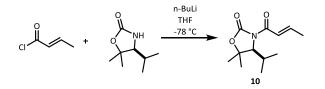
Total Synthesis of (+)-Lophirone H and Its Pentamethyl Ether Utilizing an Oxonium-Prins Cyclisation

Hossay Abas,[‡] Sean M. Linsdall,[‡] Mathias Mamboury, Henry S. Rzepa and Alan C. Spivey*

Department of Chemistry, South Kensington, Imperial College London, London, SW7 2AZ

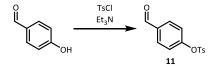
Supporting Information

Table of Contents


General Directions	S2
Experimental Procedures	S3
Comparison of Natural and Synthetic Lophirone H Pentamethyl eEher NMR Data	S17
Bibliography	S19
NMR Spectra	S20

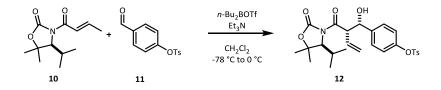
General Directions

All reactions were performed under nitrogen using oven-dried glassware unless stated otherwise. Yields refer to chromatographically and spectroscopically (¹H-NMR) homogenous materials, unless otherwise indicated. MeCN, CH₂Cl₂, THF, Et₂O, DMF, and toluene were dried and deoxygenated with a Grubbs Pure-Solv 400 solvent purification system. The moisture content of the solvents was monitored by Karl Fischer coulometric titration (Mettler-Toledo DL39). Reagents: used as purchased from commercial sources, unless otherwise stated, and used according to COSHH regulations. Chromatography: Flash chromatography (FC) was performed on silica gel (Merck Kieselgel 60 F₂₅₄ 230-400 mesh) unless otherwise stated. Melting Points: determined on a Stanford Research System OptiMelt. Thin Layer Chromatography (TLC): performed on Merck aluminium-backed plates pre-coated with silica (0.2 mm, 60 F₂₅₄) which were visualized either by quenching of ultraviolet fluorescence (λ_{max} = 254 and 366 nm) or staining with; potassium permanganate/ Δ , bromoceresol green/ Δ or phosphomolybdic acid/ Δ TLC dips prepared according to general procedures. Optical Rotations: recorded on a Bellingham and Stanley ADP440+ polarimeter at 589 nm (Na D-line) with a path length of 0.5 dm. Concentrations (c.) are quoted in g/100 mL and specific rotations, $[\alpha]_D^T$, are quoted in units of 10^{-1} degcm²g⁻¹ at the specified temperature, T. *Infra*red spectra: recorded as solids or neat liquids on a Perkin-Elmer FT-IR Spectrum BX, only selected absorbances (v_{max}) are reported. ¹H NMR spectra: recorded on a 400 or 500 MHz Bruker AMX-400/500 instrument. Chemical shifts (δ_{H}) are quoted in parts per million (ppm), referenced to the appropriate residual solvent peak. ¹³C NMR spectra: recorded at 101 MHz or 125 MHz on a Bruker AMX-400/500 instrument Chemical shifts (δ_c) are quoted in parts per million (ppm), referenced to the appropriate residual solvent peak. NOESY spectra: recorded on a 500 MHz Bruker AMX-500 instrument. High Resolution Mass Spectra: recorded on either a VG platform II or VG AutoSpec spectrometer, with only molecular ions ([MH]⁺, [MNa]⁺, [MNH₄]⁺, [MH₂O]⁺, [MH]⁻) and major peaks being reported.

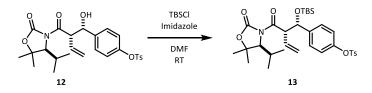

Experimental Procedures

(*S*,*E*)-3-(But-2-enoyl)-4-isopropyl-5,5-dimethyloxazolidin-2-one¹ (10)

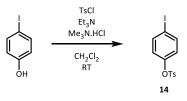
According to the method of Davies,¹ to a solution of *n*-BuLi in THF (1.6 M, 1.91 mL, 3.06 mmol, 1.20 equiv.) was added dropwise to a solution of Davies' (*S*)-SuperQuat chiral auxiliary, (*S*)-(–)-4-isopropyl-5,5-dimethyl-2-oxazolidinone (400 mg, 2.60 mmol) in THF (5.00 mL) at -78 °C and allowed to stir for 1 hour. (*E*)-Crotonyl chloride (0.33 mL, 3.42 mmol, 1.30 equiv.) was added dropwise at -78 °C, allowed to warm to RT and allowed to stir for 1 hour. The reaction mixture was quenched with NH₄Cl solution (5 mL), extracted into EtOAc (2 x 10 mL), washed with brine (10 mL), dried over MgSO₄ and concentrated *in vacuo*. Column chromatography eluting with hexane/EtOAc (6:1) gave enone **10** as a white amorphous solid (430 mg, 75%); mp 63-64 °C; silica gel TLC R_f 0.35 (hexane/EtOAc, 4:1); $[\alpha]_{D}^{27}$ +46.0 (*c*. 1.0, CHCl₃) {lit.,² $[\alpha]_{D}^{23}$ +14.5 (*c*. 1.0, CHCl₃)}; v_{max}/cm⁻¹ (ATR-IR) 1754, 1686, 1360, 1175, 731; ¹H NMR (400 MHz, chloroform-*d*) 7.31 (dq, *J* = 15.2, 1.5 Hz, 1H), 7.14 (dq, *J* = 15.2, 6.8 Hz, 1H), 4.21 (d, *J* = 3.4 Hz, 1H), 2.23 – 2.08 (m, 1H), 1.95 (dd, *J* = 6.8, 1.5 Hz, 3H), 1.51 (s, 3H), 1.38 (s, 3H), 1.03 (d, *J* = 7.0 Hz, 3H), 0.95 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, chloroform-*d*) 165.7, 153.6, 146.6, 122.0, 82.7, 66.3, 29.7, 28.8, 21.6, 21.6, 18.5, 17.1; *m/z* HRMS (ES⁺) calc. 226.1443 [MH]⁺, found 226.1437, C₁₂H₂₀NO₃, Δ = -2.7 ppm. [909731-28-8]. The spectroscopic data were in accordance with the literature.¹


4-Formylphenyl 4-methylbenzenesulfonate (11)³

To a suspension of 4-hydroxybenzaldehyde (3.40 g, 27.8 mmol) in CH₂Cl₂ (50 mL) was added triethylamine (4.66 mL, 33.4 mmol, 1.2 equiv.) and *para*-toluenesulfonyloxy chloride (5.31 g, 27.8 mmol, 1.0 equiv.) and allowed to stir at RT for 24 hours. The reaction mixture was quenched with water (40 mL), extracted into EtOAc (3 x 40 mL), dried over MgSO₄ and concentrated *in vacuo*. Column chromatography eluting with hexane/EtOAc (4:1) gave aldehyde **11** as a white amorphous solid (6.13 g, 80%); mp 70-74 °C; silica gel TLC R_f 0.10 (hexane/EtOAc, 9:1); v_{max} /cm⁻¹ (ATR-IR) 2924, 2732, 1776, 1707, 1596, 1368, 1145; ¹H NMR (400 MHz, chloroform-*d*) 9.97 (s, 1H), 7.86 – 7.80 (m, 2H), 7.75 – 7.68 (m, 2H), 7.36 – 7.29 (m, 2H), 7.21 –

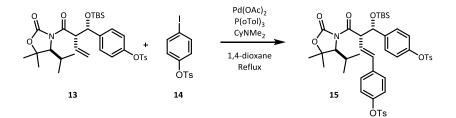

7.13 (m, 2H), 2.46 (s, 3H); ¹³C NMR (101 MHz, chloroform-*d*) 190.6, 153.9, 145.9, 134.8, 132.1, 131.3, 130.0, 128.5, 123.1, 21.8; *m/z* HRMS (ES⁺) calc. 276.0456 [M]⁺, found 276.0461, $C_{14}H_{12}O_4S$, Δ = 1.8 ppm. [80459-48-9]. The spectroscopic data were in accordance with the literature.³

4-((1*S*,2*S*)-2-((S)-4-Ethyl-5,5-dimethyl-2-oxooxazolidine-3-carbonyl)-1-hydroxybut-3-en-1-yl)phenyl 4methylbenzenesulfonate (12)


According to the method of Evans,⁴ to solution of enone **10** (1.80 g, 8.00 mmol) in CH_2Cl_2 (45.0 mL) at -78 °C was added a solution of *n*-Bu₂BOTf in CH₂Cl₂ (1M, 8.90 mL, 8.90 mmol, 1.10 equiv.) dropwise and stirred for 15 minutes. Triethylamine (1.70 mL, 12.2 mmol, 1.50 equiv.) was added dropwise and allowed to stir for: 2 hours at -78 °C, 15 minutes at 0 °C and then cooled down to -78 °C. A solution of aldehyde 11 (3.37 g, 12.2 mmol, 1.50 equiv.) in CH₂Cl₂ (29.0 mL) was added dropwise and allowed to stir at -78 °C for 1 hour then at 0 °C for 1 hour. The reaction mixture was quenched with NaHCO₃ solution (85 mL), extracted into hexane/EtOAc (1:1) (5 x 100 mL), the combined organics were concentrated in vacuo. The residue was dissolved in Et₂O (60 mL) and cooled to 0 °C, pH7 phosphate buffer (6.80 mL) and 30% H₂O₂ solution in H₂O (11.5 mL) were added and allowed to stir for 1 hour. The reaction mixture was guenched with water (100 mL), extracted into hexane/EtOAc (1:1) (3 x 150 mL), washed with brine (2 x 100 mL) dried over MgSO₄ and concentrated in vacuo. Column chromatography eluting with hexane/EtOAc (2:1) gave homoallylic alcohol 12 as a white amorphous solid (3.11 g, 78%); mp 95-96 °C; silica gel TLC Rf 0.40 (hexane/EtOAc, 2:1); [α]_D²⁷ +12.0 (c. 0.4, Me₂CO); ν_{max}/cm⁻¹ (ATR-IR) 1754, 1686, 1361, 1175, 731; ¹H NMR (400 MHz, chloroform-d) 7.70 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.4 Hz, 4H), 6.95 (d, J = 8.7 Hz, 2H), 5.97 (ddd, J = 17.2, 10.0, 8.9 Hz, 1H), 5.44 (d, J = 17.2 Hz, 1H), 5.39 (dd, J = 10.0, 1.0 Hz, 1H), 5.04 (dd, J = 6.6, 1.9 Hz, 1H), 4.96 (dd, J = 8.8, 6.6 Hz, 1H), 4.03 (d, J = 3.1 Hz, 1H), 2.95 (d, J = 2.2 Hz, 1H) 2.47 (s, 3H), 2.15 – 2.02 (m, 1H), 1.46 (s, 3H), 1.04 (s, 3H), 0.98 (d, J = 6.9 Hz, 3H), 0.89 (d, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, chloroform-d) 173.1, 152.8, 149.2, 145.4, 139.7, 132.4, 132.2, 129.8, 128.5, 128.2, 122.4, 122.2, 82.8, 73.5, 66.0, 55.0, 29.7, 28.2, 21.7, 21.5, 21.2, 16.7; *m/z* HRMS (ES⁺): calc. 502.1899 [MH]⁺, found 502.1903, $C_{26}H_{32}NO_7S$, $\Delta = 0.8$ ppm.

4-((1*S*,2*S*)-1-((*tert*-Butyldimethylsilyl)oxy)-2-((*S*)-4-isopropyl-5,5-dimethyl-2-oxooxazolidine-3carbonyl)but-3-en-1-yl)phenyl 4-methylbenzenesulfonate (13)

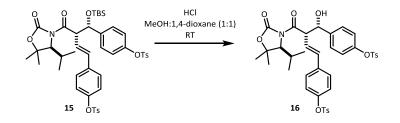
To a solution of homoallylic alcohol **12** (3.08 g, 6.14 mmol) in DMF (15.0 mL) was added TBSCI (4.67g 31.0 mmol, 5.00 equiv.) in DMF (10.0 mL) and imidazole (1.05 g, 15.4 mmol, 2.50 equiv.) in DMF (10.0 mL) and allowed to stir at RT for 40 hours. The reaction mixture was quenched with water (20 mL), extracted into Et₂O (3 x 50 mL), washed with brine (2 x 40 mL), dried over MgSO₄ and concentrated *in vacuo*. Column chromatography eluting with hexane/CH₂Cl₂ (3:1) then CH₂Cl₂ gave protected alcohol **13** as a white amorphous solid (3.59 g, 95%); mp 110-111 °C; silica gel TLC R_f 0.25 (hexane/EtOAc, 4:1); $[\alpha]_{D}^{27}$ -10.6 (*c*. 0.2, Me₂CO); v_{max}/cm⁻¹ (ATR-IR) 1755, 1686, 1361, 1126, 732; ¹H NMR (400 MHz, chloroform-*d*) 7.62 (d, *J* = 8.3 Hz, 2H), 7.31 – 7.23 (m, 4H), 6.86 (d, *J* = 8.4 Hz, 2H), 5.96 (ddd, *J* = 17.1, 10.1, 8.2 Hz, 1H), 5.39 (d, *J* = 17.1 Hz, 1H), 5.28 (dd, *J* = 10.1, 1.5 Hz, 1H), 4.99 (t, *J* = 8.7 Hz, 1H), 4.90 (d, *J* = 9.0 Hz, 1H), 3.84 (d, *J* = 3.3 Hz, 1H), 2.44 (s, 3H), 2.00 (ddq, *J* = 10.2, 6.9, 3.4 Hz, 1H), 1.36 (s, 3H), 0.92 (d, *J* = 7.1 Hz, 3H), 0.83 (d, *J* = 6.7 Hz, 3H), 0.77 (s, 9H), 0.71 (s, 3H), -0.02 (s, 3H), -0.30 (s, 3H); ¹³C NMR (101 MHz, chloroform-*d*) 172.2, 152.8, 149.0, 145.4, 142.0, 134.7, 132.2, 129.7, 128.7, 128.5, 122.1, 120.0, 82.5, 75.5, 65.9, 56.5, 29.6, 27.7, 25.7, 21.7, 21.5, 21.1, 18.1, 16.8, -4.7, -4.9; *m/z* HRMS (ES⁺): calc. 638.2584 [MNa]⁺, found 638.2598, C₃₂H₄₅NO₇NaSSi, Δ = 2.2 ppm.


4-lodophenyl 4-methylbenzenesulfonate⁵ (14)

According to the method of Tanabe,⁶ 4-iodophenol (2.00 g, 9.09 mmol), *para*-toluenesulfonyloxy chloride (3.48 g, 18.1 mmol, 2.00 equiv.), triethylamine (3.80 mL, 27.3 mmol, 3.00 equiv.) and trimethylamine hydrochloride (86.0 mg, 0.90 mmol, 0.10 equiv.) were dissolved in CH_2Cl_2 (36.0 mL) and allowed to stir for 3 hours at RT. The reaction mixture was diluted with CH_2Cl_2 (50 mL), washed with 2.5 M NaOH solution (3 x 15 mL), dried over MgSO₄ and concentrated *in vacuo*. Column chromatography eluting with

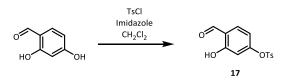
hexane/CH₂Cl₂ (4:1) then CH₂Cl₂ gave aryl-iodide **14** as a white amorphous solid (3.23 g, 95%); silica gel TLC R_f0.70 (hexane/EtOAc, 3:1); mp 96-98 °C; ν_{max}/cm⁻¹ (ATR-IR) 1593, 1289, 1120, 830, 787; ¹H NMR (400 MHz, chloroform-*d*) 7.70 (m, 2H), 7.60 (m, 2H), 7.32 (m, 2H), 6.73 (m, 2H), 2.46 (s, 3H); ¹³C NMR (101 MHz, chloroform-*d*) 149.5, 145.6, 138.7, 129.9, 128.5, 124.5, 91.7, 21.8; *m/z* HRMS (ES⁻): calc. 372.9395 [MH]⁻, found 372.9406, C₁₃H₁₀IO₃S, Δ = 2.9 ppm. [24962-55-8]. The spectroscopic data were in accordance with the literature.⁵

((3*S*,4*S*,*E*)-4-((*tert*-Butyldimethylsilyl)oxy)-3-((*S*)-4-isopropyl-5,5-dimethyl-2-oxooxazolidine-3carbonyl)but-1-ene-1,4-diyl)*bis*(4,1-phenylene) *bis*(4-methylbenzenesulfonate) (15)



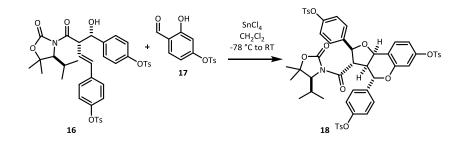
According to the method of Aciro,⁷ to a solution of alkene **13** (1.00 g, 1.62 mmol), aryl-iodide **14** (1.22 g, 3.24 mmol, 2.0 equiv.), palladium(II)acetate (72.0 mg, 0.32 mmol, 0.20 equiv.) and tri(*o*-tolyl)phosphine (100 mg, 0.32 mmol, 0.20 equiv.) in 1,4-dioxane (32.0 mL) was added *N*,*N*-dicyclohexylmethylamine (0.87 mL, 4.05 mmol, 2.50 equiv.) and refluxed for 17 hours. Palladium(II)acetate (72.0 mg, 0.32 mmol, 0.20 equiv.) and tri(*o*-tolyl)phosphine (100 mg, 0.32 mmol, 0.20 equiv.) were added and refluxed for a further 24 hours. The reaction mixture was concentrated *in vacuo*, diluted with CH_2Cl_2 (40 mL), washed with 1 M HCl (40 mL), extracted into CH_2Cl_2 (3 x 40 mL), dried over MgSO₄ and concentrated *in vacuo*. Column chromatography eluting with hexane/CH₂Cl₂ (1:1) then CH_2Cl_2 gave:

Alkene **15** as a white amorphous solid (666 mg, 48%); mp 65-66 °C; silica gel TLC R_f 0.65 (hexane/EtOAc, 2:1); $[\alpha]_D^{27}$ -28.1 (*c*. 0.4, Me₂CO); v_{max}/cm⁻¹ (ATR-IR) 1773, 1372, 1175, 1092, 861; ¹H NMR (400 MHz, chloroform-*d*) 7.69 (m, 2H), 7.63 (m, 2H), 7.33 – 7.23 (m, 8H), 6.90 (m, 4H), 6.66 (d, *J* = 15.8 Hz, 1H), 6.24 (dd, *J* = 15.8, 8.8 Hz, 1H), 5.10 (*app*. t, *J* = 8.8 Hz, 1H), 4.94 (d, *J* = 9.0 Hz, 1H), 3.84 (d, *J* = 3.5 Hz, 1H), 2.45 (s, 3H), 2.44 (s, 3H), 2.07 – 1.92 (m, 1H), 1.36 (s, 3H), 0.91 (d, *J* = 6.9 Hz, 3H), 0.80 (d, *J* = 6.7 Hz, 3H), 0.72 (s, 3H), 0.71 (s, 9H), -0.11 (s, 3H), -0.31 (s, 3H); ¹³C NMR (101 MHz, chloroform-*d*) 172.1, 152.8, 149.1, 148.9, 145.3, 141.8, 135.9, 133.7, 132.2, 129.7, 128.7, 128.5, 128.5, 127.4, 127.2, 122.5, 122.2, 110.0, 82.7, 75.8, 66.0, 55.9, 29.5, 27.7, 25.6, 21.7, 21.5, 21.2, 18.0, 16.9, -4.8, -4.9; *m/z* HRMS (ES⁺): calc. 879.3380 [MNH₄]⁺, found 879.3348, C₄₅H₅₉N₂O₁₀S₂Si, Δ = -3.6 ppm.


Alkene 13 as a white amorphous solid (460 mg, 46%). Spectroscopic data as above.

((3*S*,4*S*,*E*)-4-Hydroxy-3-((*S*)-4-isopropyl-5,5-dimethyl-2-oxooxazolidine-3-carbonyl)but-1-ene-1,4diyl)*bis*(4,1-phenylene) bis(4-methylbenzenesulfonate) (16)

To a solution of protected-alcohol **15** (666 mg, 0.77 mmol) in MeOH (10.5 mL) and 1,4-dioxane (10.5 mL) was added concentrated HCl (0.64 mL, 7.70 mmol, 10.0 equiv.) and allowed to stir at RT for 40 hours. The reaction mixture was concentrated *in vacuo*, diluted with CH_2Cl_2 (20 mL), washed with NaHCO₃ (20 mL), extracted into CH_2Cl_2 (2 x 20 mL), dried over MgSO₄ and concentrated *in vacuo* to give alcohol **16** as a white amorphous solid (568 mg, 98%); mp 78-79 °C; silica gel TLC R_f 0.40 (hexane/EtOAc, 1:1); $[\alpha]_D^{27}$ -10.2 (*c*. 0.2, Me₂CO); v_{max}/cm^{-1} (ATR-IR) 2957, 1777, 1371, 1175, 860; ¹H NMR (400 MHz, chloroform-*d*) 7.70 (m, 2H), 7.65 (m, 2H), 7.31 (d, *J* = 8.7 Hz, 4H), 7.27 – 7.24 (m, 4H), 6.92 (m, 4H), 6.64 (d, *J* = 15.9 Hz, 1H), 6.24 (dd, *J* = 15.9, 8.7 Hz, 1H), 5.12 – 5.02 (m, 2H), 4.02 (d, *J* = 3.4 Hz, 1H), 3.02 (d, *J* = 1.9 Hz, 1H), 2.45 (s, 3H), 2.43 (s, 3H), 2.11 – 2.00 (m, 1H), 1.44 (s, 3H), 1.05 (s, 3H), 0.94 (d, *J* = 7.0 Hz, 3H), 0.82 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, chloroform-*d*) 173.2, 152.9, 149.2, 145.4, 139.6, 135.4, 135.3, 129.8, 128.5, 128.2, 127.6, 124.2, 122.6, 122.3, 83.0, 73.9, 66.1, 54.1, 29.6, 28.3, 21.7, 21.5, 21.2, 16.8; *m/z* HRMS (ES⁻): calc. 770.2070 [MNa]⁺, found 770.2092, $C_{39}H_{41}NO_{10}NaS_2, \Delta = 2.9$ ppm.


4-Formyl-3-hydroxyphenyl 4-methylbenzenesulfonate (17)

To a solution of 2,4-dihydroxybenzaldehyde (4.00 g, 29.0 mmol) and imidazole (2.17 g, 31.9 mmol, 1.1 equiv.) in CH_2Cl_2 (70 mL) was added *para*-toluenesulfonyloxy chloride (6.10 g, 31.9 mmol, 1.1 equiv.) in CH_2Cl_2 (45 mL) and allowed to stir at RT for 24 hours. The reaction mixture was diluted with CH_2Cl_2 (50 mL), extracted with water (2 x 50 mL), washed with brine (50 mL), dried over MgSO₄ and concentrated *in vacuo*. Column chromatography eluting with toluene gave aldehyde **17** as a white amorphous solid (2.55

g, 30%); mp 87-90 °C; silica gel TLC R_f0.40 (hexane/CH₂Cl₂, 1:3); v_{max} /cm⁻¹ (ATR-IR) 1659, 1376, 1178, 1090, 973; ¹H NMR (400 MHz, chloroform-*d*) 11.19 (s, 1H), 9.87 (s, 1H), 7.78 (m, 2H), 7.55 (d, *J* = 8.5 Hz, 1H), 7.37 (m, 2H), 6.80 (dd, *J* = 8.5, 2.2 Hz, 1H), 6.63 (d, *J* = 2.2 Hz, 1H), 2.49 (s, 3H); ¹³C NMR (101 MHz, chloroform-*d*) 195.5, 135.1, 130.0, 128.4, 119.3, 114.3, 111.2, 21.8; *m/z* HRMS (ES⁻): calc. 291.0327 [MH]⁻, found 291.0333, C₁₄H₁₁O₅S, Δ = 2.1 ppm.

((2*S*,3*S*,3*aS*,4*S*,9*bR*)-3-((*S*)-4-IsopropyI-5,5-dimethyI-2-oxooxazolidine-3-carbonyI)-7-(*para*-toluenesulfonyloxy)-2,3,3*a*,9*b*-tetrahydro-4H-furo[3,2-*c*]chromene-2,4diyI)*bis*(4,1-phenylene) *bis*(4-methylbenzenesulfonate) (18)

According to the method of Spivey,⁸ to a solution of aldehyde **17** (109 mg, 0.37 mmol, 1.40 equiv.) in CH₂Cl₂ (1.70 mL) at -78°C was added SnCl₄ in CH₂Cl₂ (1M, 0.32 mL, 0.32 mmol, 1.20 equiv.) and allowed to stir for 30 minutes. A solution of homoallylic alcohol 16 (200 mg, 0.27 mmol) in CH₂Cl₂ (3.60 mL) was added dropwise and allowed to stir at -78°C for 17 hours, allowed to stir at 0 °C for 24 hours, and then allowed to stir at RT for 23 hours. The reaction mixture was quenched with sat. NaHCO₃ solution (10 mL), extracted into CH₂Cl₂ (5 x 10 mL), dried over MgSO₄ and concentrated *in vacuo*. Column chromatography eluting with hexane/EtOAc (2:1 then 1:1 then 0:1) gave oxazolidinone **18** as a white amorphous solid (195 mg, 72%); mp 86-88 °C; silica gel TLC R_f 0.35 (DCM); [α]_D²⁸ +36.5 (*c*. 0.4, Me₂CO); v_{max}/cm⁻¹ (ATR-IR) 1777, 1378, 1177, 865; ¹H NMR (400 MHz, chloroform-d) 7.77 – 7.72 (m, 2H), 7.71 – 7.67 (m, 2H), 7.65 – 7.60 (m, 2H), 7.40 (d, J = 8.5 Hz, 1H), 7.39 – 7.27 (m, 8H), 7.25 – 7.21 (m, 2H), 6.96 (m, 2H), 6.91 (m, 2H), 6.72 (d, J = 2.4 Hz, 1H), 6.65 (dd, J = 8.4, 2.4 Hz, 1H), 5.05 (d, J = 6.4 Hz, 1H), 4.86 (d, J = 8.2 Hz, 1H), 4.56 - 4.51 (m, 2H), 3.92 (d, J = 3.5 Hz, 1H), 3.13 (ddd, J = 11.1, 6.4, 4.3 Hz, 1H), 2.46 – 2.42 (m, 9H), 1.86 (pd, J = 6.8, 3.5 Hz, 1H), 1.34 (s, 3H), 1.05 (s, 3H), 0.71 (d, J = 6.9 Hz, 3H), 0.38 (d, J = 6.8 Hz, 3H).; ¹³C NMR (101 MHz, chloroform-d) 172.7, 155.5, 151.6, 150.2, 150.1, 149.9, 145.6, 145.5, 145.3, 136.5, 132.5, 132.3, 132.0, 131.6, 129.9, 129.8, 129.4, 128.6, 128.5, 128.4, 128.2, 122.9, 122.8, 119.6, 116.0, 111.5, 85.3, 82.2, 78.7, 74.9, 66.6, 52.7, 50.9, 29.3, 28.3, 21.8, 21.4, 21.1, 16.5; *m/z* HRMS (ES⁺) calc. 1044.2369 [MNa]⁺, found 1044.2378, C₅₃H₅₁NO₁₄NaS₃, Δ = 0.9 ppm.

The relative stereochemistry of oxonium-Prins product **18** was determined by analysis of its NMR spectra. All coupling constants were in accord with expectation and additionally, the presence of a cross-peak between H_{3a} and H_{9b} in the NOESY spectrum suggested a 2,3-*cis* configuration for the fused bicycle. Other diagnostic signals included correlation between H_4 and H_3 and between H_{3a} and H_2 indicating these proton pairs were projecting from the same face of the bicycle respectively. As was the case for the pentamethyl ether derivative of lophirone H that was analysed by Bodo and Martin *et al.*⁹, there was also a cross peak between H_9 on the aryl moiety of the benzopyran and H_{9b} of the fused bicycle (Figure 4).

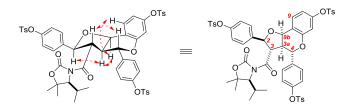
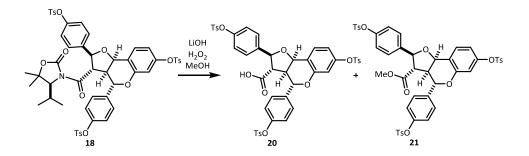
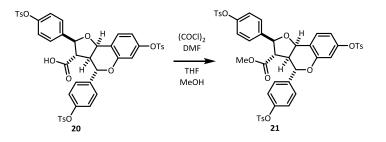



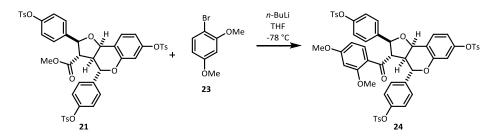
Figure S1. Key NOESY correlations observed in 4H-furo[3,2-c]benzopyran 18.

(2*S*,3*S*,3*aS*,4*S*,9*bR*)-7-(*para*-Toluenesulfonyloxy)-2,4-*bis*(4-(*para*-toluenesulfonyloxy)phenyl)-2,3,3*a*,9*b*-tetrahydro-4H-furo[3,2-*c*]chromene-3-carboxylic acid (20) & methyl (2*S*,3*S*,3*aS*,4*S*,9*bR*)-7-(*para*-toluenesulfonyloxy)-2,4-*bis*(4-(*para*-toluenesulfonyloxy)phenyl)-2,3,3*a*,9*b*-tetrahydro-4H-furo[3,2-*c*]chromene-3-carboxylate (21)



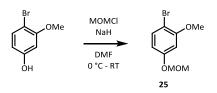
According to the method of Evans,¹⁰ to a solution of oxazolidinone **18** (200 mg, 0.20 mmol) in methanol (20 mL) was added 30% H_2O_2 in water (20 μ L, 0.20 mmol, 1.00 equiv.) and lithium hydroxide (8.2 mg, 0.20 mmol 1.00 equiv.) and allowed to stir at RT for 2 hours. The cloudy reaction mixture was concentrated *in vacuo*. Column chromatography eluting with hexane/EtOAc/formic acid (3:1:0.005) gave:

Acid **20** as a pale white amorphous solid (55 mg, 32%); mp 79-84 °C; silica gel TLC R_f 0.15 (hexane/EtOAc, 1:1); $[\alpha]_D^{27}$ +38.9 (*c*. 0.4, Me₂CO); v_{max} /cm⁻¹ (ATR-IR) 1494, 1371, 1177, 864; ¹H NMR (400 MHz, acetoned₆) 7.82 – 7.78 (m, 2H), 7.75 – 7.71 (m, 2H), 7.70 – 7.67 (m, 2H), 7.51 – 7.42 (m, 11H), 7.07 – 6.98 (m, 4H), 6.72 (dd, J = 8.4, 2.4 Hz, 1H), 6.69 (d, J = 2.4 Hz, 1H), 5.15 (d, J = 7.4 Hz, 1H), 4.98 (d, J = 5.4 Hz, 1H), 4.70 (d, J = 11.4 Hz, 1H), 3.14 (ddd, J = 11.4, 5.4, 3.0 Hz, 1H), 2.52 (dd, J = 7.4, 3.0 Hz, 1H), 2.46 (s, 3H), 2.45 (s, 3H), 2.43 (s, 3H).; ¹³C NMR (101 MHz, acetone- d_6) 156.9, 151.3, 151.0, 150.3, 147.0, 146.9, 146.9, 140.9, 137.6, 133.7, 133.5, 133.5, 133.3, 131.2, 131.0, 130.9, 129.5, 129.4, 129.4, 128.8, 123.6, 123.3, 120.8, 116.3, 111.8, 82.8, 79.0, 74.9, 56.4, 48.0, 21.8; *m/z* HRMS (ES⁺) calc. 905.1372 [MNa]⁺, found 905.1376, C₄₅H₃₈O₁₃NaS₃, Δ = 0.4 ppm.

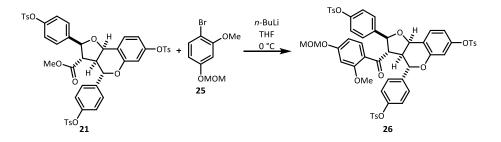

Methyl ester **21** as a white fluffy solid (119 mg, 67%); mp 95-98 °C; silica gel TLC R_f 0.29 (hexane/EtOAc, 3:2); v_{max}/cm^{-1} (ATR-IR) 1735, 1597, 1504, 1372, 1195, 1177, 865; ¹H NMR (400 MHz, chloroform-*d*) δ 7.81 – 7.66 (m, 6H), 7.42 – 7.27 (m, 9H), 7.24 – 7.17 (m, 2H), 7.01 (m, 2H), 6.97 (m, 2H), 6.71 (d, *J* = 2.3 Hz, 1H), 6.65 (dd, *J* = 8.4, 2.4 Hz, 1H), 5.12 (d, *J* = 7.2 Hz, 1H), 4.93 (d, *J* = 5.3 Hz, 1H), 4.49 (d, *J* = 11.3 Hz, 1H), 3.55 (s, 3H), 2.97 (ddd, *J* = 11.3, 5.3, 3.0 Hz, 1H), 2.51 (dd, *J* = 7.2, 3.0 Hz, 1H), 2.48 – 2.42 (m, 9H); ¹³C NMR (101 MHz, chloroform-d) δ 172.1, 155.6, 150.3, 150.0, 149.3, 145.6, 145.5, 138.9, 135.8, 132.5, 132.4, 132.0, 129.9, 129.8, 129.4, 128.5, 128.4, 127.2, 122.8, 122.7, 118.9, 115.9, 111.4, 81.5, 77.9, 74.1, 55.0, 52.4, 47.2, 21.8; *m/z* HRMS (ES⁺) calc. 914.1945 [MNH₄]⁺, found 914.1975, C₄₆H₄₄NO₁₃S₃, Δ = -3.3 ppm.

Procedure for conversion of carboxylic acid 20 to methyl ester 21

To a solution of acid **20** (55 mg, 0.062 mmol) in tetrahydrofuran (6.8 mL) was added oxalyl chloride (8.8 μ L, 0.10 mmol, 1.60 equiv.) and DMF (2.6 μ L, 0.034 mmol, 0.55 equiv.). The reaction was allowed to stir at RT for 10 minutes before quenching with excess methanol (6 mL). The reaction mixture was concentrated *in vacuo*. Column chromatography eluting with hexane/EtOAc (3:2) gave methyl ester **21** as a white fluffy solid (45 mg, 80%). Spectroscopic data as above.

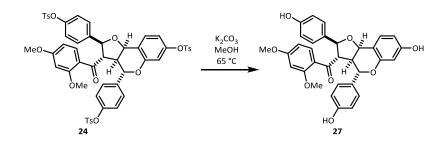

((2*S*,3*S*,3*aS*,4*S*,9*bR*)-3-(2,4-Dimethoxybenzoyl)-7-(*para*-toluenesulfonyloxy)-2,3,3*a*,9*b*-tetrahydro-4Hfuro[3,2-*c*]chromene-2,4-diyl)*bis*(4,1-phenylene) *bis*(4-methylbenzenesulfonate) (24)

[0.098M Aryl-lithium stock solution: To a solution of 1-bromo-2,4-dimethoxybenzene **23** (146 μ L, 1.02 mmol, 48 equiv.) in THF (9.9 mL) at -78 °C under Ar was added *n*-BuLi (2.5M, 420 μ L, 1.05 mmol, 50 equiv.) and allowed to stir for 20 minutes.]


To a solution of methyl ester 21 (19 mg, 0.021 mmol) in THF (0.15 mL) at -78 °C under Ar was added (2,4dimethoxyphenyl)lithium solution (0.35 mL, 0.034 mmol, 0.098M, 1.6 equiv.) in one portion to give a bright yellow solution which was allowed to stir at -78 °C for 3 hours. Based on ¹H NMR analysis of an aliquot of the reaction mixture the conversion was judged to be approximately 25%. (2,4dimethoxyphenyl)lithium solution (0.35 mL, 0.034 mmol, 0.098M, 1.6 equiv.) was again added at -78 °C in one portion and the reaction mixture stirred for a further 1 hour. The reaction mixture was quenched with sat. NH₄Cl solution (3 mL), extracted into CH_2Cl_2 (5 x 3 mL), dried over MgSO₄ and concentrated *in vacuo*. Column chromatography eluting with hexane/EtOAc (9:1 \rightarrow 1:1) gave aryl-ketone 24 as a white amorphous solid (10 mg, 47%); mp 82-85 °C; silica gel TLC Rf 0.33 (hexane/EtOAc, 3:2); v_{max}/cm⁻¹ (ATR-IR) 1598, 1504, 1372, 1265, 1177, 1091, 865, 735; ¹**H NMR** (400 MHz, chloroform-*d*) δ 7.74 (m, 2H), 7.70 (m, 2H), 7.60 – 7.54 (m, 2H), 7.39 (d, J = 8.5 Hz, 1H), 7.34 – 7.29 (m, 5H), 7.23 – 7.19 (m, 2H), 7.16 – 7.08 (m, 4H), 6.95 – 6.90 (m, 2H), 6.85 – 6.78 (m, 2H), 6.70 (d, J = 2.3 Hz, 1H), 6.62 (dd, J = 8.4, 2.4 Hz, 1H), 6.40 (dd, J = 8.7, 2.2 Hz, 1H), 6.07 (d, J = 2.2 Hz, 1H), 5.07 (d, J = 7.1 Hz, 1H), 4.99 (d, J = 5.2 Hz, 1H), 4.57 (d, J = 11.4 Hz, 1H), 3.94 (dd, J = 7.2, 2.8 Hz, 1H), 3.81 (s, 3H), 3.15 (s, 3H), 2.90 (ddd, J = 11.4, 5.3, 2.8 Hz, 1H), 2.46 -2.41 (m, 9H); ¹³C NMR (101 MHz, chloroform-*d*) δ 200.0, 164.9, 159.9, 155.8, 150.2, 149.7, 145.6, 139.7, 136.1, 132.5, 132.3, 132.1, 129.9, 129.8, 129.8, 129.3, 128.4, 128.4, 128.4, 127.3, 122.4, 122.3, 120.1, 119.4, 115.7, 111.4, 105.7, 97.8, 83.1, 78.3, 74.6, 60.4, 55.6, 54.6, 48.3, 21.7; *m/z* HRMS (ES⁺) calc. 1003.2128 [MH]⁺, found 1003.2117, $C_{53}H_{47}O_{14}S_3$, $\Delta = -1.1$ ppm.

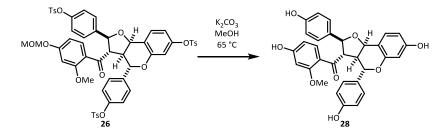
1-Bromo-2-methoxy-4-(methoxymethoxy)-benzene (25)¹¹

According to the method of Snieckus,¹¹ to a suspension of NaH (60% dispersion in mineral oil, 132 mg, 3.29 mmol, 1.76 equiv.) in DMF (3 mL) at 0 °C under Ar was added a solution of 1-bromo-2-methoxy-4-hydroxy-benzene (380 mg, 1.87 mmol) in DMF (2.5 mL) dropwise (caution: H₂ evolution). The resultant brown solution was stirred at 0 °C for 30 minutes before adding chloromethyl methyl ether (0.24 mL, 3.14 mmol, 1.68 equiv.) dropwise. The pale yellow suspension was allowed to warm to RT and stirred for a further 2 hours. The reaction mixture was then poured into ice-cold H₂O, extracted into Et₂O (3 x 10 mL), washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Column chromatography eluting with hexane/EtOAc (9:1 \rightarrow 4:1) gave the MOM protected aryl-bromide **25** as a colourless oil (435 mg, 94%); silica gel TLC R_f 0.46 (hexane/EtOAc, 4:); ¹H NMR (400 MHz, chloroform-*d*) δ 7.40 (d, *J* = 8.7 Hz, 1H), 6.62 (d, *J* = 2.7 Hz, 1H), 6.56 (dd, *J* = 8.7, 2.7 Hz, 1H), 5.16 (s, 2H), 3.87 (s, 3H), 3.48 (s, 3H); ¹³C NMR (101 MHz, chloroform-*d*) δ 158.0, 156.7, 133.4, 109.0, 103.8, 101.7, 94.8, 56.3, 56.3. The spectroscopic data were in accordance with the literature.¹¹

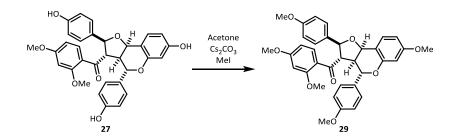

((2*S*,3*S*,3*aS*,4*S*,9*bR*)-3-(2-Methoxy-4-(methoxymethoxy)benzoyl)-7-(*para*-toluenesulfonyloxy)-2,3,3*a*,9*b*-tetrahydro-4H-furo[3,2-*c*]chromene-2,4-diyl) *bis*(4,1-phenylene) *bis*(4methylbenzenesulfonate) (26)

[0.085M Aryl-lithium stock solution: To a solution of 1-bromo-2-methoxy-4-(methoxymethoxy)-benzene **25** (31 mg, 0.13 mmol, 19 equiv.) in THF (1.42 mL) at -78 °C under Ar was added *n*-BuLi (2.5M, 50 μ L, 0.13 mmol, 19.05 equiv.) and allowed to stir for 15 minutes.]

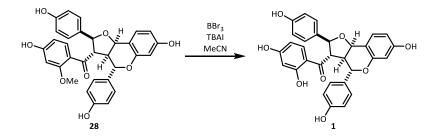
To a solution of methyl ester 21 (5.9 mg, 0.0066 mmol) in THF (0.1 mL) at -78 °C under Ar was added (2methoxy-4-(methoxymethoxy)-phenyl)lithium solution (0.1 mL, 0.0086 mmol, 0.085M, 1.3 equiv.) was added in one portion to give a bright yellow solution and allowed to stir at -78 °C for 50 minutes. Based on ¹H NMR analysis of an aliquot of the reaction mixture the conversion was judged to be approximately 65%. (2-methoxy-4-(methoxymethoxy)-phenyl)lithium solution (0.05 mL, 0.0043 mmol, 0.085M, 0.65 equiv.) was again added at -78 °C in one portion and the reaction mixture stirred for a further 40 minutes. The reaction mixture was guenched with sat. NH_4Cl solution (2 mL), extracted into CH_2Cl_2 (5 x 3 mL), dried over MgSO₄ and concentrated in vacuo. Preparative thin-layer chromatography eluting with hexane/EtOAc (3:2) gave aryl-ketone 26 as an off-white semisolid (3.8 mg, 56%); silica gel TLC Rf 0.35 (hexane/EtOAc, 1:1); v_{max}/cm⁻¹ (ATR-IR) 1656, 1600, 1504, 1372, 1260, 1177, 1153. ¹H NMR (400 MHz, chloroform-d) δ 7.79 – 7.75 (m, 2H), 7.75 – 7.70 (m, 2H), 7.61 – 7.57 (m, 2H), 7.41 (d, J = 8.4 Hz, 1H), 7.38 – 7.30 (m, 5H), 7.26 – 7.21 (m, 2H), 7.18 – 7.10 (m, 4H), 6.98 – 6.92 (m, 2H), 6.85 – 6.80 (m, 2H), 6.73 (d, J = 2.3 Hz, 1H), 6.64 (dd, J = 8.4, 2.4 Hz, 1H), 6.56 (dd, J = 8.7, 2.2 Hz, 1H), 6.24 (d, J = 2.2 Hz, 1H), 5.23 - 5.16 (AB m, 2H), 5.11 (d, J = 7.2 Hz, 1H), 5.02 (d, J = 5.3 Hz, 1H), 4.59 (d, J = 11.5 Hz, 1H), 3.94 (dd, J = 7.2, 2.8 Hz, 1H), 3.48 (s, 3H), 3.15 (s, 3H), 2.90 (ddd, J = 11.5, 5.3, 2.8 Hz, 1H), 2.51 – 2.42 (m, 9H). ¹³C NMR (101 MHz, chloroform-*d*) δ 200.2, 162.5, 150.2, 149.7, 148.9, 145.6, 145.5, 139.6, 137.3, 136.1, 132.5, 132.5, 132.1, 132.0, 129.9, 129.8, 129.2, 128.4, 128.4, 127.4, 122.4, 122.3, 121.0, 115.7, 111.4, 107.8, 99.5, 94.3, 83.1, 78.3, 74.6, 60.4, 56.4, 54.7, 48.4, 21.7; *m/z* HRMS (ES⁺) calc. 1033.2250 [MH]⁺, found 1033.2234, $C_{54}H_{49}O_{15}S_3$, $\Delta = 1.5$ ppm.


(2,4-Dimethoxyphenyl)((2*S*,3*S*,3*aS*,4*S*,9*bR*)-7-hydroxy-2,4-*bis*(4-hydroxyphenyl)-2,3,3*a*,9*b*-tetrahydro-4H-furo[3,2-*c*]chromen-3-yl)methanone (27)

To a solution of aryl-ketone **24** (9.2 mg, 0.0092 mmol) in methanol (0.5 mL) was added K_2CO_3 (13 mg, 0.092 mmol, 10 equiv.) and the reaction was heated at 65 °C for 4 hours. The reaction mixture was quenched with 1M HCl (5 mL), extracted with EtOAc (6 x 5 mL), dried over MgSO₄ and concentrated *in vacuo*. Preparative thin-layer chromatography eluting with hexane/EtOAc (2:3) gave triphenol **27** as an

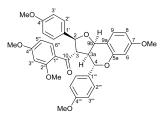

off-white semisolid (4 mg, 81%); silica gel TLC R_f 0.21 (hexane/EtOAc, 2:3); v_{max}/cm^{-1} (ATR-IR) 3367, 1637, 1595, 1257, 1291, 1147, 1108; ¹H NMR (400 MHz, acetone- d_6) δ 8.47 (br. s, 1H), 8.33 (br. s, 1H), 8.27 (br. s, 1H), 7.30 – 7.23 (m, 2H), 7.18 – 7.13 (m, 2H), 7.12 – 7.07 (m, 2H), 6.80 – 6.73 (m, 2H), 6.72 – 6.65 (m, 2H), 6.52 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.44 (dd, *J* = 8.6, 2.3 Hz, 1H), 6.34 (d, *J* = 2.4 Hz, 1H), 6.19 (d, *J* = 2.3 Hz, 1H), 4.96 (d, *J* = 7.2 Hz, 1H), 4.86 (d, *J* = 5.1 Hz, 1H), 4.64 (d, *J* = 11.5 Hz, 1H), 4.01 (dd, *J* = 7.2, 2.6 Hz, 1H), 3.81 (s, 3H), 3.26 (s, 3H), 2.90 (ddd, *J* = 11.5, 5.1, 2.6 Hz, 1H); ¹³C NMR (101 MHz, acetone- d_6) δ 202.1, 165.3, 160.8, 159.5, 158.6, 157.9, 157.8, 133.3, 133.2, 132.5, 130.6, 130.0, 128.9, 122.4, 115.9, 115.8, 113.6, 111.0, 110.1, 106.5, 103.8, 98.6, 84.4, 79.6, 75.9, 61.7, 56.0, 55.3, 49.3; *m/z* HRMS (ES⁺) calc. 541.1862 [MH]⁺, found 541.1875, C₃₂H₂₉O₈, Δ = 2.4 ppm.

((2*S*,3*S*,3*aS*,4*S*,9*bR*)-7-Hydroxy-2,4-*bis*(4-hydroxyphenyl)-2,3,3a,9b-tetrahydro-4H-furo[3,2-*c*]chromen-3-yl)(4-hydroxy-2-methoxyphenyl)methanone (28)


To a solution of aryl-ketone **26** (3.8 mg, 0.0037 mmol) in methanol (0.18 mL) was added K₂CO₃ (10.2 mg, 0.074 mmol, 20 equiv.) and the reaction was heated at 65 °C for 1 hour. The reaction mixture was quenched with 1M HCl (1 mL), extracted with EtOAc (6 x 3 mL), dried over MgSO₄ and concentrated *in vacuo*. Preparative thin-layer chromatography eluting with hexane/EtOAc (3:7) gave tetraphenol **28** as an off-white semisolid (1.5 mg, 78%) which was not stable and was immediately taken through to the next stage; silica gel TLC R_f 0.10 (hexane/EtOAc, 3:7); v_{max} /cm⁻¹ (ATR-IR) 3325, 1630, 1459, 1260, 1166; ¹H NMR (400 MHz, acetone-*d*₆) δ 8.97 (*br.* s, 1H), 8.49 (*br.* s, 1H), 8.37 (*br.* s, 1H), 8.28 (*br.* s, 1H), 7.27 (d, *J* = 8.4 Hz, 1H), 7.24 (d, *J* = 8.5 Hz, 1H), 7.21 – 7.16 (m, 2H), 7.11 – 7.04 (m, 2H), 6.78 – 6.70 (m, 4H), 6.52 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.38 – 6.31 (m, 2H), 6.12 (d, *J* = 2.2 Hz, 1H), 4.89 – 4.84 (m, 2H), 4.67 (d, *J* = 11.6 Hz, 1H), 4.06 (dd, *J* = 7.1, 2.5 Hz, 1H), 3.20 (s, 3H), 2.95 (ddd, *J* = 11.5, 5.1, 2.5 Hz, 1H). *m/z* HRMS (ES⁻) calc. 525.1537 [MH]⁻, found 525.1549, C₃₁H₂₅O₈, Δ = -2.3 ppm.

(2,4-Dimethoxyphenyl)((2*S*,3*S*,3*aS*,4*S*,9*bR*)-7-methoxy-2,4-*bis*(4-methoxyphenyl)-2,3,3*a*,9*b*tetrahydro-4H-furo[3,2-*c*]chromen-3-yl)methanone (29)

To a solution of triphenol **27** (3.30 mg, 6.00 µmol) in acetone- d_6 (0.3 mL) was added Cs₂CO₃ (20.0 mg, 61.0 µmol, 10 equiv.) and methyl iodide (3.8 µL, 61.0 µmol, 10 equiv.) and allowed to stir for 19 hours at RT. The reaction mixture was concentrated in vacuo, diluted in water (3 mL), extracted with EtOAc (4 x 3 mL), dried over MgSO₄ and concentrated *in vacuo*. Column chromatography eluting with hexane/EtOAc (9:1 \rightarrow 2:3) gave lophirone H pentamethyl ether **29** as an off-white semisolid (2.1 mg, 60%); silica gel TLC R_f 0.37 (hexane/EtOAc, 3:2); v_{max}/cm⁻¹ (ATR-IR) 1669, 1610, 1603, 1514, 1248, 1109, 1026, 829, 801; ¹H NMR (400 MHz, acetone- d_6) δ 7.37 (d, J = 8.5 Hz, 1H), 7.27 – 7.19 (m, 5H), 6.91 – 6.85 (m, 2H), 6.77 – 6.71 (m, 2H), 6.61 (dd, J = 8.5, 2.5 Hz, 1H), 6.43 (dd, J = 8.6, 2.3 Hz, 1H), 6.43 (d, J = 2.5 Hz, 1H), 6.16 (d, J = 2.3 Hz, 1H), 5.07 (d, J = 7.4 Hz, 1H), 4.90 (d, J = 5.2 Hz, 1H), 4.66 (d, J = 11.5 Hz, 1H), 3.99 (dd, J = 7.4, 2.8 Hz, 1H), 3.82 (s, 3H), 3.78 (s, 3H), 3.74 (s, 3H), 3.25 (s, 3H), 2.87 (ddd, J = 11.5, 5.2, 2.8 Hz, 1H); ¹³C NMR (101 MHz, acetone- d_6) δ 202.1, 165.1, 161.7, 160.7, 160.5, 160.2, 157.7, 134.2, 133.0, 132.4, 130.8, 130.3, 128.7, 122.3, 114.3, 109.2, 106.2, 101.9, 98.5, 84.1, 79.5, 75.6, 61.5, 55.8, 55.6, 55.4, 55.2, 49.8, 29.8; m/z HRMS (ES⁺) calc. 583.2332 [MH]⁺, found 583.2323, C₃₅H₃₅O₈, Δ = -1.5 ppm.


(2,4-Dihydroxyphenyl)((2*S*,3*S*,3*aS*,4*S*,9*bR*)-7-hydroxy-2,4-*bis*(4-hydroxyphenyl)-2,3,3*a*,9*b*-tetrahydro-4H-furo[3,2-*c*]chromen-3-yl)methanone (1)

Tetraphenol **28** (1.5 mg, 0.0029 mmol) and tetrabutylammonium iodide (2.1 mg, 0.0057 mmol) were transferred to a dry microwave (Biotage[®]) vial which was thoroughly purged with Ar prior to sealing. The

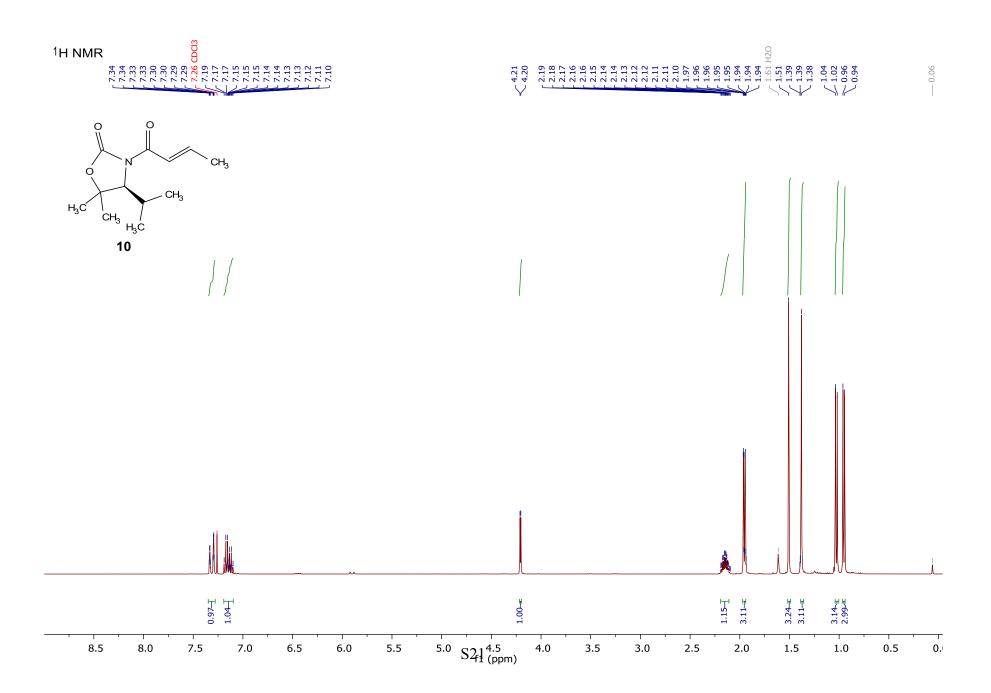
contents were dissolved in dry MeCN (0.14 mL) to give a colourless solution. A solution of BBr₃ in CH₂Cl₂ (1M, 23 µL, 0.023 mmol, 8 equiv.) was added dropwise (cloudy fumes observed immediately) to give an orange solution with some white precipitate forming after ~2 mins. The reaction mixture was stirred for 15 mins at RT before it was quenched with sat. NaHCO3 (1 mL), extracted into EtOAc (5 x 2 mL), dried over MgSO₄ and concentrated *in vacuo*. Preparative thin-layer chromatography eluting with hexane/EtOAc (1:4) gave (+)-lophirone H **1** as an off-white semisolid (0.8 mg, 54%); silica gel TLC R_f 0.51 (hexane/EtOAc, 1:4); v_{max}/cm⁻¹ (ATR-IR) 3361, 1656, 1615, 1513, 1464, 1259, 1013, 792; ¹H NMR (400 MHz, acetone-*d*₆) 12.81 (s, 1H), 7.32 (d, *J* = 8.4 Hz, 1H), 7.31 – 7.28 (m, 2H), 7.22 – 7.18 (m, 2H), 6.83 – 6.78 (m, 4H), 6.55 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.38 (d, *J* = 2.4 Hz, 1H), 6.29 (d, *J* = 8.9 Hz, 1H), 6.21 (d, *J* = 2.4 Hz, 1H), 5.92 (dd, *J* = 8.9, 2.4 Hz, 1H), 5.15 (d, *J* = 6.7 Hz, 1H), 5.00 (d, *J* = 5.3 Hz, 1H), 4.78 (d, *J* = 11.5 Hz, 1H), 3.58 (dd, *J* = 6.7, 2.6 Hz, 2H), 2.94 (ddd, *J* = 11.5, 5.3, 2.6); ¹³C NMR (101 MHz, acetone-*d*₆) δ 132.9, 132.4, 129.9, 127.9, 115.6, 115.2, 109.4, 107.9, 103.0, 102.7, 84.0, 78.3, 75.4, 57.2, 49.7 (peaks from HSQC spectrum as the sample decomposed during a standard ¹³C acquisition ; quaternary carbons absent); *m/z* HRMS (ES⁻) calc. 511.1388 [MH]⁻, found 511.1396, C₃₀H₂₃O₈, Δ = -1.0 ppm.

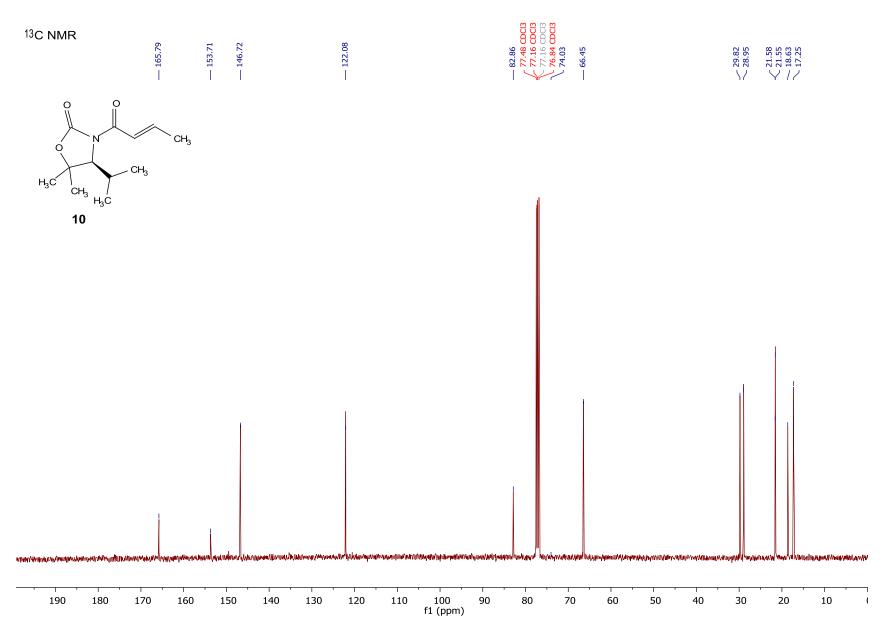
Natural and Synthetic lophirone H pentamethyl ether: ¹H and ¹³C NMR comparison

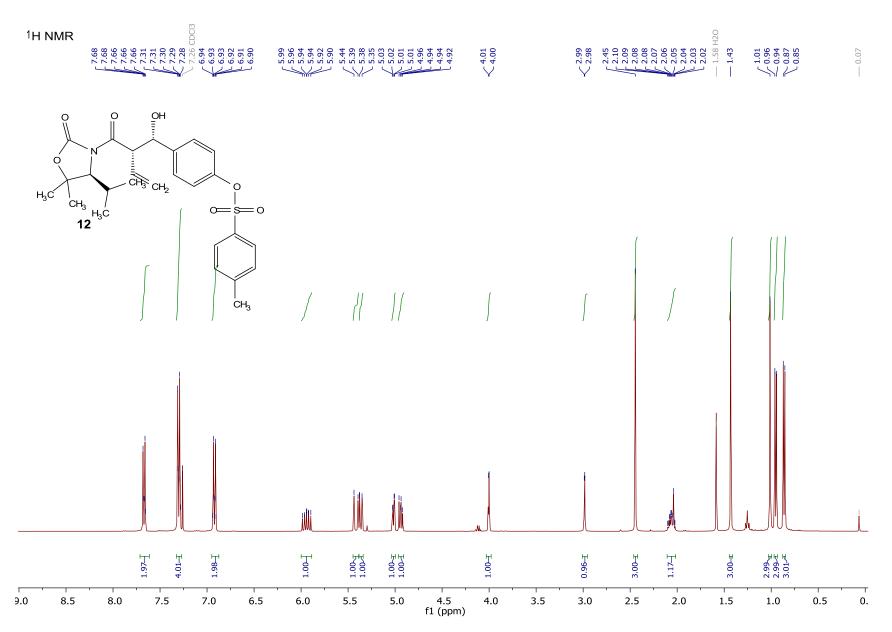
	Natural lophirone H pentamethyl ether ⁹ ¹ H NMR (300 MHz, acetone- <i>d</i> ₆)			Synthetic lophirone H pentamethyl ether (29) ¹ H NMR (400 MHz, acetone-d ₆)		
Position	δ	splitting	J values	δ	splitting	J values
3a	2.869	ddd	11.5, 5.2, 2.8	2.871	ddd	11.5, 5.2, 2.8
OMe	3.246	S		3.249	S	
OMe	3.739	S		3.744	S	
OMe	3.774	S		3.777	S	
OMe	3.777	S		3.78	S	
OMe	3.812	S		3.816	S	
3	3.991	dd	7.4, 2.8	3.99	dd	7.4, 2.8
4	4.658	d	11.5	4.656	d	11.5
9b	4.903	d	5.2	4.9	d	5.2
2	5.071	d	7.4	5.065	d	7.4
3"	6.158	d	2.3	6.16	d	2.3
5"	6.432	dd	8.5, 2.3	6.435	dd	8.6, 2.3
6	6.436	d	2.5	6.434	d	2.5
8	6.613	dd	8.5, 2.5	6.614	dd	8.5, 2.5
3'''	6.739	m		6.744	m	
5'''	6.739	m		6.744	m	
3'	6.875	m		6.878	m	
5'	6.875	m		6.878	m	
2'	7.223	m		7.227	m	
6'	7.223	m		7.227	m	
6''	7.223	d	8.5	7.227	d	8.6
2'''	7.223	m		7.227	m	
6'''	7.223	m		7.227	m	
9	7.327	d	8.5	7.371	d	8.5

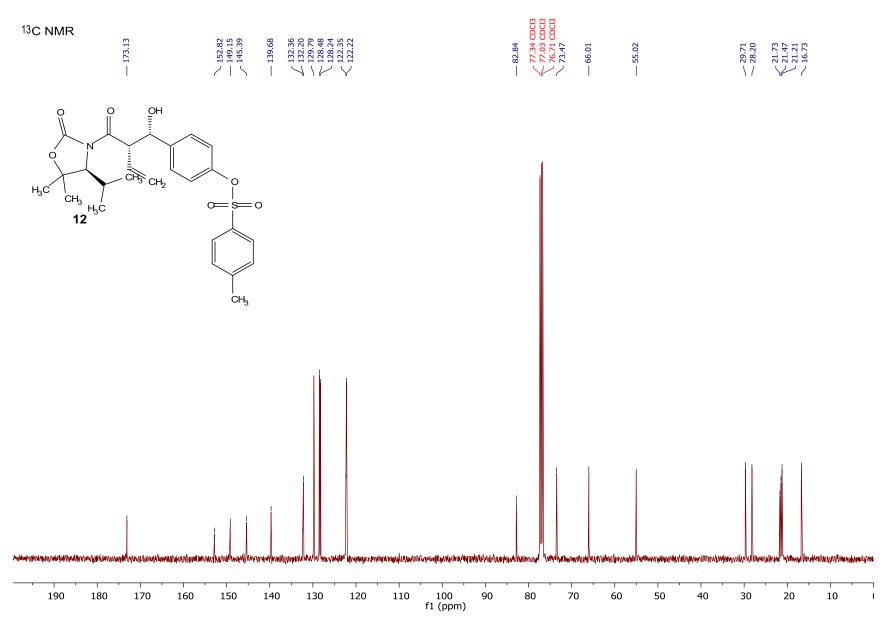
Table S1. Comparison of ¹H NMR data for natural⁹ and synthetic lophirone H pentamethyl ether.

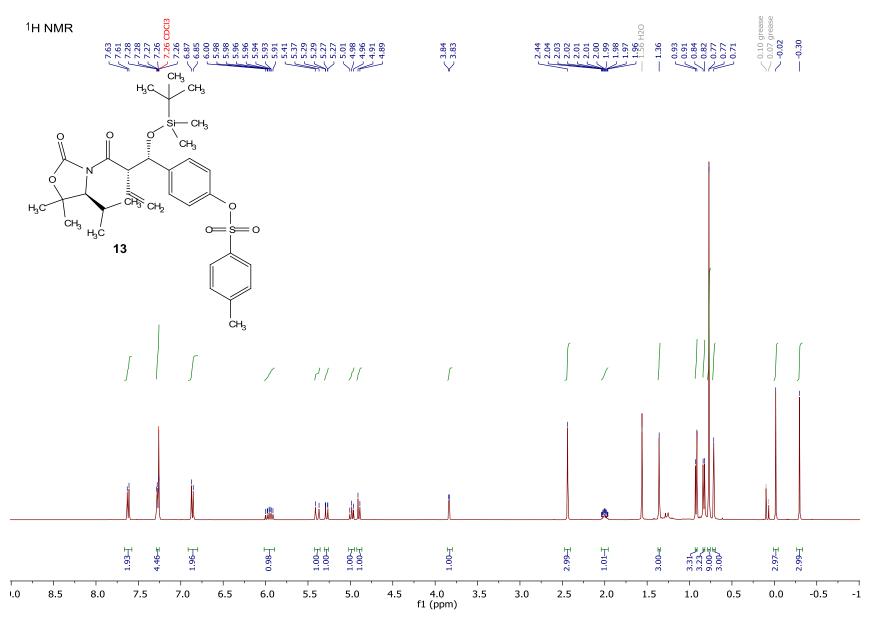
	Natural lop pentameth		Synthetic lophirone H pentamethyl ether (29)		
Position	¹³ C NMR (75 MHz, acetone- d_6)		¹³ C NMR (101 MHz, acetone- d_6)		
	δ		δ		
3a	49.47	d	49.79	d	
OMe	54.84	q	55.18	q	
OMe	54.97	q	55.42	q	
OMe	55.23	q	55.56	q	
OMe	55.3	q	55.64	q	
OMe	55.49	q	55.84	q	
3	61.14	d	61.48	d	
9b	75.23	d	75.57	d	
4	79.21	d	79.5	d	
2	83.77	d	84.11	d	
3''	98.12	d	98.46	d	
6	101.6	d	101.94	d	
5''	105.91	d	106.24	d	
8	108.88	d	109.22	d	
3'	113.96	d	114.31	d	
5'	113.96	d	114.31	d	
3'''	113.96	d	114.31	d	
5'''	113.96	d	114.31	d	
1''	121.96	S	122.31	S	
2'''	128.41	d	128.74	d	
6'''	128.41	d	128.74	d	
9a	128.62	S	128.74	S	
2'	129.99	d	130.32	d	
6'	129.99	d	130.32	d	
1'''	130.42	S	130.79	S	
6''	132.08	S	132.4	S	
9	132.64	S	132.96	S	
1'	133.81	S	134.15	S	
5a	157.34	S	157.67	S	
4'	159.82	S	160.17	S	
4''	160.15	S	160.5	S	
4'''	160.36	S	160.71	S	
7	161.39	S	161.74	S	
2''	164.72	S	165.05	S	
10	201.83	S	202.11	S	

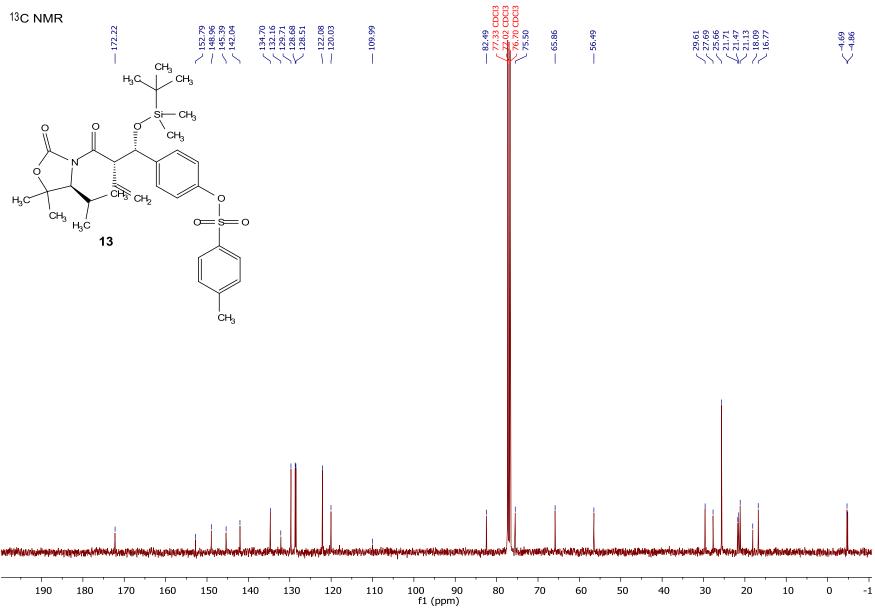

Table S2. Comparison of ¹³C NMR data for natural⁹ and synthetic lophirone H pentamethyl ether.

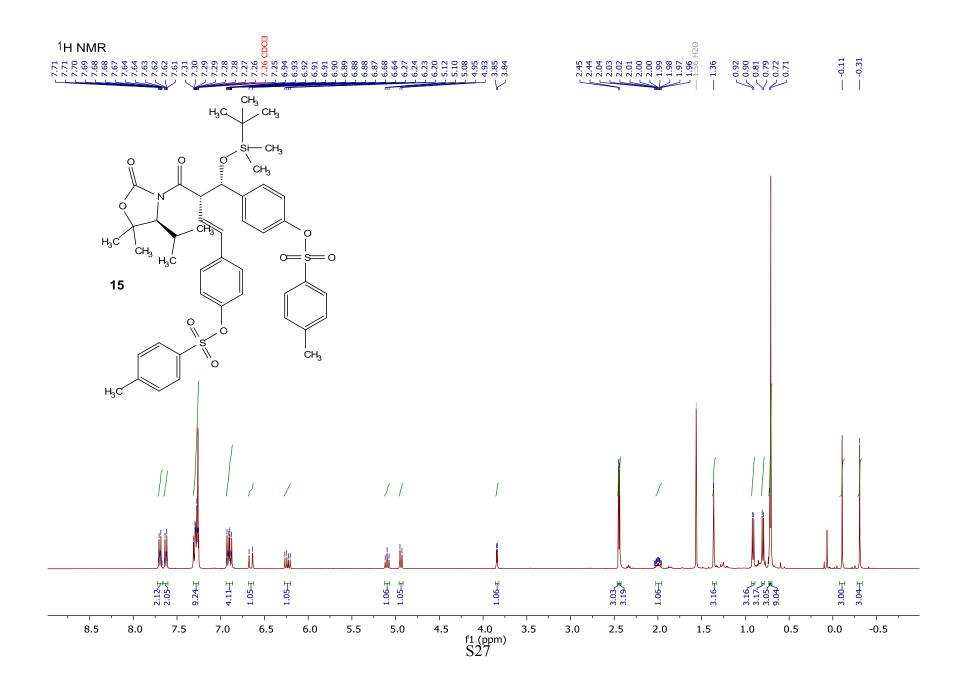

Bibliography

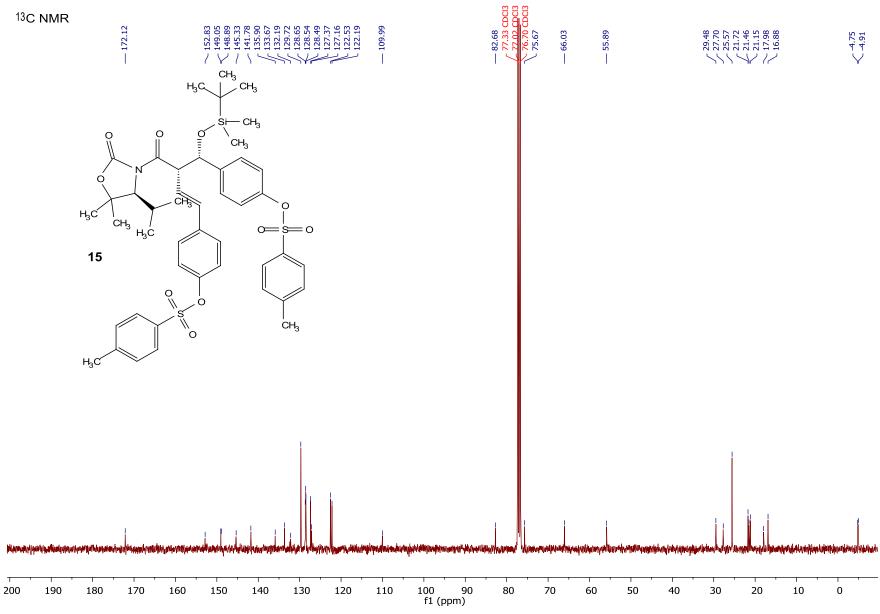

- (1) Davies, S. G.; Elend, D. L.; Jones, S. *Tetrahedron* **2009**, *65* (37), 7837.
- (2) Bull, S. D.; Davies, S. G.; Garner, A. C. Org. Biomol. Chem. 2006, 4 (15), 2945.
- (3) Quiroz-Florentino, H.; Hernández-Benitez, R. I.; Aviña, J. A.; Burgueño-Tapia, E.; Tamariz, J. *Synthesis (Stuttg).* **2011**, *7*, 1106.
- (4) Evans, D. A.; Sjogren, E. B.; Bartroli, J.; Dow, R. L. *Tetrahedron Lett.* **1986**, *27* (41), 4957.
- (5) Lai, J.; Chang, L.; Yuan, G. *RSC Adv.* **2015**, *5* (35), 27439.
- (6) Aso, N.; Okada, S.; Tanabe, Y. *Tetrahedron* **1999**, *55* (8), 2183.
- Aciro, C.; Steadman, V. A.; Pettit, S. N.; Poullennec, K. G.; Lazarides, L.; Dean, D. K.; Dunbar, N. A.;
 Highton, A. J.; Keats, A. J.; Siegel, D. S. Macrocyclic inhibitors of flaviviridae viruses.
 WO2013185103 A1, 2013.
- (8) Spivey, A. C.; Bayly, A. R.; Rzepa, H. S. Org. Lett. **2010**, *12* (5), 900.
- (9) Tih, R. G.; Sondengam, B. L.; Martin, M. T.; Bodo, B. *Phytochemistry* **1990**, *29* (7), 2289.
- (10) Evans, D. A.; Britton, T. C.; Ellman, J. A. Tetrahedron Lett. 1987, 28 (49), 6141.
- (11) James, C. A.; Snieckus, V. J. Org. Chem. 2009, 74, 4080.

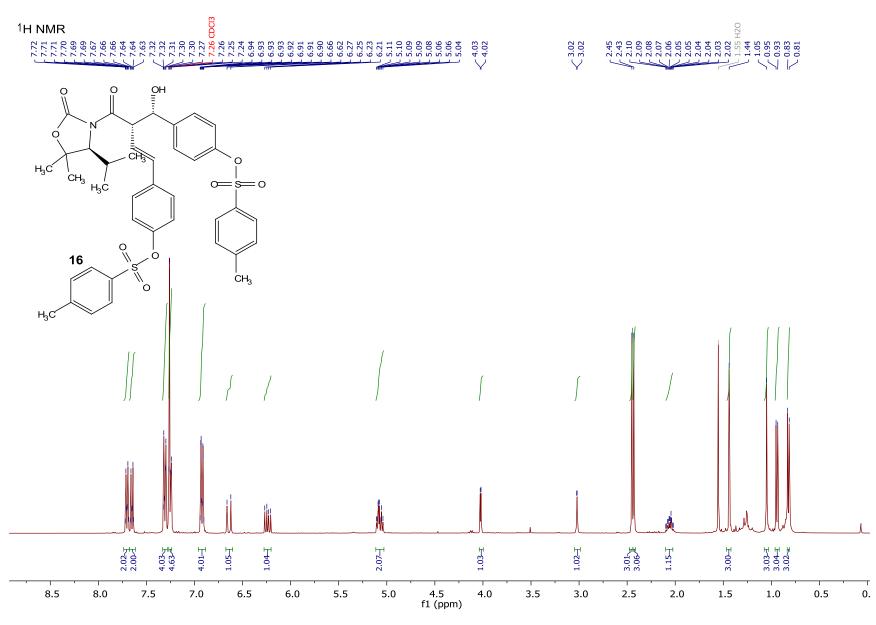

NMR Spectra

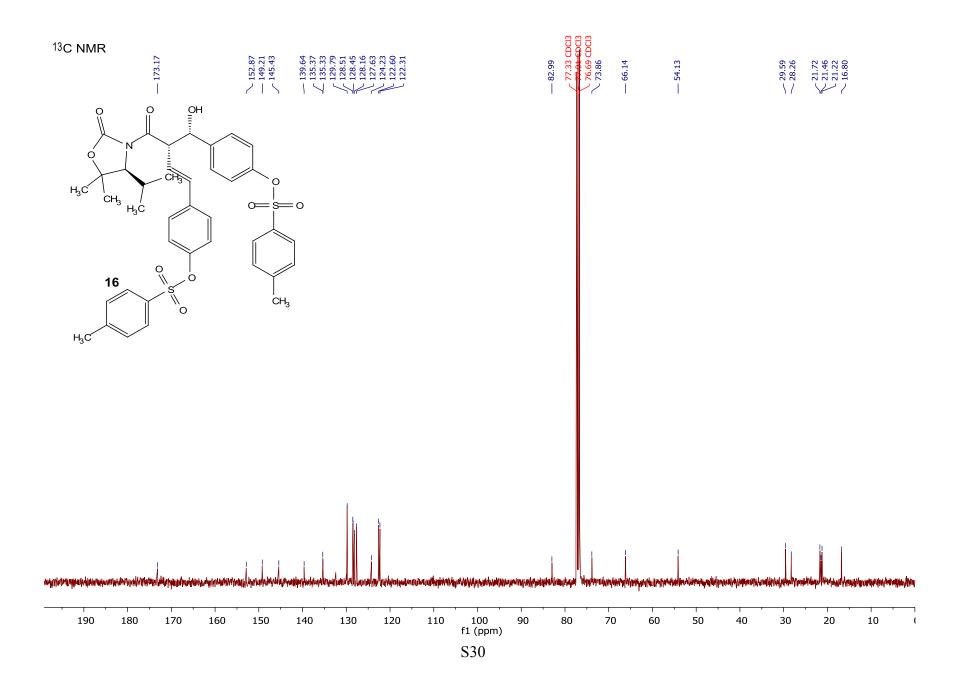

Complete NMR data files in MestreNova mnova and mnpub formats are available at DOI: <u>10.14469/hpc/2017</u> for analysis using Mestrenova V11 or higher software. For further details of the mnpub method of publishing NMR datasets, see DOI: <u>10.14469/hpc/1053</u>. In addition, static versions of all spectra are available below in this PDF document.

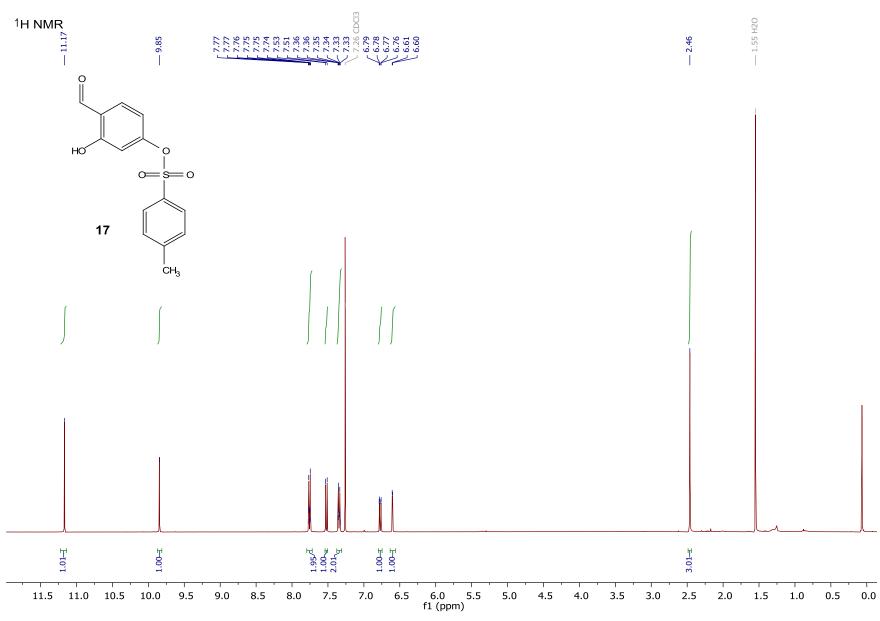


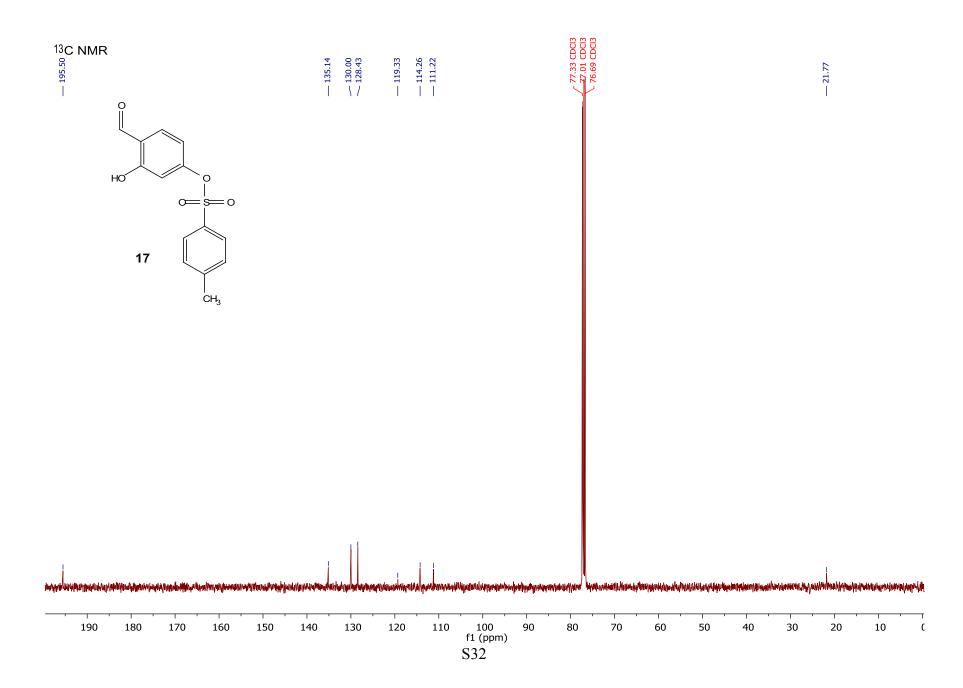


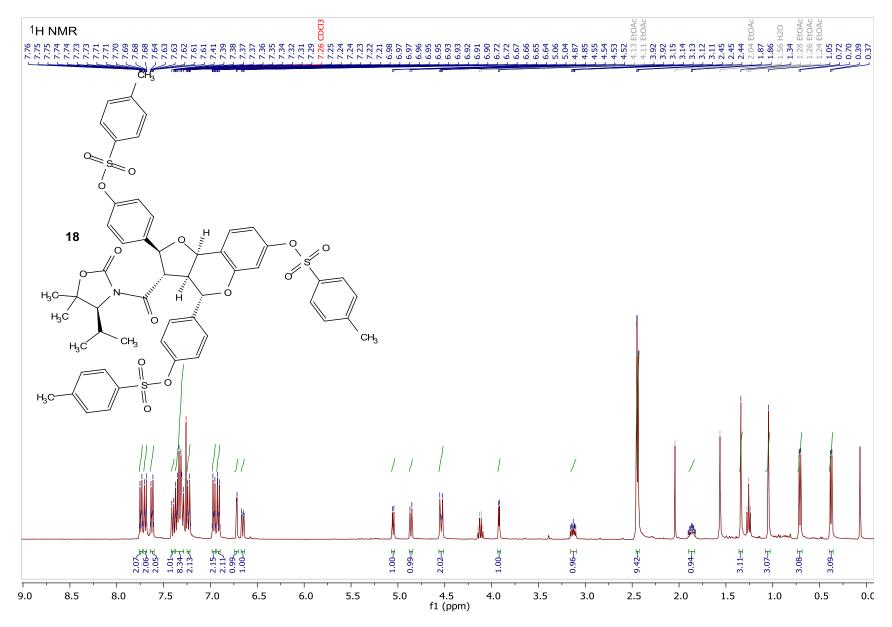


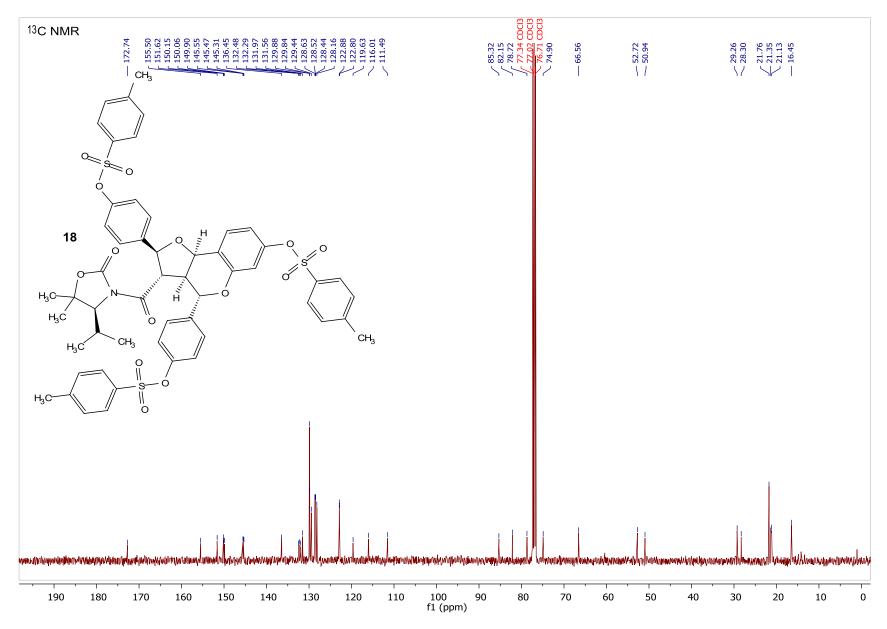


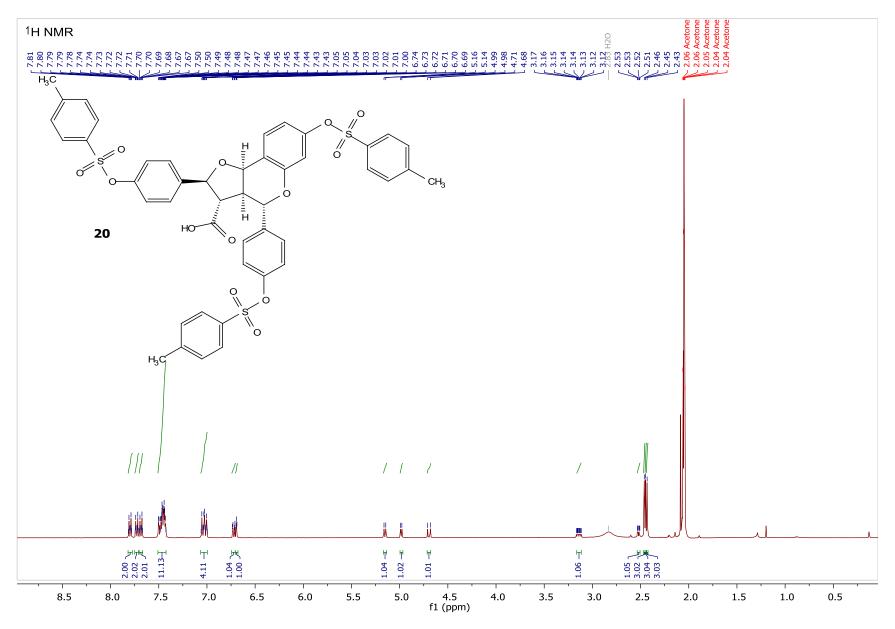

S26

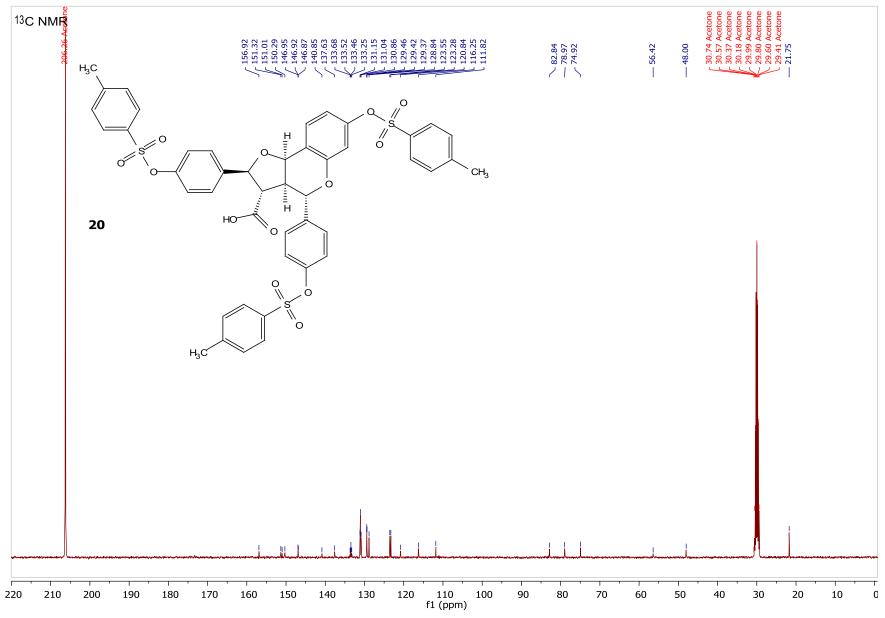


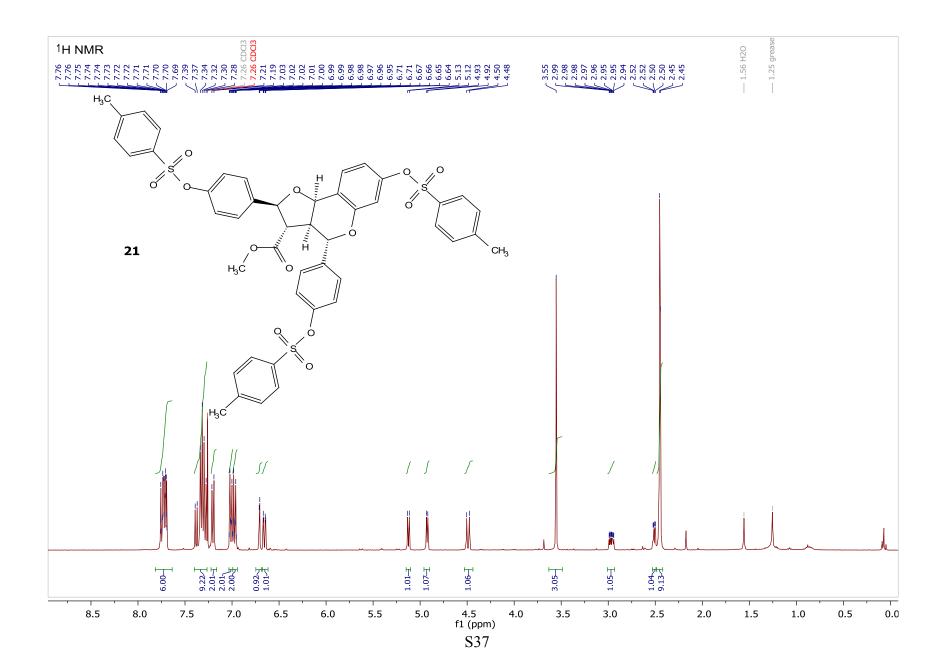


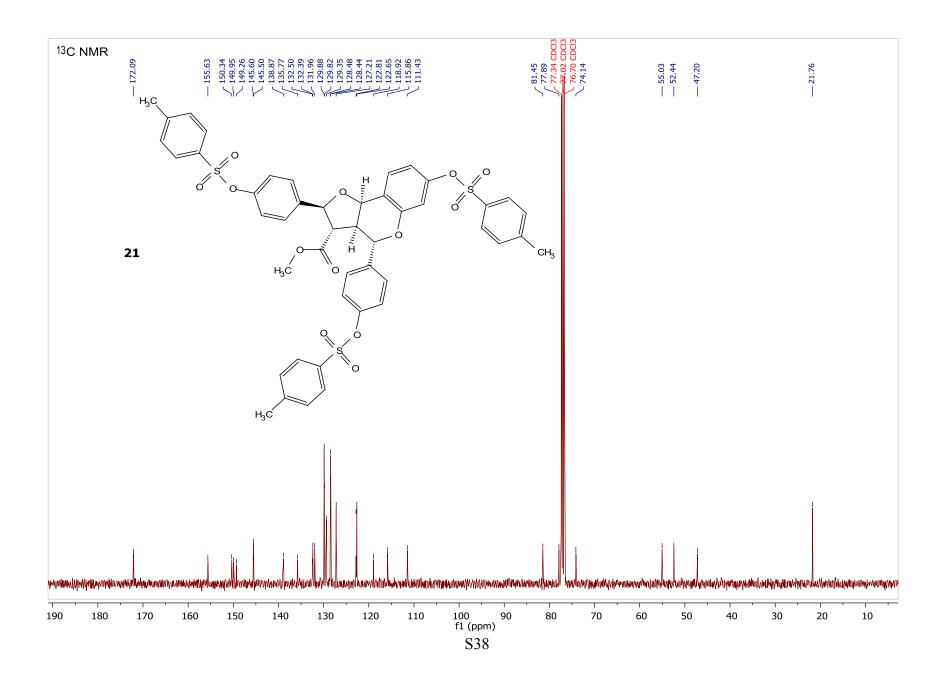

S28

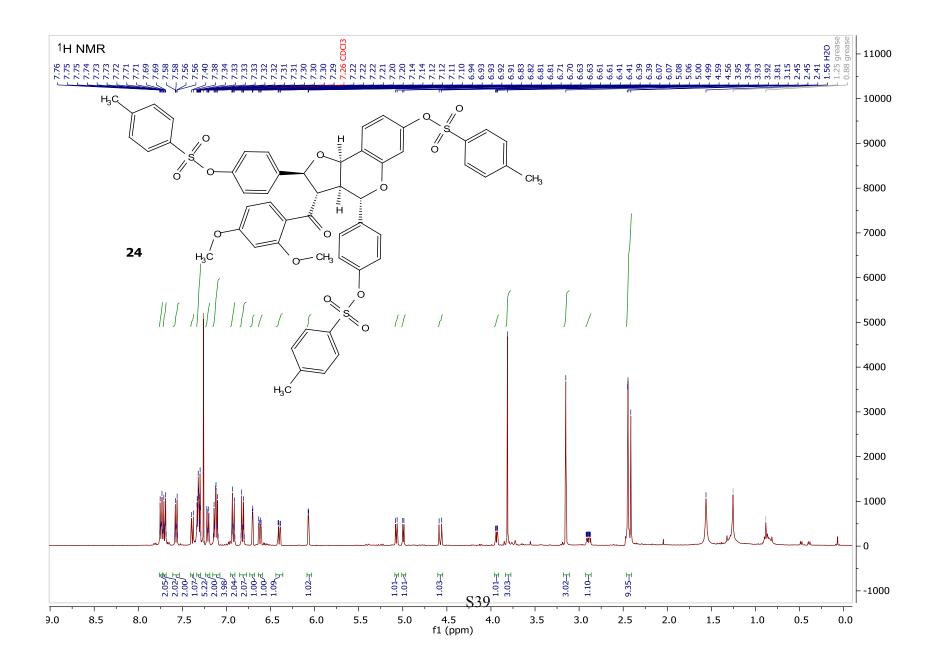


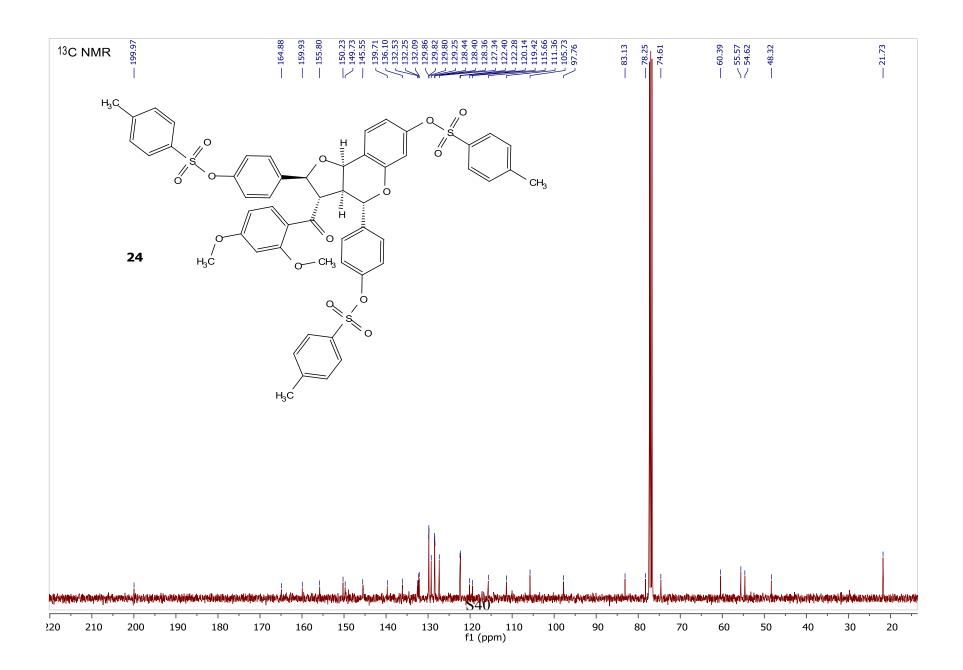


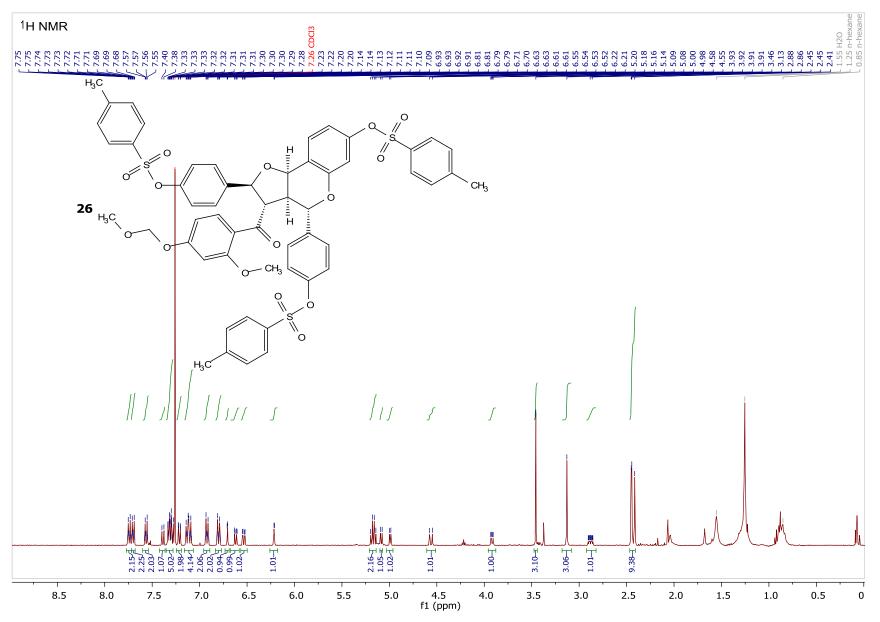


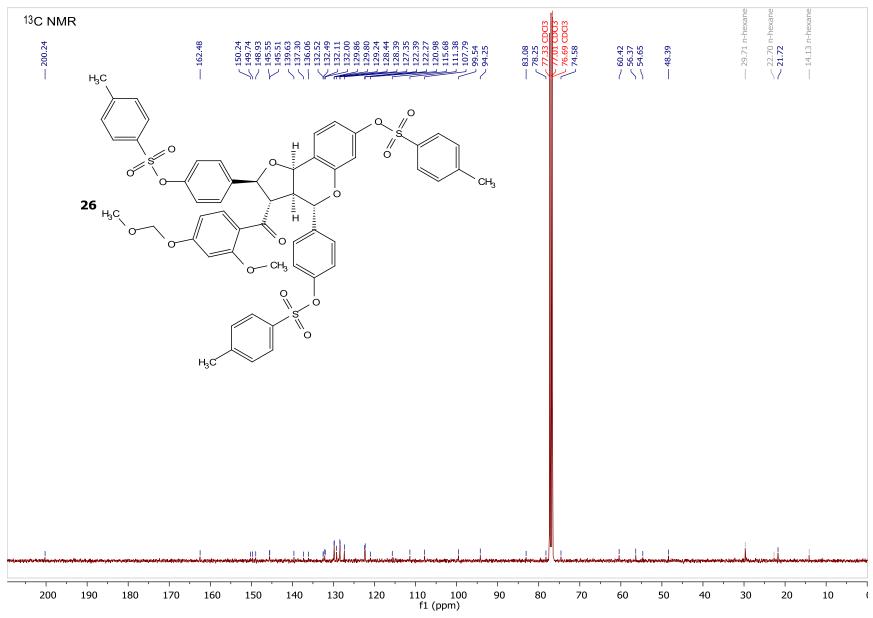


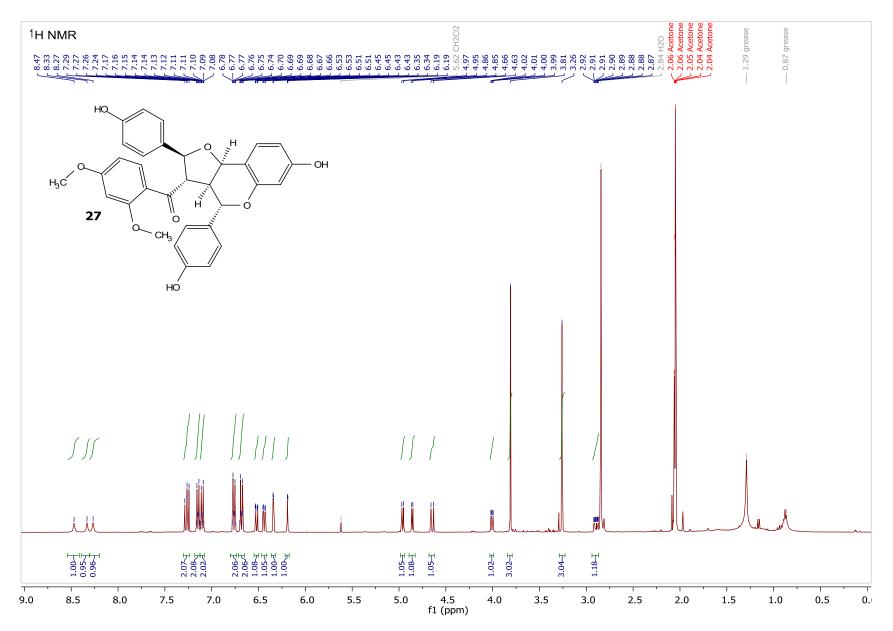


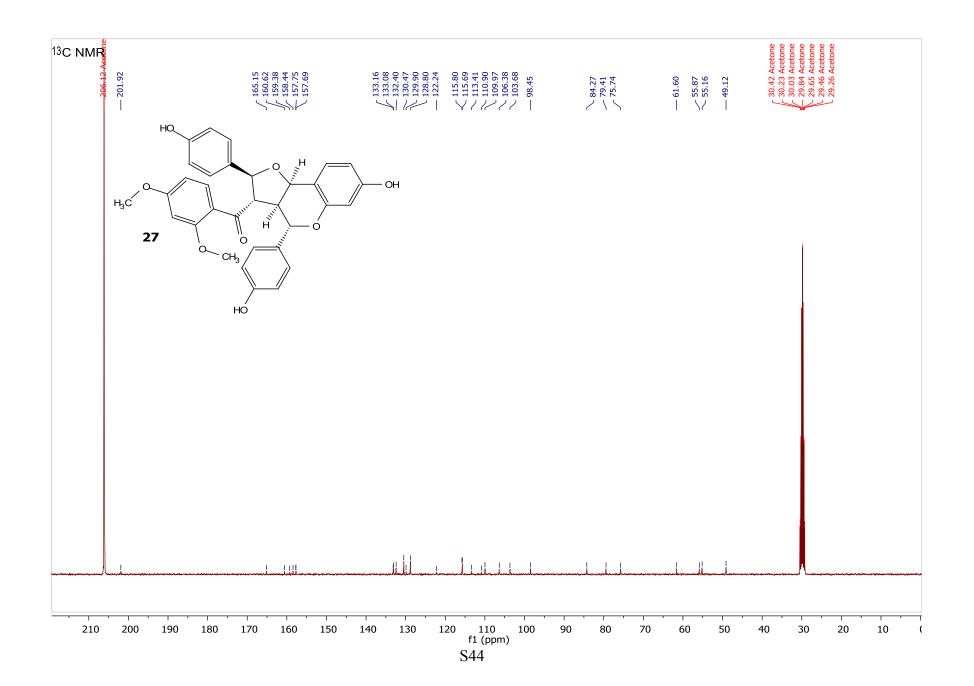


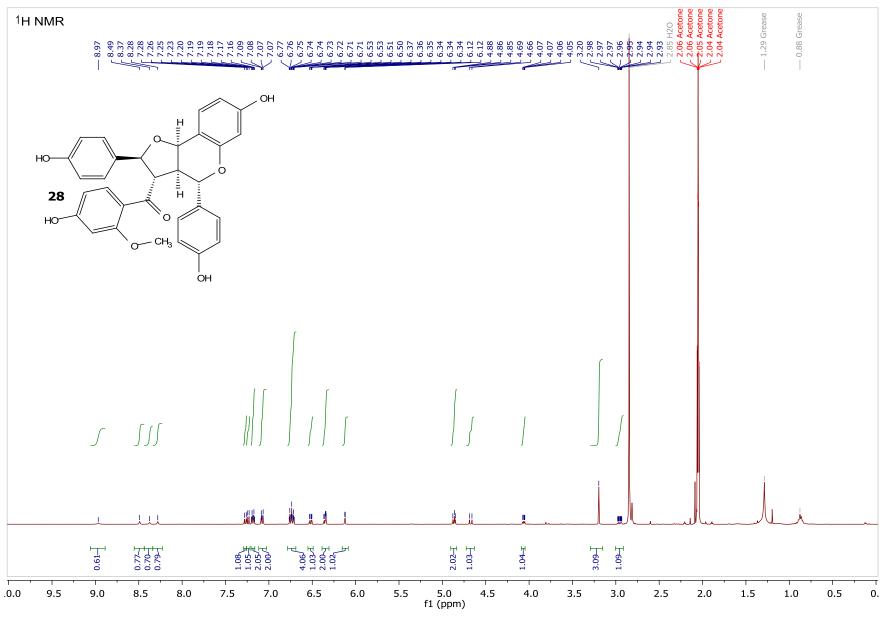


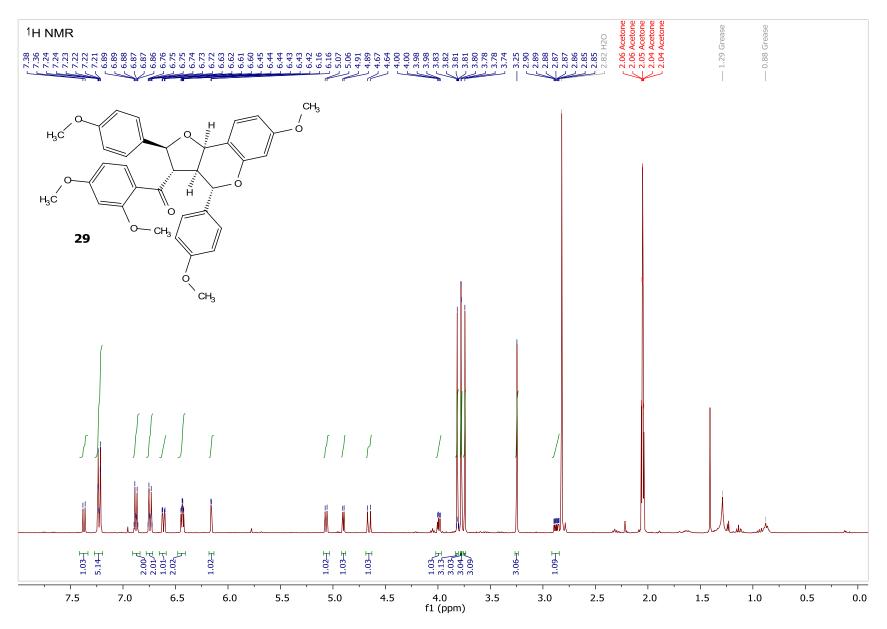

S36

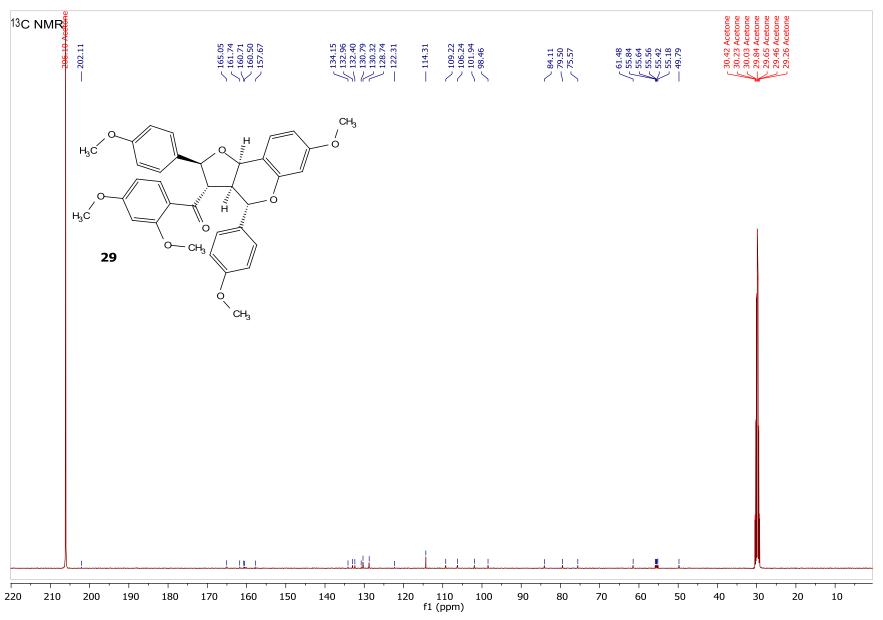


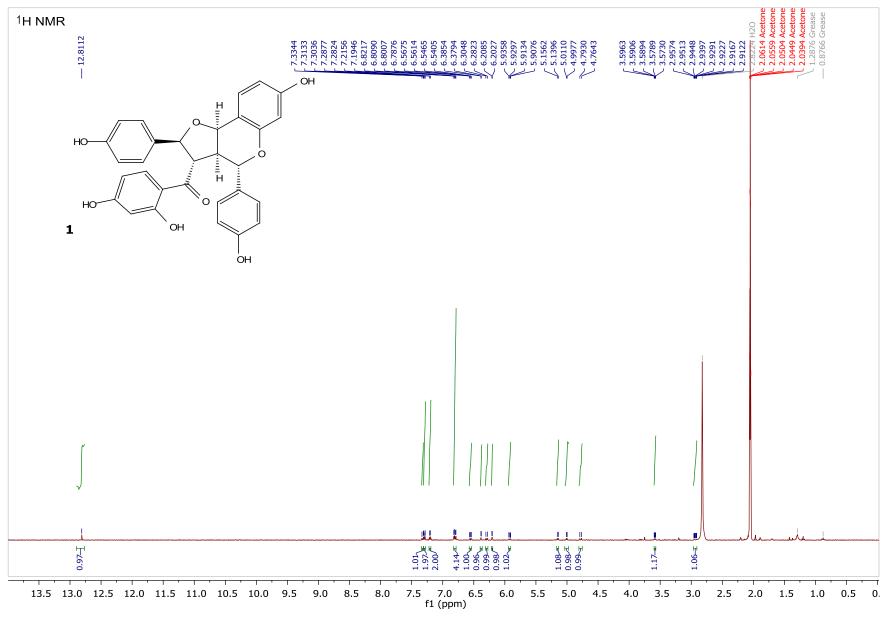


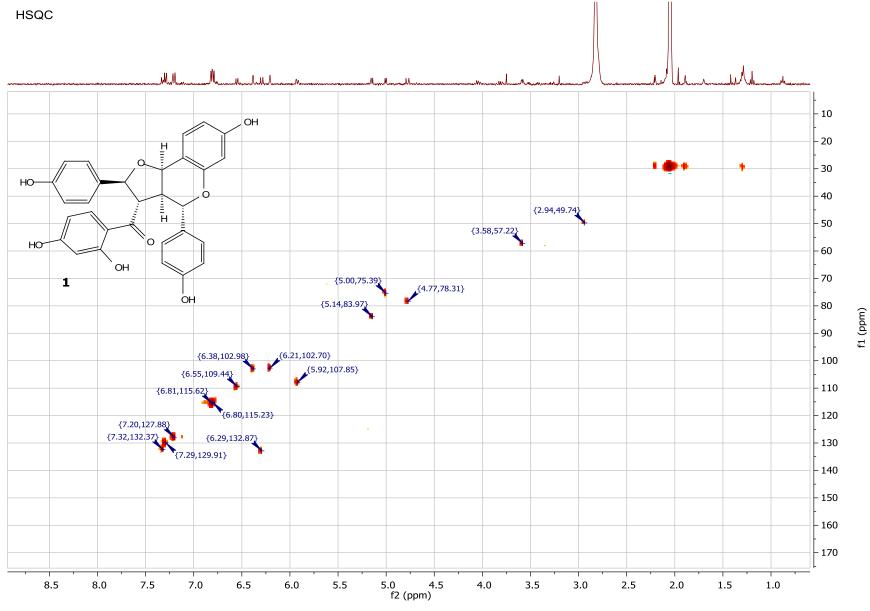







S42





S47

S48

S49