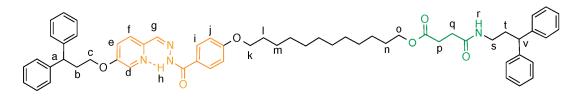
1.4.1. General procedure for the photochemical isomerization

Irradiations were carried out in a photoreactor (Photochemical Reactors Ltd.) fitted with 6×15 W gas discharge bulbs (Vilber-Lourmat T-15M, emission centred at 312 nm). The samples were irradiated in quartz NMR tubes and NMR spectra were recorded immediately after irradiation. The photochemical isomerizations were followed by ¹H NMR (See Supporting Information, section 3.2).


Synthesis of Z-3

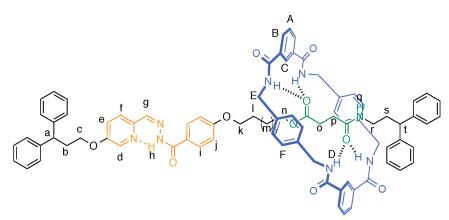
A solution of *E*-**3** (1.0 mg, 1.55 μ mol, 1.00 eq.) in degassed CD₂Cl₂ (0.4 mL) was irradiated for 30 min using the method described above, affording *Z*-**3** (91 %).

¹H NMR (600 MHz, CDCl₃): δ = 15.17 (s, 1H, H_h), 8.41 (d, J = 2.8 Hz, 1H, H_d), 7.93(d, J = 8.7 Hz, 2H, H_i), 7.48 – 7.31 (m, 19H, H_{Ar+e+f+g}), 7.27 – 7.18 (m, 4H, H_{Ar}), 6.99 (d, J = 8.5 Hz, 2H, H_j), 4.31 (td, J = 7.9, 3.2 Hz, 2H, H_{a+m}), 4.08 (t, J = 6.3 Hz, 2H, H_c), 4.02 (t, J = 6.3 Hz, 2H, H_k), 2.63 (m, 4H, H_{b+l}). ¹³C NMR (151 MHz, CD₂Cl₂): δ = 167.71, 163.69, 162.14, 155.09, 145.57, 144.46, 144.18, 137.93, 136.51, 129.46, 128.80, 128.71, 127.95, 127.87, 126.65, 122.11, 114.56, 66.97, 66.31, 47.40, 47.31, 34.74, 34.61.


Synthesis of Z-4

A solution of *E*-4 (1.0 mg, 0.85 μ mol, 1.00 eq.) in degassed CD₂Cl₂(0.4 mL) was irradiated for 1 h using the method described above, affording *Z*-4 (98 %).

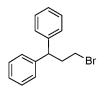
¹H NMR (600 MHz, CDCl₃): δ = 13.94, 12.74 (s, 1H, H_h), 8.54, 8.33 (s, 2H, H_c), 8.23 (d, *J* = 7.8 Hz, 4H, H_B), 7.92 (s, 1H, H_d), 7.65, 7.57 (t, *J* = 7.8 Hz, 2H, H_A), 7.48 (d, *J* = 8.7 Hz, 1H, H_f), 7.39 (s, 1H, H_g), 7.36 – 7.22 (m, 26H, H_{Ar+D+i}), 6.97 (d, *J* = 8.5 Hz, 2H, H_j), 6.93, 6.90 (s, 8H, H_F), 6.53, 6.35 (d, *J* = 8.7 Hz, 1H, H_e), 4.64 (m, 2H, H_E), 4.49 (m, 2H, H_E), 4.27 – 3.93 (m, 8H, H_{E+m+a+c}), 3.75 – 3.64 (m, 2H, H_k), 2.63 – 2.61 (m, 2H, H_b), 2.63 – 2.61 (m, 2H, H_l).


Synthesis of Z-5

A solution of *E*-**5** (1.0 mg, 1.08 μ mol, 1.00 eq.) in degassed CD₂Cl₂(0.4 mL) was irradiated for 1 h using the method described above, affording *Z*-**5** (91 %).

¹H NMR (600 MHz, CD₂Cl₂): $\delta = 15.12$ (s, 1H, H_h), 8.38 (d, J = 2.8 Hz, 1H, H_d), 7.92 (d, J = 8.7 Hz, 2H, H_i), 7.43 (d, J = 8.7 Hz, 1H, H_f), 7.40 (s, 1H, H_g), 7.33 – 7.21 (m, 17H, H_{Ar+e}), 7.21 – 7.15 (m, 4H, H_{Ar}), 7.00 (d, J = 8.3 Hz, 2H, H_j), 5.63 (s, J = 5.7 Hz, 1H, H_r), 4.26 (t, J = 8.0 Hz, 1H, H_a), 4.04 (td, J = 6.5, 4.5 Hz, 6H, H_{c+k+o}), 3.95 (t, J = 7.8 Hz, 1H, H_v), 3.19 – 3.12 (m, 2H, H_s), 2.60 (dt, J = 8.0, 6.5 Hz, 2H, H_b), 2.56 (t, J = 6.8 Hz, 2H, H_p), 2.34 (t, J = 6.8 Hz, 2H, H_q), 2.25 (q, J = 7.4 Hz, 2H, H_l), 1.81 (m, 2H, H_l), 1.60 (m, 2H, H_n), 1.51 – 1.43 (m, 2H, H_m), 1.40 – 1.22 (m, 14H, H_{aliphatic}). ¹³C NMR (151 MHz, CD₂Cl₂): $\delta = 173.47$, 171.59, 164.09, 162.82, 155.47, 146.03, 145.10, 144.59, 138.22, 136.94, 129.89, 129.19, 129.08, 128.28, 128.21, 127.58, 127.05, 126.86, 126.02, 122.51, 114.94, 112.52, 68.85, 67.37, 65.28, 49.49, 47.72, 38.84, 35.61, 35.03, 31.42, 30.09, 30.06, 30.05, 29.90, 29.80, 29.68, 29.15, 26.50, 26.42, 16.75.

Synthesis of Z-6


A solution of *E*-6 (1.0 mg, 0.68 µmol, 1.00 eq.) in degassed $CD_2Cl_2(0.4 \text{ mL})$ was irradiated for 2 h using the method described above, affording *Z*-6 (> 95 %, *Z*/*E* = 91 %).

¹H NMR (600 MHz, CD₂Cl₂): δ = 15.16 (s, 1H, H_h), 8.40 (s, 1H, H_d), 8.38 (s, 2H, H_C), 8.23 (d, *J* = 7.8 Hz, 4H, H_B), 7.92 (d, *J* = 8.3 Hz, 2H, H_i), 7.60 (t, *J* = 7.8 Hz, 2H, H_A), 7.46 (d, *J* = 8.7 Hz, 1H, H_f), 7.40 (s, 1H, H_g), 7.38 (s, 4H, H_D), 7.36 – 7.12 (m, 21H, H_{Ar+e}), 7.01 (s, 8H, H_F), 6.98 (d, *J* = 8.3 Hz, 2H, H_j), 6.43 (s, 1H, H_q), 4.49 – 4.41 (m, 8H, H_E), 4.25 (t, *J* = 8.2 Hz, 1H, H_a), 4.04 – 4.02 (m, 4H, H_{c+k}), 3.87 (t, *J* = 8.0 Hz, 2H, H_n), 3.75 (t, *J* = 7.8 Hz, 1H, H_t), 2.74 – 2.70 (m, 2H, H_r), 2.59 (dt, *J* = 8.2, 6.3 Hz, 2H, H_b), 2.02– 2.00 (m, 2H, H_s), 1.82– 1.78 (m, 2H, H_t), 1.60 – 1.19 (m, 22H, H_{m+o+p+aliphatic}). ¹³C NMR (151 MHz, CD₂Cl₂): δ = 173.47, 171.59, 164.09, 162.82, 155.47, 146.03, 126.02, 122.51, 114.94, 112.52, 68.85, 67.37, 65.28, 49.49, 47.72, 38.84, 35.61, 35.03, 31.42, 30.09, 30.06, 30.05, 29.90, 29.80, 29.68, 29.15, 26.50, 26.42, 16.75.

1.4.2. General procedure for the thermal isomerization

In a NMR tube, a solution of the corresponding Z-thread (Z-3 and Z-5) or rotaxane (Z-4 and Z-6) (1.0 mg, 1.00 eq.) in degassed CD_2Cl_2 (0.4 mL) was heated at 40 °C with catalytic amount of trifluoroacetic acid (TFA) for 2 hours followed by neutralization with K₂CO₃. The thermal isomerizations were followed by ¹H NMR (See Supporting Information, Section 3.2).

2. ¹H and ¹³C NMR spectra for new compounds

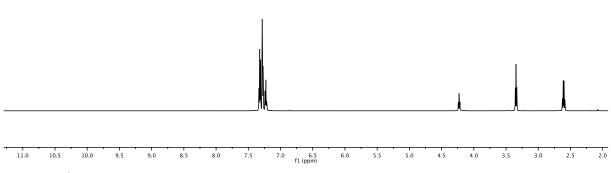
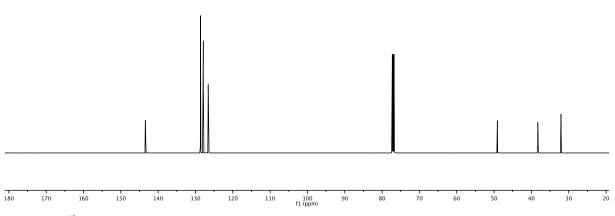
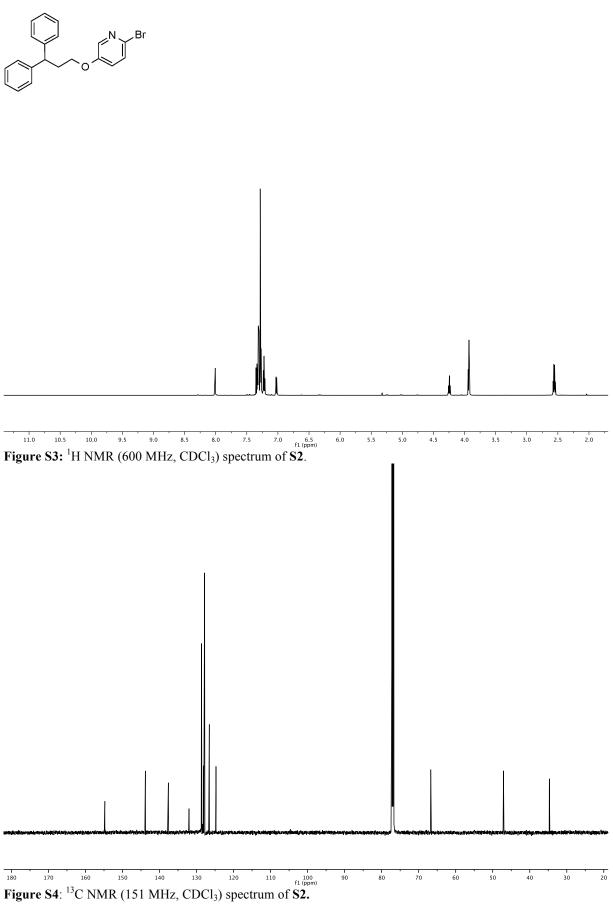
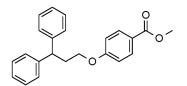
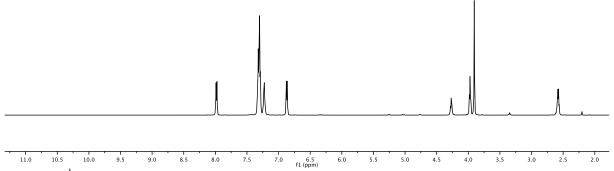
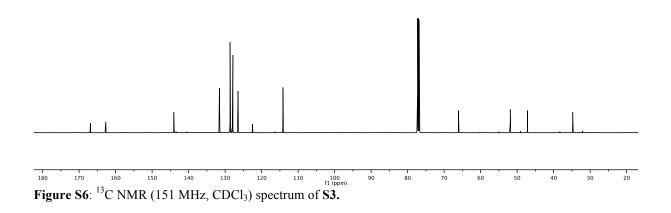


Figure S1: ¹H NMR (600 MHz, CDCl₃) spectrum of S1.


Figure S2: ¹³C NMR (151 MHz, CDCl₃) spectrum of S1.

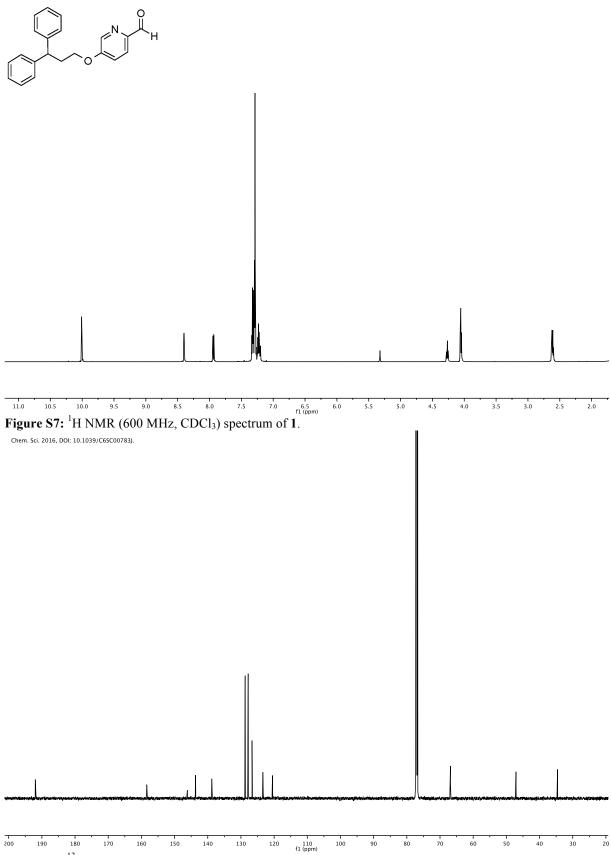
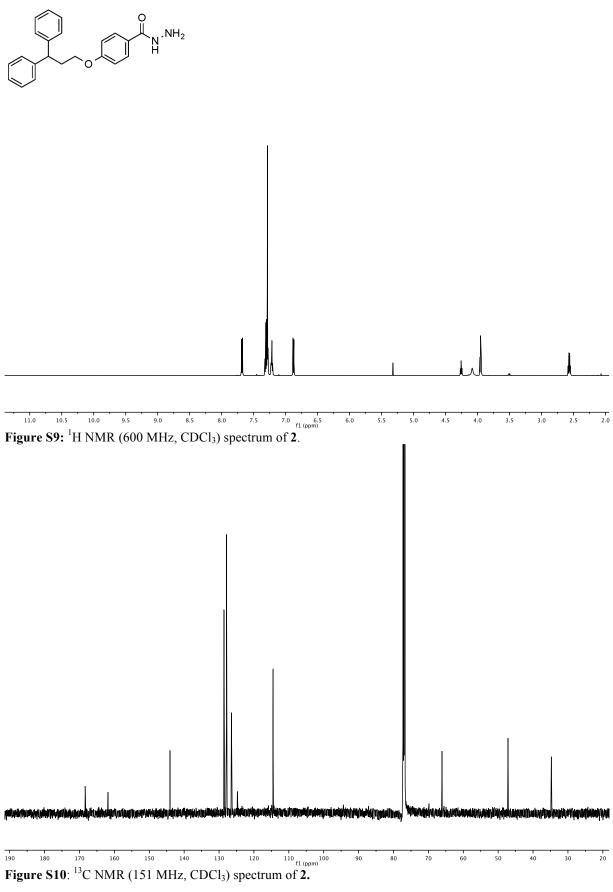
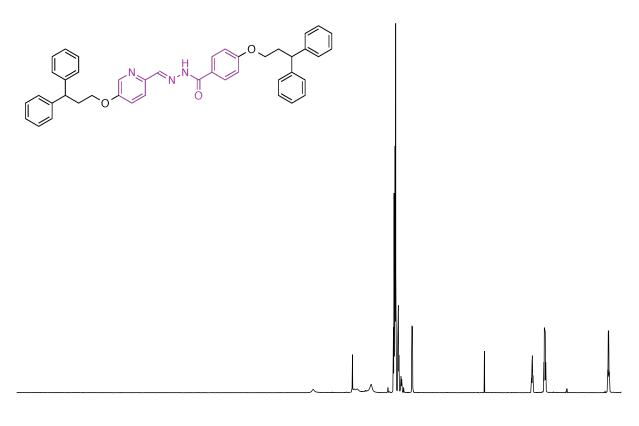
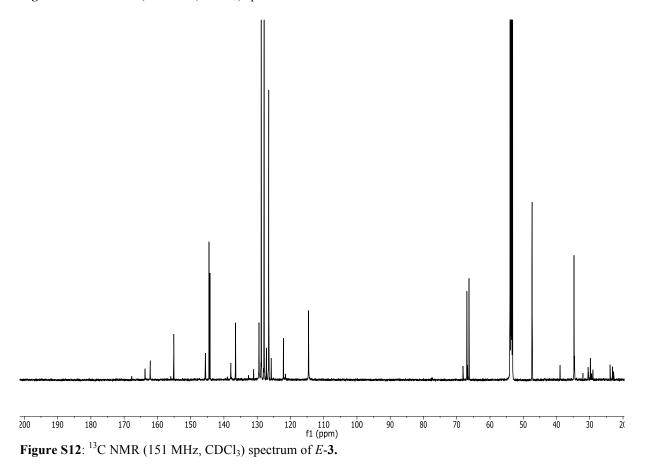





Figure S8: 13 C NMR (151 MHz, CDCl₃) spectrum of 1.

15.5 15.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 $_{f1.(ppm)}^{0.0}$ 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 **Figure S11:** ¹H NMR (600 MHz, CDCl₃) spectrum of *E*-**3**.

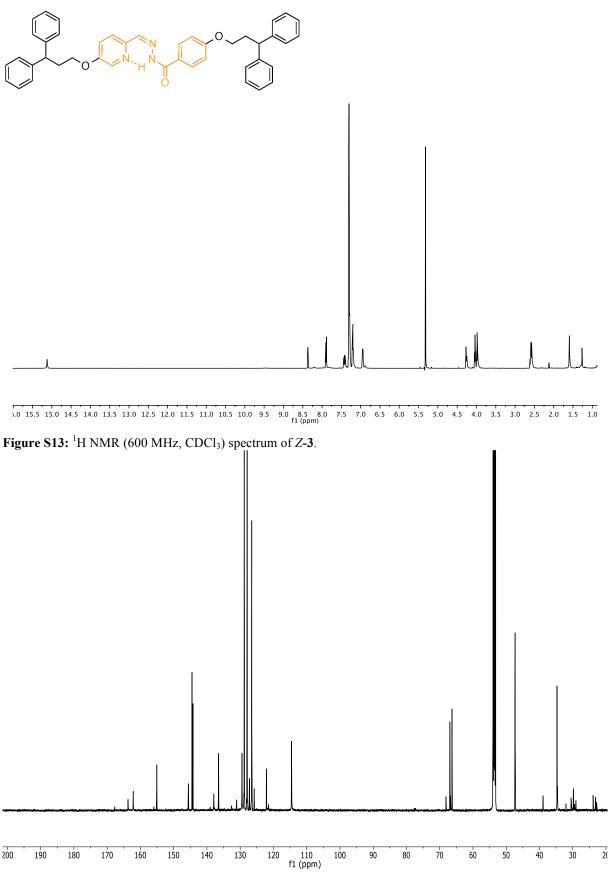
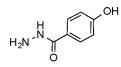



Figure S14: ¹³C NMR (151 MHz, CDCl₃) spectrum of Z-3.

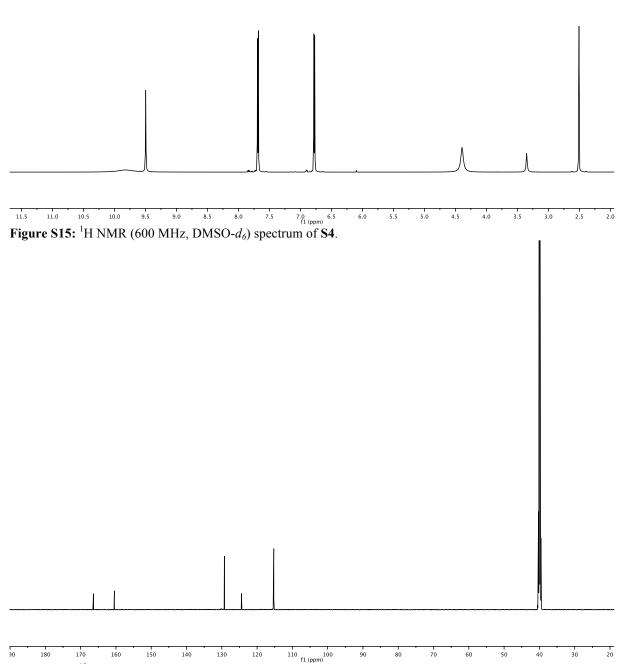
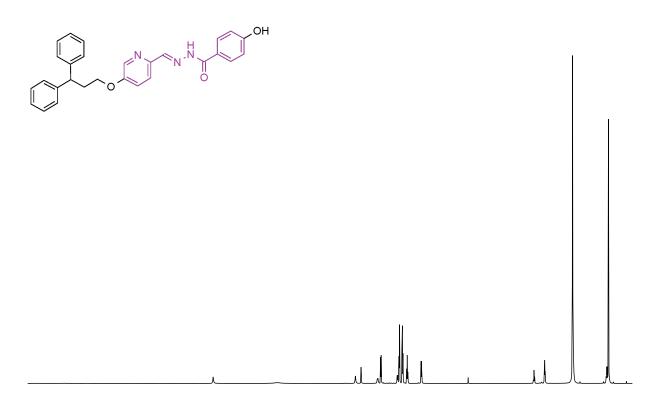



Figure S16: ¹³C NMR (151 MHz, DMSO- d_6) spectrum of S4.

15.5 15.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.(f1 (ppm)) Figure S17: ¹H NMR (600 MHz, DMSO- d_6) spectrum of S5.

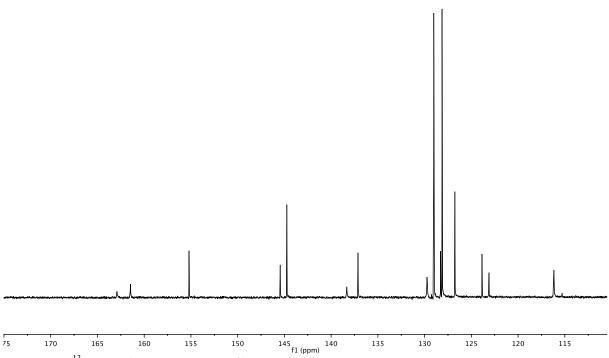
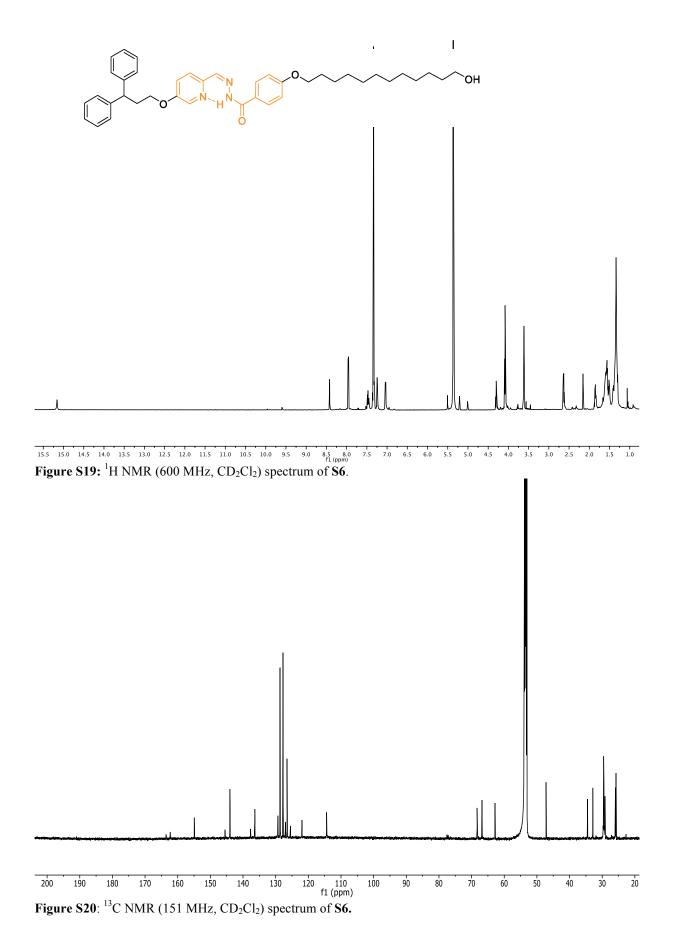
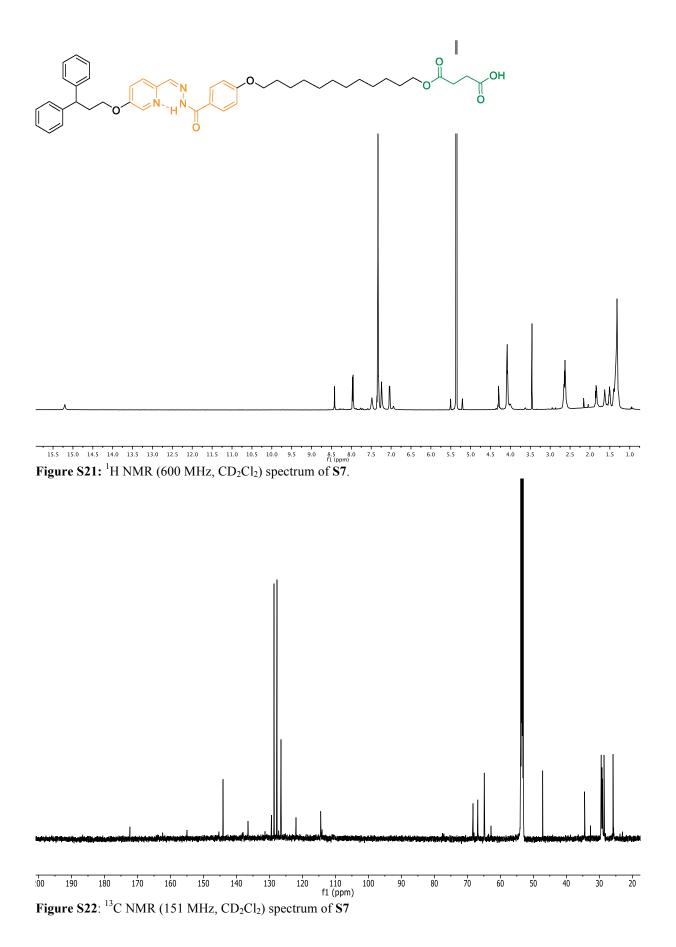
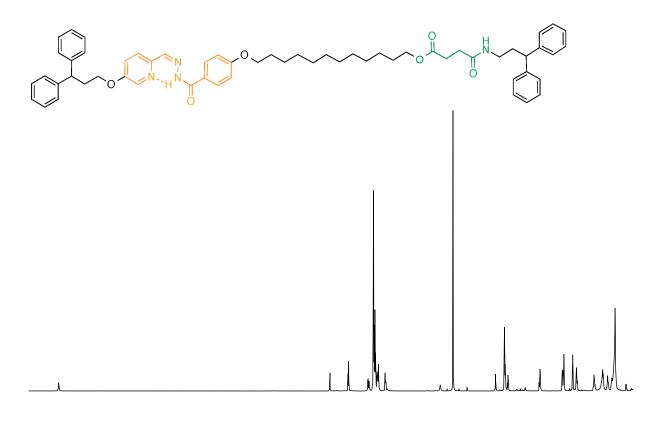
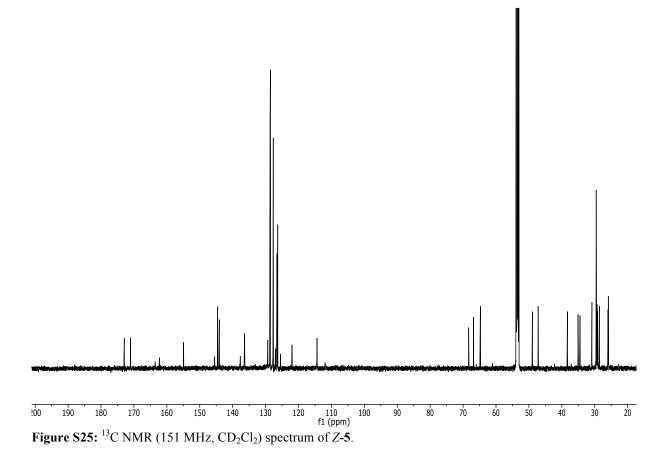
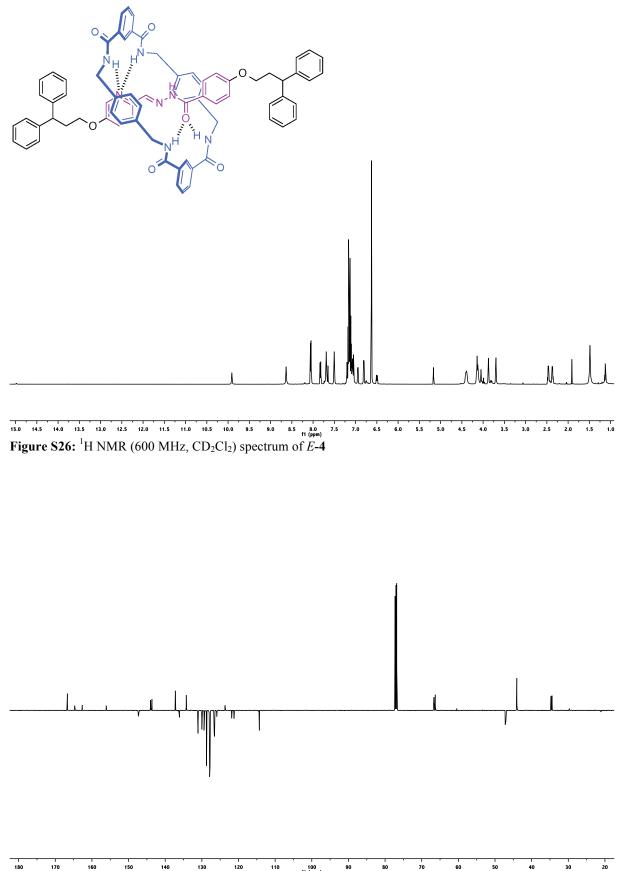
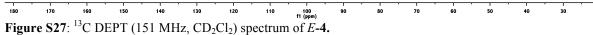
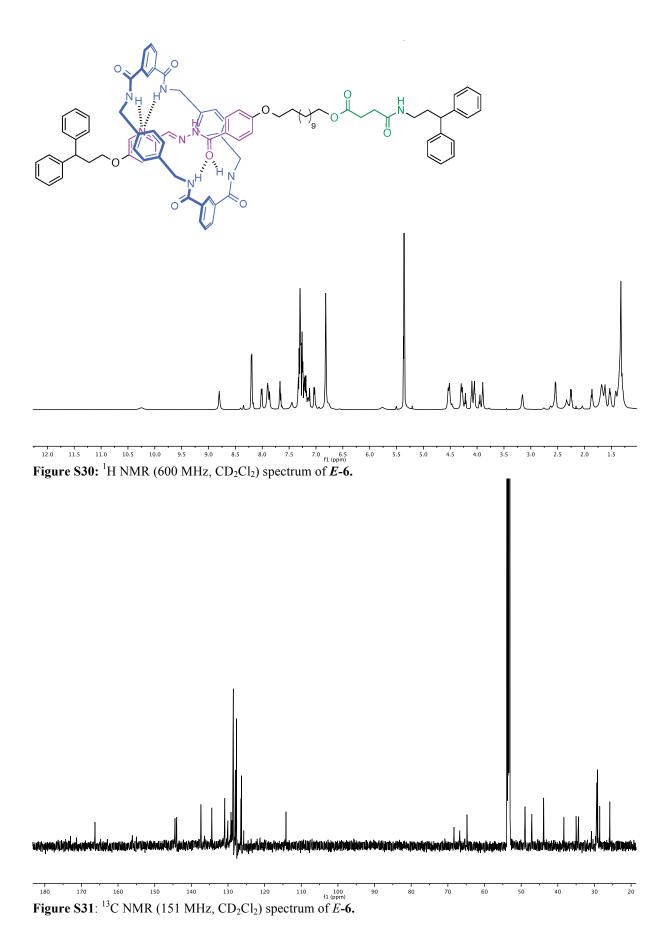
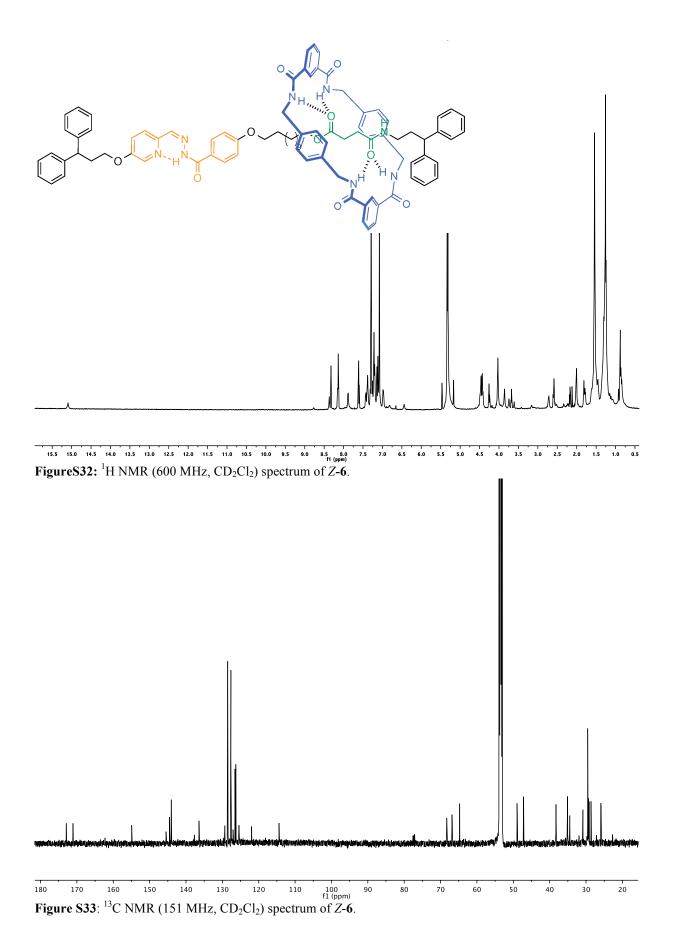




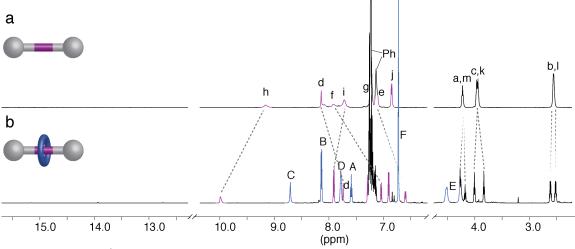
Figure S18: ¹³C NMR (151 MHz, DMSO- d_6) spectrum of S5.

^{15.0} ^{14.5} ^{14.0} ^{13.5} ^{13.0} ^{12.5} ^{12.0} ^{11.5} ^{11.0} ^{10.5} ^{10.0} ^{9.5} ^{9.0} ^{8.5} ^{8.0} ^{7.5} ^{7.0} ^{6.5} ^{6.0} ^{5.5} ^{5.0} ^{4.5} ^{4.0} ^{3.5} ^{3.0} ^{2.5} ^{2.0} ^{1.5} ^{1.0} ^{0.5} ^{1.6} ^{1.5} ^{11.0} ^{0.5} ^{11.0} ^{10.5} ^{11.0} ^{10.5} ^{10.0} ^{9.5} ^{9.0} ^{8.5} ^{8.6} ^{7.5} ^{7.0} ^{6.5} ^{6.0} ^{5.5} ^{5.0} ^{4.5} ^{4.0} ^{3.5} ^{3.0} ^{2.5} ^{2.0} ^{1.5} ^{1.0} ^{0.5} ^{11.0} ^{0.5} ^{11.0} ^{10.0}


Figure S24: ¹H NMR (600 MHz, CD_2Cl_2) spectrum of Z-5.





3. Stack plot ¹H NMR spectra

3.1. Stack Plots for [2]rotaxanes synthesis.

Figure S34: Partial ¹H NMR spectra (600 MHz, CD₂Cl₂, 298 K) of: a) Thread *E*-3; b) Rotaxane *E*-4.

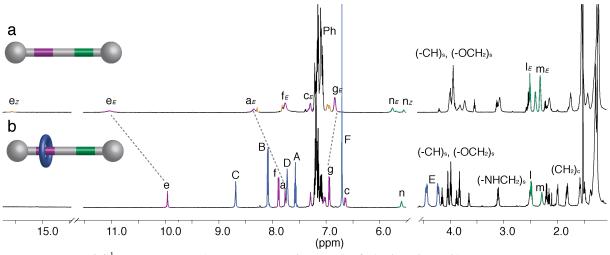
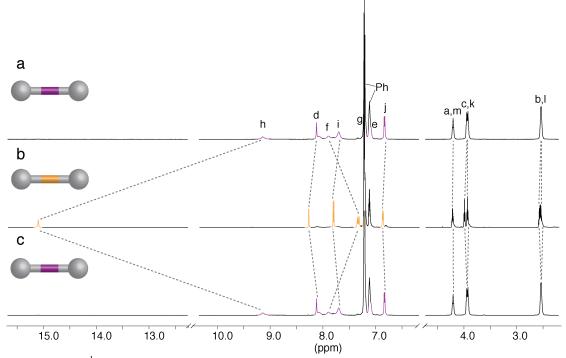
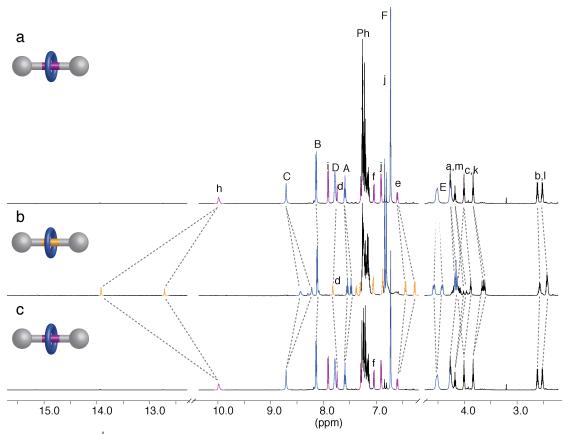
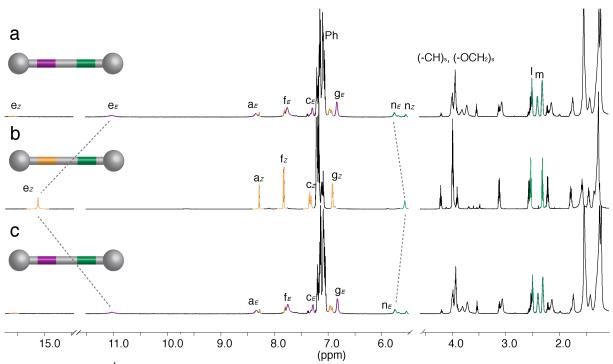




Figure S35: Partial ¹H NMR spectra (600 MHz, CD₂Cl₂, 298 K) of: a) Thread *E*-5; b) Rotaxane *E*-6.



3.2. Stack Plots for isomerization studies.

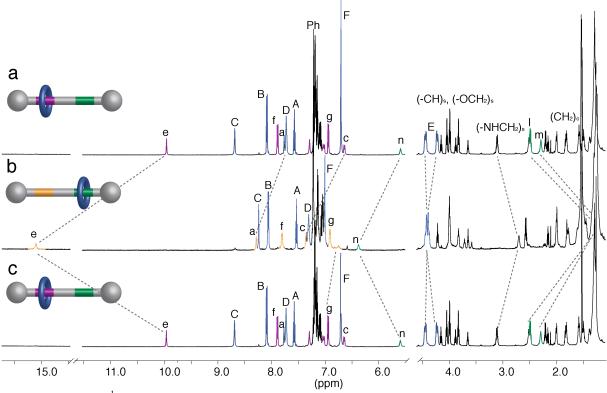

Figure S36: Partial ¹H NMR spectra (600 MHz, CD_2Cl_2 , 298 K) of: a) Thread *E*-**3**; b) Thread Z-**3** obtained from irradiation of *E*-**3** with 365 nm UV light for 30 min; c) Solution of (b) after 1 h heating at 40 °C with catalytic amount of TFA (20 mol%), followed by a neutralization with K_2CO_3 .

Figure S37: Partial ¹H NMR spectra (600 MHz, CD_2Cl_2 , 298 K) of: a) Rotaxane *E*-4; b) Rotaxane*Z*-4 obtained from irradiation of *E*-4 with 365 nm UV light for 1 h; c) Solution of (b) after 2 h heating at 40 °C with catalytic amount of TFA (20 mol%), followed by a neutralization with K₂CO₃.

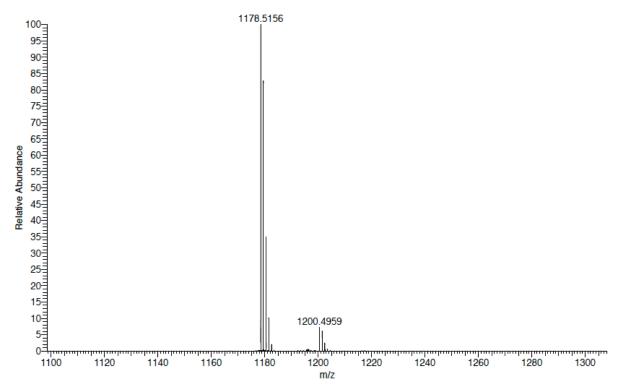


Figure S38: Partial ¹H NMR spectra (600 MHz, CD_2Cl_2 , 298 K) of: a) Thread *E*-**5**; b) Thread *Z*-**5** obtained from irradiation of *E*-**5** with 365 nm UV light for 1 h; c) Solution of (b) after 2 h heating at 40 °C with catalytic amount of TFA (20 mol%), followed by a neutralization with K_2CO_3 .

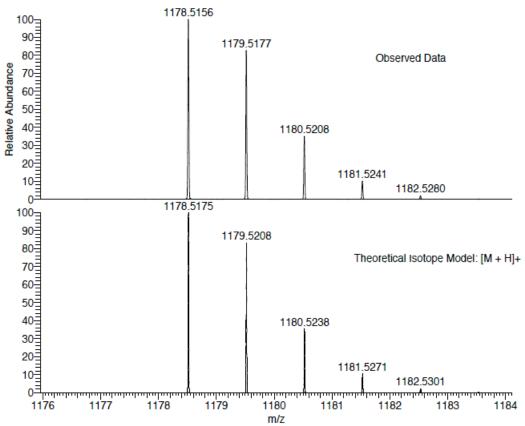


Figure S39: Partial ¹H NMR spectra (600 MHz, CD_2Cl_2 , 298 K) of: a) Rotaxane *E*-**6**; b) Rotaxane *Z*-**6** obtained from irradiation of *E*-**6** with 365 nm UV light for 2 h; c) Solution of (b) after 2 h heating at 40 °C with catalytic amount of TFA (20 mol%), followed by a neutralization with K_2CO_3 .

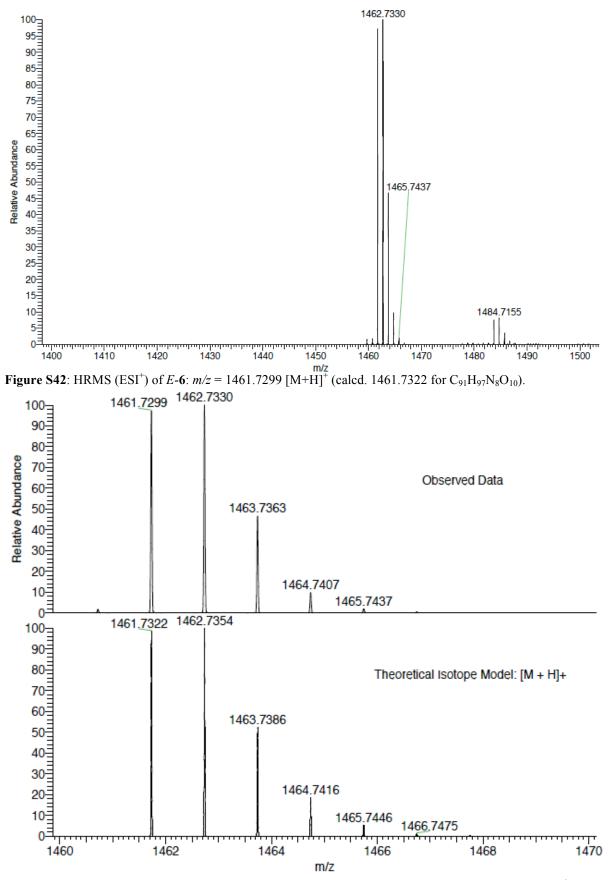

3. Mass spectra for rotaxanes (E-4 and E-6)

Figure S40: HRMS (ESI⁺) of *E*-4, $m/z = 1178.5156 [M+H]^+$ (calcd. 1178.5175 for C₇₅H₆₈N₇O₇).

Figure S41: Experimental (top) and theoretical (bottom) isotopic mass distribution for *E*-4. HRMS (ESI $m/z = 1178.5156 \text{ [M+H]}^+$ (calcd. 1178.5175 for C₇₅H₆₈N₇O₇).

Figure S43: Experimental (top) and theoretical (bottom) isotopic mass distribution for *E*-**6**. HRMS (ESI⁺): $m/z = 1461.7299 [M+H]^+$ (calcd. 1461.7322 for C₉₁H₉₇N₈O₁₀).

5. X-Ray Crystal Structure Experimental Details

Single crystals of the E- and Z-[2]rotaxanes (E-4 and Z-4) were obtained through slow evaporation of a solution in a mixture of CH₂Cl₂ and acetonitrile. X-ray data for compound Z-4 was collected at a temperature of 150 K on an Agilent Technologies Supernova diffractometer with Mo-Ka radiation, (\lambda = 0.71073 Å), equipped with an Oxford Cryosystems Cobra nitrogen flow gas system. Data was measured using CrysAlisPro suite of programs. X-ray data for compound E-4 was collected at a temperature of 100 K using a Bruker X8 Prospector diffractometer with Cu-K α radiation ($\lambda = 1.54184$ Å), equipped with an Oxford Cryosystems Cobra nitrogen flow gas system. X-ray data were processed and reduced using CrysAlisPro suite of programs. Absorption correction was performed using empirical methods based upon symmetry-equivalent reflections combined with measurements at different azimuthal angles.^{S2} The crystal structures were solved and refined against all F^2 values using SHELXL and Olex 2 suite of programs.^{S3} All the atoms were refined anisotropically. Hydrogen atoms were placed in calculated positions refined using idealized geometries (riding model) and assigned fixed isotropic displacement parameters. Hydrogens corresponding to the disordered water and acetonitrile molecules were not included in the model but they were added into the formula. Large parts of the rotaxanes were found disordered and modelled over two positions. Bond distances were restrained using DFIX and SADI command. The atomic displacement parameters (adp) of the ligands, anions and solvent molecules have been restrained using RIGU, EADP and SIMU commands.

	Z-4	<i>E</i> -4
Crystal color	colorless	colorless
Crystal size (mm)	$0.3\times0.15\times0.15$	$0.23\times0.05\times0.05$
Crystal system	Monoclinic	Monoclinic
Space group, Z	$P2_1/c, 4$	C2/c,8
<i>a</i> (Å)	10.0686(7)	18.5033(9)
<i>b</i> (Å)	10.337(1)	10.5908(5)
<i>c</i> (Å)	31.789(5)	68.072(2)
α (°)	90	90
β (°)	91.522(6)	91.094(4)
γ (°)	90	90
$V(Å^3)$	3307.4(5)	13337.2(9)
Density (Mg.m ⁻³)	1.270	1.238
Wavelength (Å)	0.71073	1.54184
Temperature (K)	150	100
μ (Mo-K α) (mm ⁻¹)	0.083	0.656
20 range (°)	6.618 to 50.7	5.194 to 136.494
Reflns collected	13935	53648
Independent reflns (R_{int})	6054 (0.0382)	12116 (0.0605)
L.S. parameters, p	603	1042
No. of restraints, r	755	753
$R1 (F)^{a} I > 2.0\sigma(I)$	0.1144	0.0921
$wR2(F^2)$, ^a all data	0.2836	0.2641
$S(F^2)$, ^a all data	1.106	1.044

Table S1.	Crystallographic	information	for <i>E</i> -4 and <i>Z</i> -4
Table 51.	Crystanographic	mormation	

^a $RI(F) = \Sigma(|F_o| - |F_c|)/\Sigma|F_o|;$ [b] $wR^2(F^2) = [\Sigma w(F_o^2 - F_c^2)^2/\Sigma wF_o^4]^{\frac{1}{2}};$ [c] $S(F^2) = [\Sigma w(F_o^2 - F_c^2)^2/(n + r - p)]^{\frac{1}{2}}$

CCDC 1491182 and 1491183 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge *via* <u>www.ccdc.cam.ac.uk/conts/retrieving.html</u> (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or <u>deposit@ccdc.cam.ac.uk</u>

6. Refereces

S1. Altieri, A.; Bottari, G.; Dehez, F.; Leigh, D.; Wong, J.; Zerbetto, F. Angew. Chem., Int. Ed. 2013, 42, 2296.

S2. (a) Sheldrick, G. M. *SADABS*, empirical absorption correction program based upon the method of Blessing. (b) Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. *J. Appl. Cryst.* **2015**, *48*. (c) Blessing, R. H. *Acta Crystallogr.* **1995**, *A51*, 33.

S3. (a) Sheldrick. G. M. *Acta Crystallogr.* **2015**, *C71*, 3. (b) Dolomanov, O. V.; Bourhis, R. J.; Gildea L. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. **2009**, *42*, 339.