Supporting Information for Publication

Neutron and atomic resolution X-ray structures of a lytic polysaccharide monooxygenase reveal copper-mediated dioxygen binding and evidence for N-terminal deprotonation

John-Paul Bacik^{1†}, Sophanit Mekasha², Zarah Forsberg², Andrey Y. Kovalevsky³, Gustav Vaaje-Kolstad², Vincent G.H. Eijsink², Jay C. Nix⁴, Leighton Coates³, Matthew J. Cuneo³, Clifford J. Unkefer¹, Julian C.-H. Chen^{1*}

¹Protein Crystallography Station, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545 USA; ²Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), PO Box 5003, 1430 Ås, Norway; ³Biology and Soft Matter Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, PO Box 2008, Oak Ridge, TN 37831 USA; ⁴Advanced Light Source, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA

Materials and Methods Table S1 Table S2 Figure S1 Figure S2 Figure S3

Materials and Methods

Expression, purification, crystallization and data collection were previously described in Bacik *et al.*, 2015.

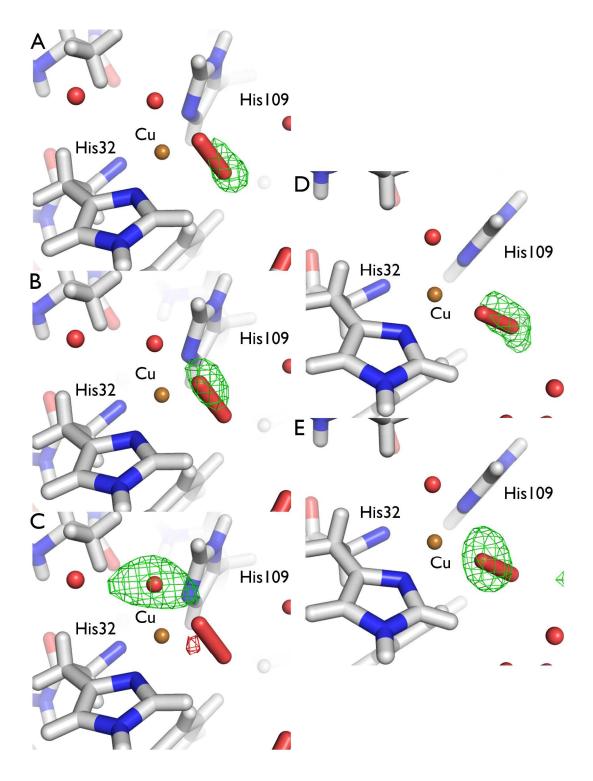
X-ray structure refinement. The X-ray structure of *Jd*LPMO10A was solved by molecular replacement using the 100 K structure of *Jd*LPMO10A, PDB 5aa7 (Mekasha *et al.*, 2016) as a search model, and refined in Phenix using positional, anisotropic B factor (heavy atoms only, including solvent atoms, ions, and the dioxygen species), and occupancy refinement. Waters were automatically added using Phenix. Riding hydrogens and deuteriums were added in the later stages of refinement. No charges were introduced, e.g. the copper ion was modeled as Cu (29 electrons), and not as Cu⁺ (28 electrons) or Cu²⁺ (27 electrons). Likewise, oxygen atoms in the peroxide were treated as neutral species (8 electrons). Data processing and refinement statistics are reported in Table S1.

Neutron structure refinement. Using a partially refined model of *Jd*LPMO10A (~20 % R_{free}), containing isotropic temperature factors, the model was refined against neutron data alone, in Phenix. Deuterium atoms were added to solvent molecules as D₂O, and deuterium was introduced at exchangeable sites on the protein molecule and their relative occupancies were allowed to refine. Nonexchangeable sites remained modeled as H. In the initial maps, solvent molecules that were not visible at 1.0 sigma in the 2F_o-F_c maps were removed to reflect the slight differences between the crystal used for neutron diffraction and crystal used for X-ray diffraction. The structure was refined using positional, isotropic B factor, and occupancy refinement. The quality of the model was confirmed using a composite omit map in Phenix, which showed the continuous density for the dioxygen species. Data quality and refinement statistics are reported in Table S1.

	X-ray (5VG0)	Neutron (5VG1)
Data collection		
Diffraction source	Beamline 4.2.2, ALS	MaNDi, ORNL
Wavelength (Å)	1.000	2 - 4
Detector	RDI 8M CMOS	27 SNS Anger Cameras
Temperature (K)	295	295
Crystal-to-detector distance (mm)	100	450
Rotation range per image (deg)	0.2	Fixed
Total rotation range	180	120
Exposure time per image	0.1 s	20 h
Space group	P2 ₁ 2 ₁ 2 ₁	P212121
Cell (Å)	32.0, 75.6, 120.4	32.5, 76.4, 122.1
Mosaicity	0.07	N/A
Resolution range (Å)	32.0 - 1.1 (1.16 - 1.10)	12.0 – 2.1 (2.17 – 2.1)
Reflections	1248110 (170145)	62823 (2757)
Unique reflections	116274 (16352)	13989 (1091)
Completeness (%)	97.3 (95.0)	76.02 (59.4)
Multiplicity	10.7 (10.4)	4.5 (2.5)
<l></l> /₀(l)>	13.7 (1.5)	9.4 (2.7)
R _{pim}	0.031 (0.436)	0.089 (0.196)
Wilson B (Å ²)	9.2	24.7
Refinement		
Resolution	32.0 – 1.10	12.0 – 2.10
Reflections (R _{free})	116060 (2000)	13989 (686)
R _{cryst} / R _{free}	0.114 / 0.128	0.187 / 0.265
Mean B factor (Å ²)	17.2 / 14.5 / 17.5 / 35.3	38.0 / 35.2 / 39.3 / 43.1
Overall / chain A / chain B/ solvent		(H/D)
Ramachandran	98.3 % most favored	97.2 % most favored
	1.7 % allowed	2.8 % allowed
	0 % disallowed	0 % disallowed
Rmsd bonds (Å)	0.008	0.002
Rmsd angles (deg)	0.975	0.560
Atoms (non-solvent / solvent / H and D atoms)	2279 / 299 / 2541	2207 / 231 / 2946

Table S1. Data collection and refinement statistics

Table S2. Cu coordination environment in X-ray structures of NcLPMO9D^a and JdLPMO10A


ATOMS	<i>Nc</i> LPMO9D Molecule A	Molecule B	ATOMS	<i>Jd</i> LPM Molecu		Molecule B
Cu-His1-N δ	1.93	1.95	Cu-His32-N δ		2.01	2.01
Cu-His1-Namin	o 2.19	2.20	Cu-His32-Nam	ino	2.17	2.14
Cu-His84-Nε	1.97	1.90	Cu-His109-Nε		2.00	2.01
Cu-Y168-OH	2.66	2.73				
Cu-H ₂ O equato	rial	2.06				
Cu-H ₂ O axial	2.36	2.23	Cu-H ₂ O axial		2.45	2.34
Cu-O1 (proxima	al) 1.90	3.57 ^b	Cu-O2 (proxima	al)	1.84	1.83
			Cu-O1 (distal)		2.14	2.69
01-02	1.44	1.20	01-02 ^c		1.48	1.46
			B (Cu, Å ²)		11.40	11.85
			Occupancy (Cu	I)	0.84	0.89
			B (O1, Å ²)	,	48.65	33.23
			Occupancy (O1)	0.83	0.95
			B (O2, Å ²)	,	48.62	31.01
			Occupancy (O2	2)	0.83	0.95

Distance (Å)

^a Data taken from the ascorbate-treated X-ray structure (5TKH) (O'Dell *et al.*, 2017) ^b In molecule B, the oxygen is in a proposed "pre-bound" state, interacting primarily with His157. The oxygen does not directly interact with the copper and does not displace the water molecule occupying the equatorial copper coordination position.

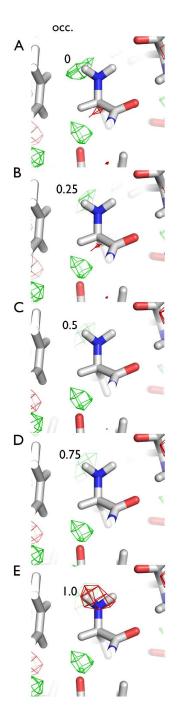
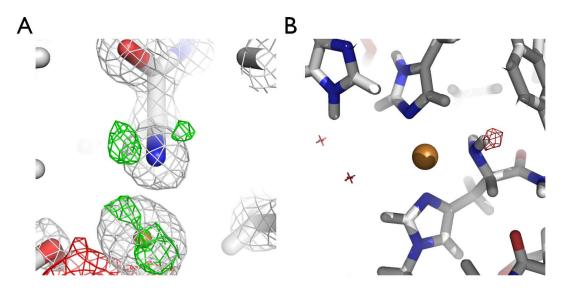

^c Cu-bound O₂-species are modeled as Cu-bound peroxide (Cu-O-O)

Figure S1. Omit maps for the dioxygen species bound to the copper in the RT X-ray structure of *Jd*LPMO10A. A-C. F_o - F_c omit map for molecule A, omitting O1 (A), O2 (B), axial water (C). D-E. F_o - F_c omit map for molecule B, omitting O1 (D), O2 (E). Maps are contoured at +5.0 sigma (green) and -5.0 sigma (red).



S5

Figure S2. Nuclear density omit map of molecule B N-terminal region, contoured at +3.0 sigma (green), and -3.0 sigma (red). The deuterium on the right, which is bonded to the carbonyl group of Ala107, was set to an occupancy of 1.0, as full exchange for D is expected. The occupancy of the left D was set to 0 (A), 0.25 (B), 0.50 (C), 0.75 (D), and 1.0 (E). As can be seen in (E), full occupancy of the site results in the presence of a negative peak (red), indicating a mix of ND⁻ and ND₂ species.

Figure S3. A. F_o - F_c difference density for hydrogen atoms at the N-terminal region of molecule B, showing a mix of ND⁻ and ND₂ forms. The map is contoured at +3.0 sigma (green) and -3.0 sigma (red). B. F_o - F_c difference density for the N-terminal region of *Nc*LPMO9M (also known as NCU07898; PDB 4EIS) (Li *et al.*, 2012), showing a negative (red) peak at the position of one of the hydrogen atoms. The map is contoured at -3.0 sigma.

References

Bacik, J.-P., Mekasha, S., Forsberg, Z., Kovalevsky, A., Nix, J. C., Cuneo, M. J., Coates, L., Vaaje-Kolstad, G., Chen, J. C.-H., Eijsink, V. G. H., and Unkefer, C. J. (2015) *Acta Crystallogr. F71*, 1448-1452.

Li, X., Beeson, W. T. I. V., Phillips, C. M., Marletta, M. A., and Cate, J. H. D. (2012) *Structure 20*, 1051-1061.

Mekasha, S., Forsberg, Z., Dalhus, B., Bacik, J.-P., Choudhary, S., Schmidt-Dannert, C., Vaaje-Kolstad, G., and Eijsink, V. G. H. (2016) *FEBS Lett.* 590, 34-42.

O'Dell, W. B., Agarwal, P. K., and Meilleur, F. (2017) *Angew. Chem. Int. Ed.* 56, 767-770.