Supporting Information

Scalemic Caged Xanthones Isolated from the Stem Bark Extract of Garcinia propinqua
Teerayut Sriyatep, [†] Raymond J. Andersen, [‡] Brian O. Patrick, [‡] Stephen G. Pyne, [§] Chatchai
Muanprasat, ^{\perp} Sawinee Seemakhan, ^{<math> Suparerk Borwornpinyo,$and Surat Laphookhieo*,†$</math>}
[†] Natural Products Research Laboratory, School of Science, Mae Fah Luang University,
Chiang Rai 57100, Thailand.
[‡] Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British
Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1.
[§] School of Chemistry, University of Wollongong, Wollongong, New South Wales, 2522,
Australia
[⊥] Department of Physiology, Faculty of Science, Mahidol University, Rajathevi, Bangkok
10400, Thailand
Excellent Center of Drug Discovery, Faculty of Science, Mahidol University, Rajathevi,
Bangkok 10400, Thailand
*Corresponding author. Tel: +66-5391-6238; Fax: +66-5391-6776.
<i>E-mail address</i> : <u>surat.lap@mfu.ac.th</u>

Figure S1. ¹ H NMR spectrum of compound 1 in CDCl ₃ (600 MHz)	5
Figure S2. ¹³ C NMR spectrum of compound 1 in CDCl ₃ (150 MHz)	5
Figure S3. COSY spectrum of compound 1 in CDCl ₃ (150 MHz)	6
Figure S4. HSQC spectrum of compound 1 in CDCl ₃ (600 MHz)	6
Figure S5. HMBC spectrum of compound 1 in CDCl ₃ (600 MHz)	7
Figure S6. NOESY spectrum of compound (+)-1 in CDCl ₃ (600 MHz)	7
Figure S7. NOESY spectrum of compound (–)-1 in CDCl ₃ (600 MHz)	8
Figure S8. ESI-TOF-MS of compound 1	8
Table S1. ¹ H, ¹³ C and HMBC spectroscopic data of 1 in CDCl ₃	9
Figure S9. ¹ H NMR spectrum of compound 2 in CDCl ₃ (600 MHz)	10
Figure S10. ¹³ C NMR spectrum of compound 2 in CDCl ₃ (150 MHz)	10
Figure S11. COSY spectrum of compound 2 in CDCl ₃ (600 MHz)	11
Figure S12. HSQC spectrum of compound 2 in CDCl ₃ (600 MHz)	11
Figure S13. HMBC spectrum of compound 2 in CDCl ₃ (600 MHz)	12
Figure S14. NOESY spectrum of compound (+)-2 in CDCl ₃ (600 MHz)	12
Figure S15. NOESY spectrum of compound (–)-2 in CDCl ₃ (600 MHz)	13
Figure S16. ESI-TOF-MS of compound 2	13
Table S2 . ¹ H, ¹³ C and HMBC spectroscopic data of 2 in CDCl ₃	14
Figure S17. ¹ H NMR spectrum of compound 3 in CDCl ₃ (600 MHz)	15
Figure S18. ¹³ C NMR spectrum of compound 3 in CDCl ₃ (150 MHz)	15
Figure S19. COSY spectrum of compound 3 in CDCl ₃ (600 MHz)	16
Figure S20. HSQC spectrum of compound 3 in CDCl ₃ (600 MHz)	16
Figure S21. HMBC spectrum of compound 3 in CDCl ₃ (600 MHz)	17
Figure S22. NOESY spectrum of compound (+)-3 in CDCl ₃ (600 MHz)	17
Figure S23. NOESY spectrum of compound (-)-3 in CDCl ₃ (600 MHz)	18
Figure S24. ESI-TOF-MS of compound 3	18

Table S3. ¹ H, ¹³ C and HMBC spectroscopic data of 3 in CDCl ₃	19
Figure S25. ¹ H NMR spectrum of compound 4 in CDCl ₃ (600 MHz)	20
Figure S26. ¹³ C NMR spectrum of compound 4 in CDCl ₃ (150 MHz)	20
Figure S27. COSY spectrum of compound 4 in CDCl ₃ (600 MHz)	21
Figure S28. HSQC spectrum of compound 4 in CDCl ₃ (600 MHz)	21
Figure S29. HMBC spectrum of compound 4 in CDCl ₃ (600 MHz)	22
Figure S30. NOESY spectrum of compound (+)-4 in CDCl ₃ (600 MHz)	22
Figure S31. NOESY spectrum of compound (-)-4 in CDCl ₃ (600 MHz)	23
Figure S32. ESI-TOF-MS of compound 4	23
Table S4. ¹ H, ¹³ C and HMBC spectroscopic data of 4 in CDCl ₃	24
Figure S33. ¹ H NMR spectrum of compound 5 in CDCl ₃ (600 MHz)	25
Figure S34. ¹³ C NMR spectrum of compound 5 in CDCl ₃ (150 MHz)	25
Figure S35. COSY spectrum of compound 5 in CDCl ₃ (600 MHz)	26
Figure S36. HSQC spectrum of compound 5 in CDCl ₃ (600 MHz)	26
Figure S37. HMBC spectrum of compound 5 in CDCl ₃ (600 MHz)	27
Figure S38. NOESY spectrum of compound (+)-5 in CDCl ₃ (600 MHz)	27
Figure S39. NOESY spectrum of compound (-)-5 in CDCl ₃ (600 MHz)	28
Figure S40. ESI-TOF-MS of compound 5	28
Table S5. 1 H, 13 C and HMBC spectroscopic data of 5 in CDCl ₃	29
Figure S41. ¹ H NMR spectrum of compound 6 in CDCl ₃ (600 MHz)	30
Figure S42. ¹³ C NMR spectrum of compound 6 in CDCl ₃ (150 MHz)	30
Figure S43. COSY spectrum of compound 6 in CDCl ₃ (150 MHz)	31
Figure S44. HSQC spectrum of compound 6 in CDCl ₃ (600 MHz)	31
Figure S45. HMBC spectrum of compound 6 in CDCl ₃ (600 MHz)	32
Figure S46. NOESY spectrum of compound (+)-6 in CDCl ₃ (600 MHz)	32
Figure S47. NOESY spectrum of compound (-)-6 in CDCl ₃ (600 MHz)	33

Figure S48. ESI-TOF-MS of compound 6	33
Table S6. ¹ H, ¹³ C and HMBC spectroscopic data of 6 in CDCl ₃	34
Figure S49. ¹ H NMR spectrum of compound 7 in CDCl ₃ (600 MHz)	35
Figure S50. ¹³ C NMR spectrum of compound 7 in CDCl ₃ (150 MHz)	35
Figure S51. COSY spectrum of compound 7 in CDCl ₃ (600 MHz)	36
Figure S52. HSQC spectrum of compound 7 in CDCl ₃ (600 MHz)	36
Figure S53. HMBC spectrum of compound 7 in CDCl ₃ (600 MHz)	37
Figure S54. ESI-TOF-MS of compound 7	37
Table S7. ¹ H, ¹³ C and HMBC spectroscopic data of 7 in CDCl ₃	38
Figure S55. Chiral HPLC chromatogram of 1-7	39

Figure S1. ¹H NMR spectrum of compound 1 in CDCl₃ (600 MHz).

Figure S2. ¹³C NMR spectrum of compound 1 in CDCl₃ (150 MHz).

Figure S3. COSY spectrum of compound 1 in CDCl₃ (600 MHz).

Figure S4. HSQC spectrum of compound 1 in CDCl₃ (600 MHz).

Figure S5. HMBC spectrum of compound 1 in CDCl₃ (600 MHz).

Figure S6. NOESY spectrum of compound (+)-1 in CDCl₃ (600 MHz).

Figure S7. NOESY spectrum of compound (-)-1 in CDCl₃ (600 MHz).

Figure S8. ESI-TOF-MS of compound 1.

Desition	1			
Position	$\delta_{\rm C}$, type		δ_{H} , (<i>J</i> in Hz)	HMBC
1	162.5	С	-	
2	93.4	СН	6.08, s	1,3,4,9a
3	168.0	С	-	
4	114.0	С	-	
4a	157.0	С	-	
5	89.5	С	-	
6	115.3	С	-	
7	31.6	СН	2.41, m	5,6,8,8a,22
8	79.3	СН	4.00, dd (4.4, 2.6)	9
8a	48.6	СН	3.01, d (4.4)	8,9,10a,22
9	196.1	С	-	
9a	102.1	С	-	
10a	88.5	С	-	
11	41.2	С	-	
12	150.3	СН	6.12, dd (17.4, 10.8)	4,11
13	107.5	CH_2	4.80, dd (17.4, 1.2)	11,12
			4.79, dd (10.8, 1.2)	
14	30.6	CH_3	1.54, s	4,11,12,13,15
15	28.2	CH_3	1.51, s	4,11,12,13,14
16	33.7	CH_2	2.33, dd (13.4, 4.7)	5,10a,17,18
			2.09, d (13.4)	5,6
17	81.5	СН	4.21, d (4.7)	5,6,18
18	85.8	С	-	
19	21.6	CH_3	1.56, s	17,20
20	28.9	CH_3	1.33, s	17,19
21	25.1	CH_2	2.26, dd (15.2, 5.2)	6,7,8,10a,22
			1.41, dd (15.2, 10.2)	6
22	43.2	CH	2.22, d (10.2)	5,10a,24
23	79.5	С	-	
24	27.2	CH ₃	1.26, s	22,23,25
25	30.2	CH ₃	1.33, s	22,23,24
OH-1	-		12.39, s	1,2,9a
OMe-3	55.4	OCH_3	3.79, s	3
OMe-8	57.1	OCH_3	3.53, s	8

 Table S1. ¹H, ¹³C and HMBC Spectroscopic Data of 1 in CDCl₃.

Figure S9. ¹H NMR spectrum of compound 2 in CDCl₃ (600 MHz).

Figure S10. ¹³C NMR spectrum of compound 2 in CDCl₃ (150 MHz).

Figure S11. COSY spectrum of compound 2 in CDCl₃ (600 MHz).

Figure S12. HSQC spectrum of compound 2 in CDCl₃ (600 MHz).

Figure S13. HMBC spectrum of compound 2 in CDCl₃ (600 MHz).

Figure S14. NOESY spectrum of compound (+)-2 in CDCl₃ (600 MHz).

Figure S15. NOESY spectrum of compound (–)-2 in CDCl₃ (600 MHz).

position Re	eport						Page 1
alysis PPM / Di None	3E: min = -	1.5, max =	= 50.0				
, Even Electro luated with 6 re N: 0-6 O: 0-	n lons esults within li 10 Na: 0-1	mits (all resi	ults (up to 100	0) for each	mass)		
AM (Cen,4, 50.00	, Ar,5000.0,501.3	1,1.00); Sm (N	/n, 1x1.00); Sb (1	,40.00); Cm	(1041:1060)		TOF MS ES+
501.3149					5.	53.2507	2.0000
502.336 0.8948 503.3	8 1504 511.3080	513.3466	520.3086 523	³²⁴⁵ 527.36	52	534.2749	31 539.3087 m/z
500.0 505	.0 510.0	515.0	520.0	525.0	530.0	535.0	540.0
	.0 5.0	-1.5					
		0.000					
. Mass n	Da PPM	DBE	i-FIT	Form	ıla		
	Special constition Reference nalysis PPM / DI None S. Even Electro s. Even Electro Iluated with 6 re N: 0-6 O: 0- AM (Cen.4, 50.00 501.3149 502.336 503.3 500.0 505	Solution Report nalysis PPM / DBE: min = -' None s, Even Electron lons luated with 6 results within lin N: 0-6 O: 0-10 Na: 0-1 AM (Cen.4, 50.00, Ar,5000.0,501.3 501.3149 502.3368 503.3504 511.3080 500.0 505.0 510.0	Solution Report nalysis PPM / DBE: min = -1.5, max = None s, Even Electron Ions luated with 6 results within limits (all results within limits (all results) N: 0-6 O: 0-10 AM (Cen.4, 50.00, Ar, 5000.0, 501.31, 1.00); Sm (M 501.3149 502.3368 503.3504 511.3080 513.3466 500.0 505.0 510.0	Supposition Report nalysis PPM / DBE: min = -1.5, max = 50.0 None S. Even Electron lons luated with 6 results within limits (all results (up to 1000 N: 0-6 O: 0-10 Na: 0-1 AM (Cen.4, 50.00, Ar,5000.0,501.31,1.00); Sm (Mn, 1x1.00); Sb (1 501.3149 502.3368 0.8948 503.3504 511.3080 510.0 515.0 520.0	position Report nalysis PPM / DBE: min = -1.5, max = 50.0 None s, Even Electron lons luated with 6 results within limits (all results (up to 1000) for each N: 0-6 0: 0-10 AM (Cen.4, 50.00, Ar,5000.0,501.31,1.00); Sm (Mn, 1x1.00); Sb (1,40.00); Cm (501.3149 502.3368 502.3368 503.3504 511.3080 513.3466 500.0 505.0 500.0 505.0 510.0 515.0 520.0 525.0	sposition Report nalysis PPM / DBE: min = -1.5, max = 50.0 None s, Even Electron lons luated with 6 results within limits (all results (up to 1000) for each mass) N: 0-6 O: 0-10 AM (Cen.4, 50.00, Ar,5000.0,501.31,1.00); Sm (Mn, 1x1.00); Sb (1.40.00); Cm (1041:1060) 501.3149 502.3368 503.3504 511.3080 513.3466 502.0 520.0 500.0 50.0 50.0 50.0	position Report nalysis PPM / DBE: min = -1.5, max = 50.0 None s, Even Electron lons luated with 6 results within limits (all results (up to 1000) for each mass) N: 0-6 0: 0-10 AM (Cen.4, 50.00, Ar,5000.0,501.31,1.00); Sm (Mn, 1x1.00); Sb (1.40.00); Cm (1041:1060) 501.3149 502.3368 502.3368 503.3504 511.3080 513.3466 520.0864 503.3504 511.3080 510.0 515.0 520.0 535.0 515.0 520.0 535.0 515.0 520.0 535.0

Figure S16. ESI-TOF-MS of compound **2**.

D = = :4: = ==	2					
Position	$\delta_{\rm C}$, type		$\delta_{\rm H}$, (<i>J</i> in Hz)	HMBC		
1	163.0	С	-			
2	94.0	СН	6.11, s	1,3,4,9a		
3	168.1	С	-			
4	115.2	С	-			
4a	157.0	С	-			
5	86.9	С	-			
6	209.2	С	-			
7	44.8	СН	2.81, m	5,6,8,8a,21,22		
8	74.9	СН	4.34, m	6,7,8a,9,10a,21		
8a	47.4	СН	3.31, m	5,8,9,10a,22		
9	195.0	С	-			
9a	102.6	С	-			
10a	88.5	С	-			
11	41.3	С	-			
12	150.2	С	6.16, dd (17.2, 10.8)	4,11,14,15		
13	107.8	CH_2	4.80, d (17.2)	11,12		
			4.78, d (10.8)			
14	30.8	CH ₃	1.55, s	4,11,12,15		
15	28.8	CH ₃	1.62, s	4,11,12,14		
16	28.0	CH_2	2.88, m	5,6,10a,17,18		
			2.75, dd (14.0, 9.5)			
17	118.0	СН	5.29, t (7.8)	16, 19, 20		
18	133.9	С	-			
19	18.1	CH ₃	1.63, s	17,18,20		
20	26.1	CH ₃	1.67, s	17,18,19		
21	20.3	CH_2	1.96, dd (14.4, 5.4)	6,8,10a,22,23		
			1.39, m	6,7,8,22,23		
22	44.0	СН	2.48, d (8.5)	5,7,10a,21,24		
23	81.1	С	-			
24	27.5	CH ₃	1.11, s	22,23,25		
25	30.5	CH ₃	1.36, s	22,23,24		
OH-1	-	-	12.36, s	1,2,9a		
OMe-3	55.4	OCH ₃	3.79, s	3		
OMe-8	55.7	OCH ₃	3.30, s	8		

 Table S2. ¹H, ¹³C and HMBC Spectroscopic Data of 2 in CDCl₃.

Figure S17. ¹H NMR spectrum of compound **3** in CDCl₃ (600 MHz).

Figure S18. ¹³C NMR spectrum of compound 3 in CDCl₃ (150 MHz).

Figure S19.COSY spectrum of compound 3 in CDCl₃ (600 MHz).

Figure S20. HSQC spectrum of compound 3 in CDCl₃ (600 MHz).

Figure S21. HMBC spectrum of compound 3 in CDCl₃ (600 MHz)

Figure S22. NOESY spectrum of compound (+)-3 in CDCl₃ (600 MHz).

Figure S23. NOESY spectrum of compound (–)-3 in CDCl₃ (600 MHz).

Figure S24. ESI-TOF-MS of compound 3.

Desition	3					
Position	$\delta_{\rm C}$, type		$\delta_{\rm H}$, (<i>J</i> in Hz)	HMBC		
1	162.8	С	-	-		
2	93.8	СН	6.11, s	1,3,9a		
3	168.1	С	-	-		
4	115.1	С	-	-		
4a	156.9	С	-	-		
5	88.1	С	-	-		
6	208.6	С	-	-		
7	44.3	СН	2.90, m	5,6,8,8a,22		
8	74.2	СН	4.40, d (3.3)	6,7,8a,9,10a,OMe-8		
8a	47.5	СН	3.18, m	5,8,9,10a,22		
9	194.5	С	-	-		
9a	102.5	С	-	-		
10a	89.3	С	-	-		
11	41.3	С	-	-		
12	150.0	С	6.09, dd (17.6, 10.9)	4,11,14,15		
13	107.7	CH_2	4.80, d (17.6)	11,12		
			4.78, d (10.9)			
14	31.1	CH ₃	1.54, s	4,11,12,15		
15	28.7	CH ₃	1.51, s	4,11,12,14		
16	117.7	CH_2	5.75, d (16.0)	5,6,17,18		
17	144.6	CH	6.18, d (16.0)	5,16,18		
18	71.1	С	-	-		
19	29.5	CH ₃	1.35, s	17,18,20		
20	29.9	CH ₃	1.36, s	17,18,19		
21	20.0	CH_2	1.97, dd (14.6, 5.8)	7,8,10a,22, 23		
			1.43, m			
22	43.2	CH	2.51, d (8.3)	5,7,10a,21,24		
23	82.1	С	-	-		
24	27.3	CH ₃	1.42, s	22,23,25		
25	30.5	CH ₃	1.16, s	22,23,24		
OH-1	-	-	12.24, s	1,2,9a		
OMe-3	55.4	OCH ₃	3.79, s	3		
OMe-8	55.8	OCH ₃	3.36, s	8		

Table S3. ¹H, ¹³C and HMBC Spectroscopic Data of **3** in CDCl₃.

Figure S25. ¹H NMR spectrum of compound 4 in CDCl₃ (600 MHz).

Figure S26. ¹³C NMR spectrum of compound 4 in CDCl₃ (150 MHz).

Figure S27. COSY spectrum of compound 4 in CDCl₃ (600 MHz).

Figure S28. HSQC spectrum of compound 4 in CDCl₃ (600 MHz).

Figure S29. HMBC spectrum of compound 4 in CDCl₃ (600 MHz).

Figure S30. NOESY spectrum of compound (+)-4 in CDCl₃ (600 MHz).

Figure S32. ESI-TOF-MS of compound 4.

Desition	4			
Position	$\delta_{\rm C}$, type		$\delta_{\rm H}$, (J in Hz)	HMBC
1	162.5	С	-	
2	93.7	СН	6.10, s	1,3,4
3	168.0	С	-	
4	114.2	С	-	
4a	156.3	С	-	
5	92.6	С	-	
6	207.0	С	-	
7	41.7	CH	2.20, m	6,22
8	75.6	CH	4.13, m	9
8a	47.8	CH	3.21, d (3.5)	7,8,9,10a
9	194.7	С	-	-
9a	105.0	С	-	-
10a	88.6	С	-	-
11	41.1	С	-	-
12	149.9	СН	6.13, dd (17.5, 10.6)	4,11
13	107.5	CH_2	4.82, d (17.5)	11,12
			4.81, d (10.6)	
14	30.0	CH_3	1.53, s	4,11,12,15
15	28.4	CH_3	1.51, s	4,11,12,14
16	28.9	CH_2	2.80, dd (15.0, 9.1)	5,10a,17,18
			1.99, dd (15.0,7.1)	
17	82.4	СН	4.11, dd (7.1, 9.1)	18
18	70.1	С	-	-
19	28.5	CH ₃	1.33, s	17,18,20
20	24.2	CH ₃	1.12, s	17,18,19
21	23.6	CH_2	2.17, dd (15.3, 5.9)	8,10a,22, 23
			1.40, m	
22	34.0	СН	2.53, dd (4.6, 3.5)	7,8a
23	83.4	С	-	-
24	26.2	CH ₃	1.40, s	23,25
25	30.5	CH_3	1.41, s	23,24
OH-1	-		12.19, s	1,2,9a
OMe-3	55.4	OCH ₃	3.81, s	3
OMe-8	55.8	OCH ₃	3.45, s	8

 Table S4. ¹H, ¹³C and HMBC Spectroscopic Data of 4 in CDCl₃.

Figure S33. ¹H NMR spectrum of compound 5 in CDCl₃ (600 MHz).

Figure S34. ¹³C NMR spectrum of compound 5 in CDCl₃ (150 MHz).

Figure S35. COSY spectrum of compound 5 in CDCl₃ (600 MHz).

Figure S36. HSQC spectrum of compound 5 in CDCl₃ (600 MHz).

Figure 37. HMBC spectrum of compound 5 in CDCl₃ (600 MHz).

Figure S38. NOESY spectrum of compound (+)-5 in CDCl₃ (600 MHz).

Figure S39. NOESY spectrum of compound (–)-5 in CDCl₃ (600 MHz).

Figure S40. ESI-TOF-MS of compound 5.

Desition	5					
Position	$\delta_{\rm C}$, type		$\delta_{\rm H}$, (<i>J</i> in Hz)	HMBC		
1	162.5	С	-			
2	93.7	СН	6.12, s	1,3,4,9a		
3	168.0	С	-			
4	114.3	С	-			
4a	156.5	С	-			
5	92.0	С	-			
6	207.2	С	-			
7	34.7	СН	2.46, m			
8	75.2	СН	4.13, m			
8a	49.0	СН	3.03, m	9,10a,22		
9	195.0	С	-			
9a	102.2	С	-			
10a	87.7	С	-			
11	41.0	С	-			
12	150.1	CH	6.16, dd (17.2, 10.8)	11,13		
13	107.6	CH_2	4.82, d (17.2)	11,12		
			4.81, d (10.8)			
14	30.5	CH_3	1.57, s	4,11,12,15		
15	28.5	CH_3	1.53, s	4,11,12,14		
16	32.5	CH_2	2.76, dd (13.9, 6.2)	5,6,18		
			2.10, m			
17	79.3	CH	4.53, t (8.1)	18, 19		
18	144.7	С	-	-		
19	112.1	CH_2	5.08, s			
			4.88, s			
20	17.4	CH ₃	1.80, s	17,18, 19		
21	24.2	CH_2	2.18, m	7,10a		
			1.27, m			
22	41.8	CH	2.22, m	5, 7, 10a		
23	83.2	С	-			
24	26.6	CH_3	1.40, s	22,23,25		
25	30.4	CH ₃	1.39, s	22,23,24		
OH-1	-		12.31, s	1,2,9a		
OMe-3	55.4	OCH ₃	3.81, s	3		
OMe-8	56.0	OCH ₃	3.43, s	8		

 Table S5. ¹H, ¹³C and HMBC Spectroscopic Data of 5 in CDCl₃.

Figure S41. ¹H NMR spectrum of compound 6 in CDCl₃ (600 MHz).

Figure S42. ¹³C NMR spectrum of compound 6 in CDCl₃ (150 MHz).

Figure S43. COSY spectrum of compound 6 in CDCl₃ (600 MHz).

Figure S44. HSQC spectrum of compound 6 in CDCl₃ (600 MHz).

Figure S45. HMBC spectrum of compound 6 in CDCl₃ (600 MHz).

Figure S46. NOESY spectrum of compound (+)-6 in CDCl₃ (600 MHz).

Figure S47. NOESY spectrum of compound (-)-6 in CDCl₃ (600 MHz).

Figure S48. ESI-TOF-MS of compound 6.

Desition	6			
Position	$\delta_{\rm C}$, type		$\delta_{\rm H}$, (<i>J</i> in Hz)	HMBC
1	164.3	С	-	
2	92.3	СН	6.07, s	1,3,4,9a
3	169.6	С	-	
4	114.2	С	-	
4a	158.0	С	-	
5	87.7	С	-	
6	208.4	С	-	
7	44.1	СН	2.95, m	8a
8	73.4	СН	4.46, m	
8a	47.6	СН	3.16, m	7,8,9,10a
9	192.6	С	-	
9a	102.3	С	-	
10a	88.6	С	-	
11	43.4	С	-	
12	90.9	СН	4.37, m	13
13	14.3	CH_3	1.37, d (7.2)	11,12
14	25.7	CH_3	1.41, s	4,11,12,15
15	21.8	CH_3	1.25, s	4,11,12,14
16	117.3	СН	5.72, d (15.8)	5,18
17	144.8	СН	6.27, d (15.8)	5,18
18	71.2	С	-	
19	29.7	CH_3	1.36, s	17,18
20	20.0	CU	1.05	17 10
20	30.0	CH ₃	1.35, s	1/,18
21	20.0	CH_2	2.02, m	6,8,10a,22,23
22	42.0	CII	1.49, m	10
22	43.9	СН	2.62, m	10a
23	82.0	C	-	22.22.25
24	30.9	CH ₃	1.22, S	22,23,25
25	27.4	CH ₃	1.51, s	22,23,24
OH-1 OM-2	-		12.00, s	1,2,9a
OMe-9	55 0	OCU	2.26	0
OMe-8	55.9	OCH ₃	5.50, S	δ

 Table S6. ¹H, and HMBC Spectroscopic Data of 6 in CDCl₃.

Figure S49. ¹H NMR spectrum of compound 7 in CDCl₃ (600 MHz).

Figure S50. ¹³C NMR spectrum of compound 7 in CDCl₃ (150 MHz).

Figure S51. COSY spectrum of compound 7 in CDCl₃ (600 MHz).

Figure S52. HSQC spectrum of compound 7 in CDCl₃ (600 MHz).

Figure S53. HMBC spectrum of compound 7 in CDCl₃ (600 MHz).

Figure S54. ESI-TOF-MS of compound 7.

D :/:	7				
Position	$\delta_{\rm C}$, type		$\delta_{\rm H}$, (J in Hz)	HMBC	
1	164.9	С	-		
2	95.7	СН	6.11, brs	1,3,4,9a	
3	167.6^{*}	С	-		
4	94.7	СН	6.08, brs	2,3,4a,9a	
4a	160.7	С	-		
5	84.2*	С	-		
6	202.9	С	-		
7	46.5	СН	3.52, m	8,22	
8	133.7	CH	7.44, d (4.9)	6,7,8a,9	
8a	135.4	С	-		
9	179.3 [*]	С	-		
9a	101.1	С	-		
10a	90.0^{*}	С	-		
11	65.2	CH_2	4.57, m	3,12,13	
12	118.5	СН	5.47, m		
13	139.4	С			
14	25.4	CH ₃	1.83, s	12,13,15	
15	17.9^{*}	CH ₃	1.78, s	12,13,14	
16	28.8	CH_2	2.63, m	5,6,10a,17,18	
17	118.3	СН	4.47, m		
18	135.2	С	-		
19	25.2	CH ₃	1.42, s	17,18,20	
20	16.7^{*}	CH ₃	1.14, s	17,18,19	
21	24.9^{*}	CH_2	2.35, d (15.5)	7,8,10a,22	
			1.33, m		
22	48.5	СН	2.44, d (8.8)	5,7,10a	
23	83.3*	С	-		
24	28.8	CH ₃	1.32, s	22,23,25	
25	29.9^{*}	CH ₃	1.70, s	22,23,24	
OH-1	-		12.47, s	1,2,9a	
OH-3	-				

 Table S7. ¹H, ¹³C and HMBC Spectroscopic Data of 7 in CDCl₃.

*Assigned from HMBC

Figure S55. Chiral HPLC chromatogram of 1-7.

1. Chiral HPLC analysis and separation of enantiomers of compounds 1-7 was performed by semi-preparative HPLC on a chiral column (CHIRALCEL OD-H column, flow rate 2 mL/min, 49:1 *n*-hexane–*i*PrOH).

2. All chromatograms are running from right (short retention time) to left (longer retention time) and the retention times of compounds 1-7 are listed below:

(+)-1 ($t_R = 8 \text{ min}$), (-)-1 ($t_R = 15 \text{ min}$), (+)-2 ($t_R = 14 \text{ min}$), (-)-2 ($t_R = 20 \text{ min}$), (+)-3 ($t_R = 17 \text{ min}$), (-)-3 ($t_R = 30 \text{ min}$), (+)-4 ($t_R = 9 \text{ min}$), (-)-4 ($t_R = 11 \text{ min}$), (+)-5 ($t_R = 6 \text{ min}$), (-)-5 ($t_R = 8 \text{ min}$), (+)-6 ($t_R = 30 \text{ min}$), (-)-6 ($t_R = 34 \text{ min}$), (+)-7 ($t_R = 9 \text{ min}$) and (-)-7 ($t_R = 12 \text{ min}$).