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Model Verification

Transient diffusion case

In this test case, the implementation of mass diffusion in the CFD-DEM code is verified.

Single phase simulations have been performed in a rectangular duct of 0.2 × 0.02 × 0.02

meters, where the grid length in all dimensions are h = 0.005 m. At the bottom X-Y plane,

the gas mass fraction of A is equal to 1, while ‘zero flux boundary conditions’ are applied

at the side walls whereas the gas mass fraction of A in the remaining part of the simulation

domain is zero. The inflow velocity is zero, so there is a diffusive flux of A throughout

the simulation domain. The analytical solution of the axial gas mass fraction profile is

determined by the error function (derived from 2nd Fick’s law):
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Figure S1: 1D profile of instantaneous gas mass fraction of A. h = 0.005 meters.

It can observed that the numerical solution is agreeing very well with the analytical results

(see Figure S1).

Graetz-Nusselt test case

The Graetz-Nusselt case is performed in order to verify the correct implementation of mass

convective terms of the convection-diffusion equation. In this case, there is an inflow velocity

at the bottom plane of the domain and free-slip boundary conditions are applied for the gas

phase at the side walls. Concerning the species field, the mass fraction at the bottom plane

is equal to 1 and at the side walls equal to zero. So the side walls behave, in this case, as

reactive surfaces where component A reacts at infinitely high rate (mass diffusion controls).

The verification consists of the comparison of cross-sectional profiles of the gas mass fraction

Table S1: Simulation data.

Simulation Data

DAB 2.0·10−5 (m/s2) ρg 1 (kg/m3)

µ 2.0·10−5 (kg/m·s) P 101325 Pa

H × W × D 0.2 × 0.02 × 0.02 U 0.03 m/s
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of A under fully developed flow conditions. To attain fully developed concentration profiles,

the inverse of the Graetz number should higher than 0.1:

Gz =
DAB · z
U ·D2

≥ 0.1 (2)

where U is the gas velocity and D is the distance between the side walls. According to

this criterion, fully developed flow is found at an axial distance z = 0.015 m. The analyti-

Table S2: Boundary conditions.

Bottom plane wA,w=0.0

Side walls wA,c=1.0

Top wall dwA

dz
=0.0

cal solution of the mass fraction profile in a squared duct under fully developed conditions is:
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where Y is half distance between the side walls, y is the distance to Y .

Under these conditions the analytical solution for the Sherwood number is 2.977. This

value was compared to Sh number computed from simulation data:

Shw =
MAD

wA,w − wA,m

(4)

where MA is the mass flux towards the side walls, wA,w the mass fraction of A at the wall,

wA,m the cup-averaged mass fraction of A and D the distance between the side walls. From

Table S3, it can be seen that the error between the simulation result and the analytical

solution is very small. Actually this can be significantly reduced when h = 0.0012 m. In

Figure S2, the mass fraction profile of component A is plotted and compared to the analytical

solution at an axial coordinate where the flow is fully developed. This test case demonstrates
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that the implementation of the convective mass transfer terms is correct.

Table S3: Sherwood number of test case.

NX × NY × NZ MA (kg/m2s) wm Sh Sh(an) Error %

9 × 9 × 20 1.89 · 10−4 0.052 3.038 2.977 2.023

17 × 17 × 20 1.97 · 10−4 0.066 2.997 2.977 0.671

Figure S2: Cross-sectional profile mass fraction of A.

Chemical reaction in packed bed system

A packed bed reactor is simulated in order to validate the implementation of the chemical

conversion due to a catalytic reaction. A mass transfer limited case is simulated, where the

particles act as sink points with a mass fraction of component A equal to zero. Free-slip

boundary conditions at the side walls are applied. The dimensions of the packed bed system

are 0.2 × 0.02 × 0.02 meter. The cell numbers are 50 × 5 × 5. The gas density and viscosity

are 1.2 kg/m3 and 2.0·10−5 kg/(m·s) respectively. The bed height is equal to 0.1 meter, and

the bed porosity is equal to 0.9345. In this simulation pure A gas is injected through the

bottom plane of the simulation domain at a gas superficial velocity of 4 m/s. Component

A converts due to a fast reaction at the particle surface. Thus, the behavior of this system
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can be described by a 1D plug flow model where the reaction rate is dictated by the mass

transfer coefficient (Gunn correlation) which is approximately 0.238 m/s.

In this case, the analytical solution is :

wA

wA,0

= exp

(
−(1− ε)avkmtz

U

)
(5)

The 1D profile of the gas mass fraction of component A at steady state is compared to the

analytical solution in Figure S3 We can see that results almost overlap and the difference is

negligible.

Figure S3: Validation of source term implementation.

Mass transfer contributions under riser flow conditions.

In this table, an overview of relevant research related to mass transfer on ri ser flows is

presented. In the remarks column, a comment has been added to categorize each one of

these contributions by the main topic related to mass transfer that is covered in these works

or specifying a different fluidization regime than riser flow.
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Table S4: Mass transfer contributions under riser flow conditions.

Authors Modelling/Experimental Physical/chemical system Remarks

Resnick and White, 19491 Experimental Naphthalene Sublimation Bubbling
Fryer and Potter, 19762 Experimental Ozone Decomposition Bubbling

Dry et al., 19873 Experimental Heat pulse tracer G-S
Watanabe et al., 19914 Experimental Heat transfer G-S
Kagawa et al., 19915 Experimental Ozone Decomposition G-S
Jiang et al., 19916 Experimental Ozone Decomposition G-S

Pagliolico et al.,19927 C/A Exp. Ozone Decomposition Validation
Sun and Grace, 19928 Experimental Ozone Decomposition Effect of PSD
Kumar et al., 19929 Experimental Naphthalene Sublimation Mass transfer

Ouyang et al., 199310 Experimental Ozone Decomposition G-S
Vollert and Werther, 199411 C/A - Exp. NO Oxidation Validation

Fligner, 199412 C/A Hydrodynamics Validation
Van der Ham et al. 199413 Experimental Naphthalene Adsorption Mass transfer

Li and Kwauk, 199414 EMMS Hydrodynamics Clusters
Koenigsdorff and Werther, 199515 C/A Hydrodynamics Validation

Ouyang et al., 199516 Experimental Ozone Decomposition G-S
Pugsley,199617 C/A Hydrodynamics Validation

Schöenfelder, 199618 C/A - Exp. Ozone Decomposition Validation
Zethraeus, 199619 C/A Hydrodynamics Validation

Kunii and Levenspiel, 199720 C/A Hydrodynamics G-S
Venderbosch,199921 Experimental CO Oxidation Sh overall
Zhu et al., 199922 Experimental Heat transfer G-S-downer

Contractor et al., 200023 Experimental Argon gas tracer G-S
Bolland et al., 200124 Experimental Ozone Decomposition Sh overall
Wang and Li, 200225 TFM/EMMS- Exp. Naphthalene Sublimation Validation

Subbarao and Gambhir, 200226 Experimental Naphthalene Adsorption Sh overall
Scala,200727 Experimental CO Oxidation Bubbling

Subbarao, 200828 Cluster model Mass Transfer Cluster model
Dong et al., 2008a29 TFM/EMMS Naphthalene Sublimation Validation
Dong et al., 2008b30 TFM/EMMS Ozone Decomposition Validation

Chalermsinsuwan et al., 200931 TFM/EMMS Ozone Decomposition Sh overall
Prajongkan et al.,200932 TFM/EMMS Ozone Decomposition Sh overall

Breault et al., 200933 Experimental Naphthalene Sublimation Sh cluster-bulk
Shuyan et al., 200934 CFD-DEM Naphthalene Sublimation Particle-Sh

Hou et al., 201035 TFM/EMMS Ozone Decomposition Validation
Wang et al., 201036 TFM/EMMS Hydrodynamics-Mass Transfer Review

Ge et al., 201137 TFM/EMMS Hydrodynamics-Mass Transfer Review
Kashyap et al., 201238 TFM/EMMS-Exp. Ozone Decomposition Sh overall

Chen et al.,201239 TFM/EMMS Gas desulfurization Validation
Hou et al.,201340 TFM/EMMS- Exp. CO oxidation Validation
Li et al., 201341 Experimental Ozone Decomposition G-S

Wang et al., 201542 Experimental Ozone Decomposition G-S

* G-S: Gas-solid contact efficiency. PSD: Particle size distribution.
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