Supporting Information For:

5,9-Dioxa-13b-Oxophosphanaphtho[3,2,1-de]anthracenes

Prepared by Tandem Phospha-Friedel–Crafts Reaction

as Hole-/Exciton-Blocking Materials for OLEDs

Soichiro Nakatsuka,[†] Hajime Gotoh,[†] Akiko Kageyama,[‡] Yasuyuki Sasada,[‡] Toshiaki Ikuta,[‡] Takuji Hatakeyama^{*,†}

[†]Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan

[‡]JNC Petrochemical Corporation, 5-1 Goi Kaigan, Ichihara, Chiba 290-8551, Japan

Table of Contents

S-3
S-4
S-5
S-7
S-10
S-11

A representative procedure for phospha-Friedel–Crafts reaction shown in Table 1

A solution of butyllithium in hexane (3.75 mL, 1.64 M, 6.0 mmol) was added slowly to a solution of 1,3-diphenoxybenzene **2** (1.31 g, 5.0 mmol) in benzene (15 mL) at 0 °C under a nitrogen atmosphere. After stirring at 70 °C for 4 h. Phosphorus trichloride (0.670 mL, 7.5 mmol) and S₈ (0.288 g, 9.0 mmol) was added slowly at 0 °C. After the reaction mixture was reflux for 1 h, AlCl₃ and NEtⁱPr₂ was added at 0 °C. After stirring at reflux for 20 h, the reaction mixture was added to a solution of 1,4-diazabicyclo[2,2,2]octane (twice equivalents with respect to AlCl₃) in dichloromethane (500 ml), and filtered with a pad of Celite[®]. After the solvent was removed *in vacuo* to dryness, the crude product was dissolved in toluene and the residue was filtered off. After the solvent was condensed *in vacuo*, the yield of **3** in the crude product was determined by ¹H NMR analysis using dibromomethane as an internal standard.

Table S1. Screening of quantities of additives

PhO OPh	BuLi (1.2 equiv) benzene/hexane 70 °C	1) PCl ₃ (1.5 equiv) 2) S ₈ (1.8 equiv) benzene/hexane reflux	AlCl ₃ (X equiv) NEt/Pr ₂ (Y equiv) benzene/hexane reflux, 20 h	
entry ^a	Х	Y	yield ^b (%)	of 3
1	6.0	2.0	46%	
2	7.0	2.0	51%	
3	7.0	0	20%	
4	7.0	1.0	36%	
5	7.0	2.5	53%	
6	7.0	3.0	49%	

^{*a*}Reactions were carried out on a 5.0 mmol scale. ^{*b*}Determined by ¹H NMR analysis using dibromomethane as an internal standard.

Crystallographic Data.

Selected bond lengths P-O 1.4889(11) Å P-C1 1.7897(16) Å P-C2 1.7677(16) Å P-C3 1.7859(16) Å	C3 C3 Ta Ta Selected angles C1-P-C2 98.78(7)° C2-P-C3 99.44(7)° C1-P-C3 114.50(7)°	Formula Formula Weight Temperature, K Wavelength, Å Crystal System Space Group a, Å b, Å c, Å a, deg β, deg γ, deg Volume, Å Z Density _{caled} , g·cm ⁻³	$\begin{array}{c} C_{18}H_{11}O_3P\\ 306.24\\ 100(2)\\ 0.85000\\ Triclinic\\ P-1 \ (No.\ 2)\\ 8.02200(10)\\ 8.48070(10)\\ 10.8128(2)\\ 87.5127(5)\\ 70.3489(6)\\ 73.5142(9)\\ 663.191(17)\\ 2\\ 1.534 \end{array}$	Abs. Coefficient, cm ⁻¹ F(000) Crystal Size, mm ³ $2\theta_{min}, 2\theta_{max}, deg$ Index Ranges Reflections (unique) Reflections ($I > 2.0\sigma(I)$) Parameters GOF on F^2 $R1$ ($I > 2.0\sigma(I)$) R, wR2 (all data) Largest diff peak and hole, e, Å	$\begin{array}{r} 0.346\\ 316\\ 0.10, 0.10, 0.10\\ 6.82, 63.00\\ -9 \le h \le 9\\ -10 \le 4 \le 10\\ -13 \le 1 \le 13\\ 2502\\ 2459\\ 200\\ 1.071\\ 0.0427\\ 0.0430, 0.1168\\ -^3 0.346, -0.396\end{array}$
Selected bond lengths P-S 1.9568(6) Å P-C1 1.7929(16) Å P-C2 1.7720(16) Å P-C3 1.7929(16) Å	C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3	Formula Formula Weight Temperature, K Wavelength, Å Crystal System Space Group a, Å b, Å c, Å β, deg Volume, Å Z Density _{calcd} , g·cm ⁻³	$\begin{array}{c} {\rm C}_{18}{\rm H}_{11}{\rm O}_2{\rm PS}\\ {\rm 322.30}\\ {\rm 100(2)}\\ {\rm 0.85000}\\ {\rm Monoclinic}\\ P2_1/a({\rm No}.14)\\ {\rm 8.19170(10)}\\ {\rm 20.1049(2)}\\ {\rm 8.93790(10)}\\ {\rm 103.1295(3)}\\ {\rm 1433.53(3)}\\ {\rm 4}\\ {\rm 1.493} \end{array}$	Abs. Coefficient, cm ⁻¹ F(000) Crystal Size, mm ³ $2\theta_{min}, 2\theta_{max}, deg$ Index Ranges Reflections (unique) Reflections ($I>2.0\sigma(I)$) Parameters GOF on F^2 $R1$ ($I>2.0\sigma(I)$) R, wR2 (all data) Largest diff peak and hole, e, Å ⁻¹	$\begin{array}{c} 0.551 \\ 664 \\ 0.10, 0.10, 0.10 \\ 6.10, 63.00 \\ -10 \le h \le 10 \\ -24 \le k \le 24 \\ -10 \le l \le 10 \\ 2685 \\ 2606 \\ 199 \\ 1.050 \\ 0.0350 \\ 0.0357, 0.0941 \\ ^{3} 0.446, -0.421 \end{array}$
Selected bond lengths P-C1 1.834(4) Å P-C2 1.813(4) Å P-C3 1.832(4) Å	P C3 2 4 2 4 3 2 4 3 2 4 4 3 3 2 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Formula Formula Weight Temperature, K Wavelength, Å Crystal System Space Group a, Å b, Å c, Å β, deg Volume, Å Z Density _{calcd} , g·cm ⁻³	$\begin{array}{c} C_{18}H_{11}O_2P\\ 290.24\\ 100(2)\\ 0.71075\\ Monoclinic\\ P\ 2_1/c\ (No.\ 14)\\ 9.200(3)\\ 10.920(3)\\ 13.430(4)\\ 88.087(13)\\ 1348.5(7)\\ 4\\ 1.430\\ \end{array}$	Abs. Coefficient, cm ⁻¹ F(000) Crystal Size, mm ³ $2\theta_{min}$, $2\theta_{max}$, deg Index Ranges Reflections (unique) Reflections (<i>I</i> >2.0 σ (<i>I</i>)) Parameters GOF on <i>F</i> ² <i>R</i> 1 (<i>I</i> >2.0 σ (<i>I</i>)) <i>R</i> , w <i>R</i> 2 (all data) Largest diff peak and hole, e, Å	$\begin{array}{c} 0.204 \\ 600 \\ 0.2, 0.2, 0.2, 0.2 \\ 6.08, 52.00 \\ -11 \le h \le 10 \\ -13 \le k \le 10 \\ -12 \le l \le 16 \\ 2654 \\ 1425 \\ 190 \\ 1.100 \\ 0.0718 \\ 0.1553, 0.1218 \\ -3 \\ 0.343, -0.442 \end{array}$

Figure S1. X-ray crystal structures of 1a, 3 and 4 (left), and crystal data and structure refinements (right). Thermal ellipsoids are shown at 50% probability; hydrogen atoms have been omitted for clarity.

Computational studies. Molecular orbital calculations and nucleus-independent chemical shift (NICS) calculations were performed with Gaussian 09¹ packages. The DFT method was employed using the B3LYP hybrid functional.² Structures were optimized with the 6-31G(d) basis set.³ Nucleus independent chemical shifts (NICS) were evaluated by using the gauge invariant atomic orbital⁴ (GIAO) approach at the GIAO-B3LYP/6-31G(d) level. The electronic coupling calculations of dimers in the X-ray crystal structures were performed by the local density functional VWN in the conjunction with the PW91⁵ gradient corrections with the DZP basis set,⁶ as implemented in the ADF program⁷ according to the literature.⁸

Figure S2. NICS(0) values of **1a**, **3** and **4** at the GIAO-B3LYP/6-311+G(d,p) level on Gaussian 09 program.

(1) Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

^{(2) (}a) Becke, A. D. J. Chem. Phys. **1993**, 98, 5648–5652. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B **1988**, 37, 785–789.

⁽³⁾ Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; John Wiley & Sons: New York, **1986** and references cited therein.

^{(4) (}a) Dichtfield, R. Mol. Phys. 1974, 27, 789–807. (b) Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112, 8251–8260.

⁽⁵⁾ Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Sing, D. J.; Fiolhais, C. *Phys. Rev. B* **1992**, *46*, 6671–6687.

⁽⁶⁾ Lenthe, E. v.; Baerends, E. J. J. Comput. Chem. 2003, 24, 1142–1156.

^{(7) (}a) Velde, G. t.; Bickelhaupt, F. M.; Gisbergen, S. J. A. v.; Fonseca Guerra, C.; Baerends, E. J.; Snijders J. G.; Ziegler, T. *J. Comput. Chem.* **2001**, *22*, 931–967. (b) Fonseca Guerra, C.; Snijders, J. G.; Velde, G. t.; Baerends, E. J. *Theor. Chem. Acc.* **1998**, *99*, 391–403. (c) ADF2010, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands.

^{(8) (}a) Senthilkumar, K.; Grozema, F. C.; Bickelhaupt, F. M.; Siebbeles, L. D. A. *J. Chem. Phys.* **2003**, *119*, 9809–9817. (b) Wen, S.-H.; Li, A.; Song, J.; Deng, W.-Q.; Han, K.-L.; Goddard III, W. A. *J. Phys. Chem. B* **2009**, *113*, 8813–8819.

Table S2. Summary of TD-DFT calculation for 1a–c at the B3LYP/6-311+G(d,p)//B3LYP /6-31G(d) level.

		wavelength	energy	oscillator	coefficient of
compound	transition	(nm)	(eV)	strength	HOMO-LUMO
1a	S ₀ –S ₁	304.06	4.0776	0.1096	0.68892
	S ₀ –T ₁	354.79	3.4945	0.0000	_
1b	S ₀ –S ₁	318.39	3.8941	0.1025	0.69094
	$S_0 - T_1$	389.41	3.1839	0.0000	_
1c	S ₀ –S ₁	309.58	4.0050	0.1790	0.68914
	$S_0 - T_1$	380.48	3.2587	0.0000	_

Figure S3. The highest occupied and lowest-unoccupied Kohn–Sham orbitals of **1a–c** in the S₀ state calculated at the B3LYP/6-31G(d) level (isovalue = 0.02). Orbital energies are shown in parentheses.

Photoluminescence spectroscopy. UV-visible absorption spectra of **1a**–**1c**, **3** and **4** (0.02 mM in CHCl₃ or CH₂Cl₂) were measured by UV-2600 (Shimadzu) and V-560 (JASCO Co.). PL spectra of **1a**–**1c**, **3** and **4** (0.02 mM in CHCl₃ or CH₂Cl₂) were measured by F-7000 (Hitachi High-Tech Co.) and FluoroMax-4P (HORIBA, Ltd.) at 298 K (fluorescence). Phosphorescence spectra (delayed component of PL spectra) of **1a**, **3** and **4** (saturated in 3-methylpentane) were measured by FluoroMax-4P at 77 K (liquid N₂).

Figure S4. UV-visible absorption spectra of **1a** (green line), **1b** (blue line) and **1c** (red line) in CHCl₃ (0.02 mM solution) at 298 K.

Figure S5. UV-visible absorption spectra of **1a** (green line, excitation at 280 nm), **1b** (blue line, excitation at 285 nm) and **1c** (red line, excitation at 290 nm) in CHCl₃ (0.02 mM solution) at 298 K.

Figure S6. Normalized absorption (blue, 0.02 mM, CH_2Cl_2), fluorescence (red, 0.02 mM, CH_2Cl_2 , excitation at 290 nm), and phosphorescence (green, saturated 3-methylpentane solution at 77 K, excitation at 290 nm) spectra of **1a**.

Figure S7. Normalized UV-visible absorption (blue, 0.02 mM, CH_2Cl_2), fluorescence (red, 0.02 mM, CH_2Cl_2 , excitation at 270 nm), and phosphorescence (green, saturated 3-methylpentane solution at 77 K, excitation at 290 nm) spectra of **3**.

Figure S8. Normalized absorption (blue, 0.02 mM, CH_2Cl_2), fluorescence (red, 0.02 mM, CH_2Cl_2 , excitation at 280 nm), and phosphorescence (green, saturated 3-methylpentane solution at 77 K, excitation at 280 nm) spectra of **4**.

Figure S9. EL spectra of PHOLEDs using 1a (black line), 1b (red line) or 1c (blue line) as a hole blocking material at 1000 cd m⁻² at 298 K.

Measurement of cyclic voltammograms. Cyclic and differential pulse voltammetries were conducted on a BAS Electrochemical Analyzer ALS 604E and CS-3A using a three-electrode cell with a glassy carbon working electrode, a platinum wire counter electrode, and an Ag/AgNO₃ reference electrode.

Figure S10. Cyclic voltammograms of (a) **1a.** Redox potentials were determined 2.0 mM in *N*,*N*-dimethylformamide (reduction) with 0.10 M n-Bu₄N⁺PF₆⁻ and given in V versus the ferrocene/ferrocenium couple (Fc/Fc⁺).

¹H, ¹³C and ³¹P NMR spectra for isolated compounds

Figure S11. ¹H NMR spectrum of **3** in CDCl₃ at 25 °C.

Figure S12. ¹³C NMR spectrum of 3 in CDCl₃ at 25 °C.

Figure S13. ³¹P NMR spectrum of **3** in CDCl₃ at 25 °C.

Figure S14. ¹H NMR spectrum of **4** in CDCl₃ at 25 °C.

Figure S15. ¹³C NMR spectrum of **4** in CDCl₃ at 25 °C.

Figure S16. ³¹P NMR spectrum of **4** in CDCl₃ at 25 °C.

Figure S17. ¹H NMR spectrum of **1a** in CDCl₃ at 25 °C.

Figure S18. ¹³C NMR spectrum of 1a in CDCl₃ at 25 °C.

Figure S19. ³¹P NMR spectrum of 1a in CDCl₃ at 25 °C.

Figure S20. ¹H NMR spectrum of **5** in CDCl₃ at 25 °C.

Figure S21. ¹³C NMR spectrum of **5** in CDCl₃ at 25 °C.

Figure S22. ³¹P NMR spectrum of **5** in CDCl₃ at 25 °C.

Figure S23. ¹H NMR spectrum of **1b** in CDCl₃ at 25 °C.

Figure S24. ¹³C NMR spectrum of 1b in CDCl₃ at 25 °C.

Figure S25. ³¹P NMR spectrum of 1b in CDCl₃ at 25 °C.

Figure S26. ¹H NMR spectrum of 6 in CDCl₃ at 25 °C.

Figure S27. ¹³C NMR spectrum of 6 in CDCl₃ at 25 °C.

Figure S28. ¹H NMR spectrum of **6a** in CDCl₃ at 25 °C.

Figure S29. ¹³C NMR spectrum of 6a in CDCl₃ at 25 °C.

Figure S30. ³¹P NMR spectrum of 6a in CDCl₃ at 25 °C.

Figure S31. ¹H NMR spectrum of **6b** in CDCl₃ at 25 °C.

Figure S32. ¹³C NMR spectrum of 6b in CDCl₃ at 25 °C.

Figure S33. ³¹P NMR spectrum of **6c** in CDCl₃ at 25 °C.

Figure S34. ¹H NMR spectrum of **1c** in CDCl₃ at 25 °C.

Figure S35. ¹³C NMR spectrum of 1c in CDCl₃ at 25 °C.

Figure S36. ³¹P NMR spectrum of 1c in CDCl₃ at 25 °C.