Continuous Flow Synthesis of Rh and RhAg Alloy Nanoparticle Catalysts Enables Scalable Production and Improved Morphological Control

Pranaw Kunal, a† Emily J. Roberts, b† Carson T. Riche, c Karalee Jarvis, d Noah Malmstadt, *b,c Richard L. Brutchey, *,b and Simon M. Humphrey *,a

- ^{a.} Department of Chemistry, The University of Texas at Austin, 6.336 Norman Hackerman Building, 100 E 24th St. Stop A1590, Austin, Texas, 78712-1224, USA.
- ^{b.} Department of Chemistry, University of Southern California, Los Angeles, California, 90089, USA.
- ^{c.} Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, 90089, USA.
- ^{d.} Texas Materials Institute, The University of Texas at Austin, 204 E. Dean Keeton St. Stop C2201, Austin, Texas, 78712-1591, USA.

[†] Both authors contributed equally

Table S1. Reaction parameters for flow reactions carried out under μ wI.

Flow Mode	Flow Rate (cm ³ h ⁻¹)		Length of Tubing (m)	Residence Time (min)	
Single-phase		30		7.6	9
Single-phase	30			3.8	4.6
Single-phase	15			7.6	18
Single-phase	7.5			7.6	35
Two-phase	160	64	16	7.6	1
	(Carrier	(PVP)	$(RhCl_3.xH_2O)$		
	Fluid)				
Two-phase	80	32	8	7.6	2
	(Carrier	(PVP)	$(RhCl_3.xH_2O)$		
	Fluid)				
Two-phase	80	32	8	30.5	6
	(Carrier	(PVP)	$(RhCl_3.xH_2O)$		
	Fluid)				
Two-phase	80	32	8	30.5	9
	(Carrier	(PVP)	$(RhCl_3.xH_2O)$		
	Fluid)				
Two-phase	20	8	2	30.5	30
	(Carrier	(PVP)	$(RhCl_3.xH_2O)$		
	Fluid)				

Table S2. Ratio of intensity values corresponding to 111 and 200 obtained from PXRD analyses.

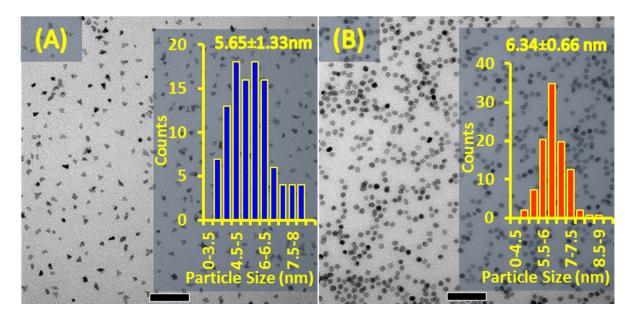

Sample	I_{111}/I_{200}
Rh multipods_\(\mu\)wI_120°C_9 min	1.94
Rh multipods_CvH_120°C_9 min	1.48
Batch reaction_no syringe pump_Rh	1.77
NPs_ <i>u</i> wI_120°C_9 min	
Rh NPs_\(\mu\)wI_120°C_9 min_RhCl ₃ .xH ₂ O and	1.76
PVP injected using syringe pump	

Table S3. Statistical analysis of Rh multipods formed after different thermal treatment conditions.

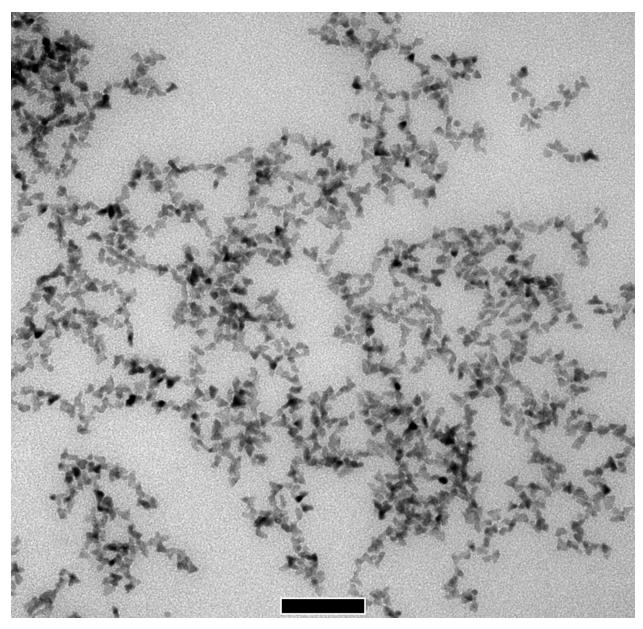

Sample Identity	Original Average Appendage Length/Diameter (nm)		Thermal Treatment Conditions		Reaction Time (min)	Size of Multipods (nm)	Size of Non- multipods (nm)	Size of Small Seeds (nm)
	Multipods	Non- multipods	Mode of Heating	Reaction Temperature (°C)				
Rh multipods- µwI	6.75±1.40	3.67±0.64	μwI	150	15	6.64±1.54		
RhMP multipods- µwI			μwI	175	15	6.13±1.14		
Rh multipods- µwI			μwI	175	60	6.94±1.49		
Rh multipods- CvH	6.81±1.68	3.93±0.98	μwI	150	15	7.25±1.39	5.05±0.81	
Rh multipods- CvH			μwI	175	15	7.27±1.51	5.07±0.79	2.19±0.30
Rh multipods- CvH			CvH	175	15	6.31±1.48	4.33±0.65	
Rh multipods- CvH			CvH	175	60	6.96±1.24	4.55±0.71	

Table S3. ICP analysis of Rhodium multipods supported on amorphous silica.

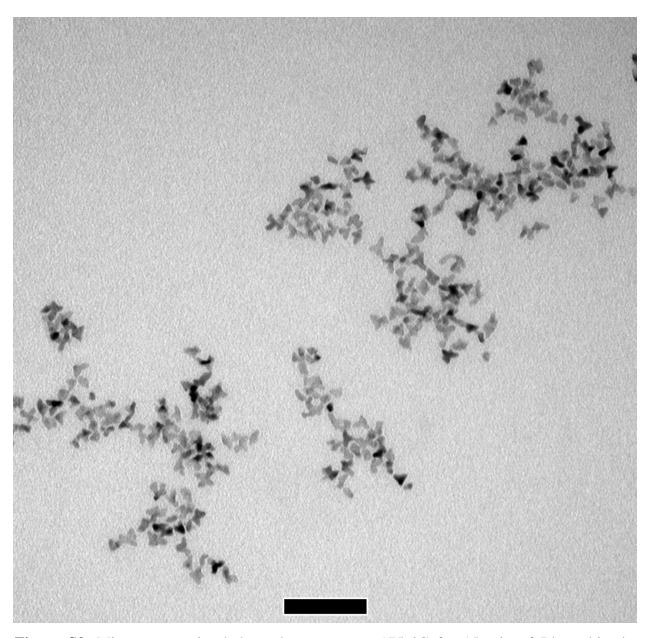
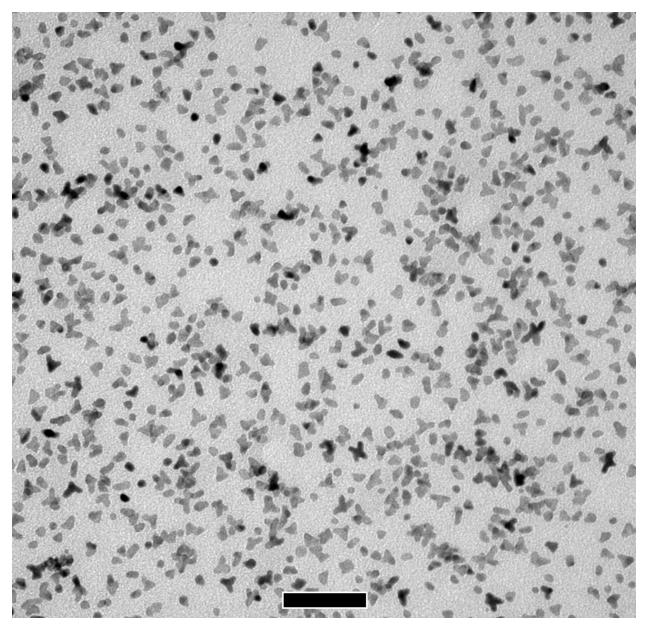
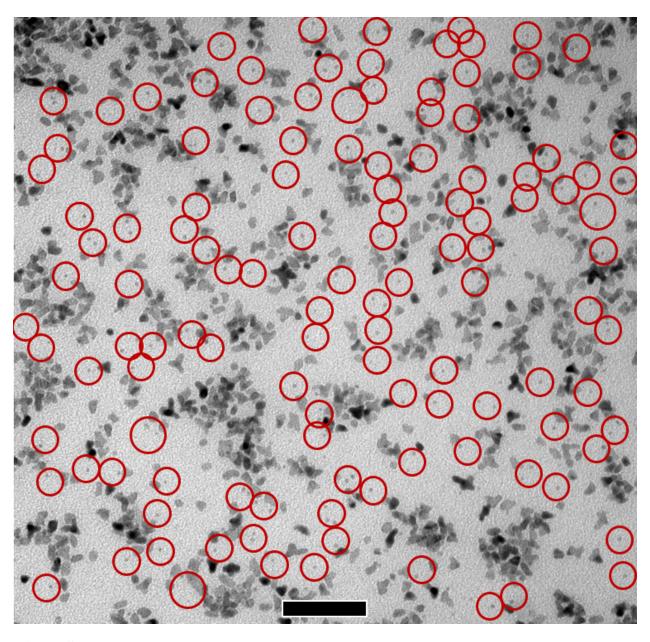
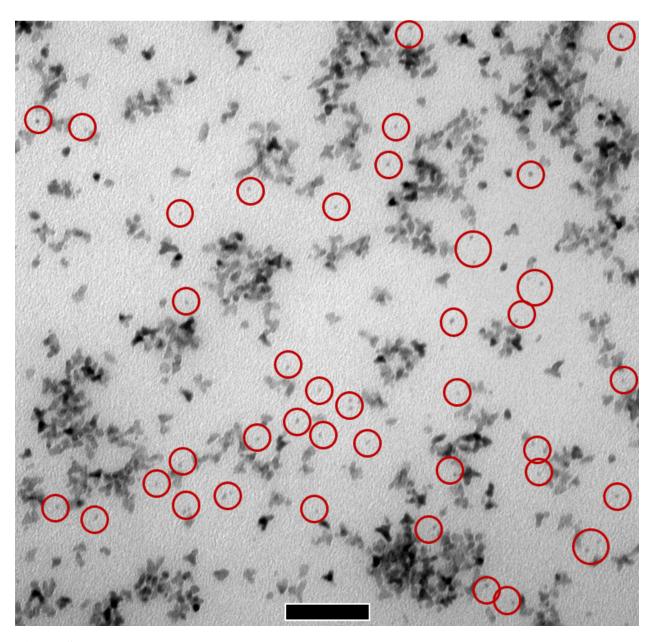
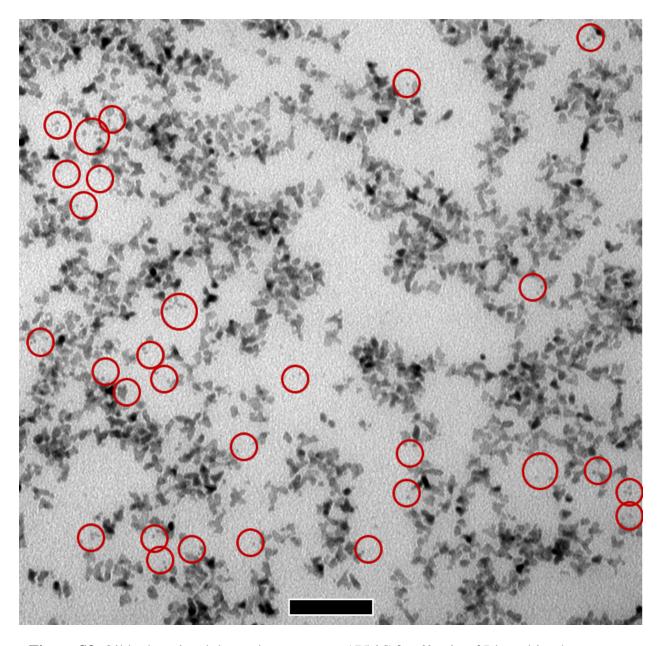

Sample	Rh wt%	SSTOF (surface site ⁻¹ s ⁻¹)
		Value
Rh multipods_\(\mu\)wI_120°C_9 min	1.362	8.5
Rh multipods_CvH_120°C_9 min	3.345	6.8

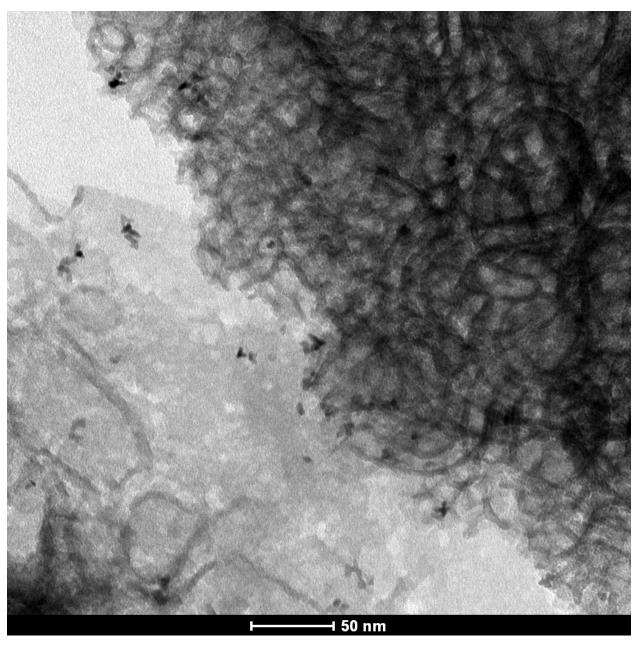
Figure S1. TEM images of Rh NPs using control reactions. **(A)** Products isolated from control batch reaction carried out under μ wI at 120 °C for 9 minutes while not using a syringe pump. **(B)** Products isolated from control reaction carried out under μ wI at 120 °C for 9 minutes and adding RhCl₃.xH₂O and PVP dissolved in EG injected using separate syringes.

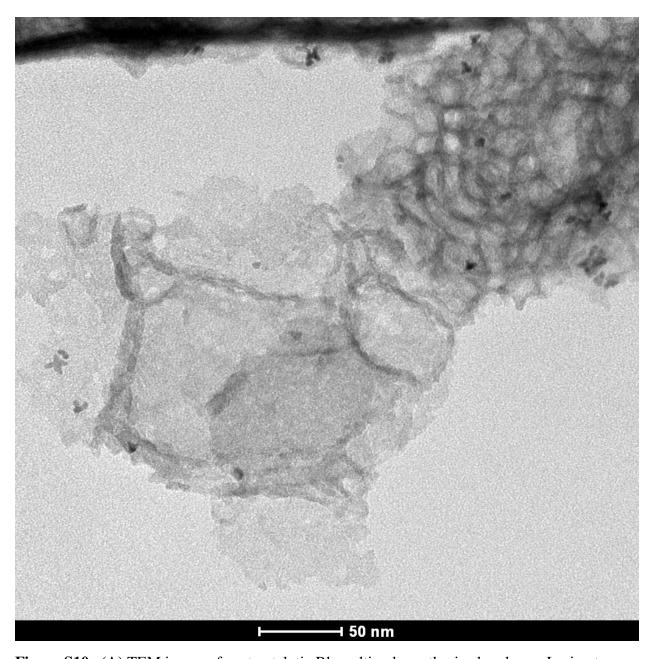

Figure S2. Microwave assisted thermal treatment at 150 °C for 15 min of Rh multipods synthesized using μ wI at 120°C in EG in 9 min. Scale bar is 50 nm.

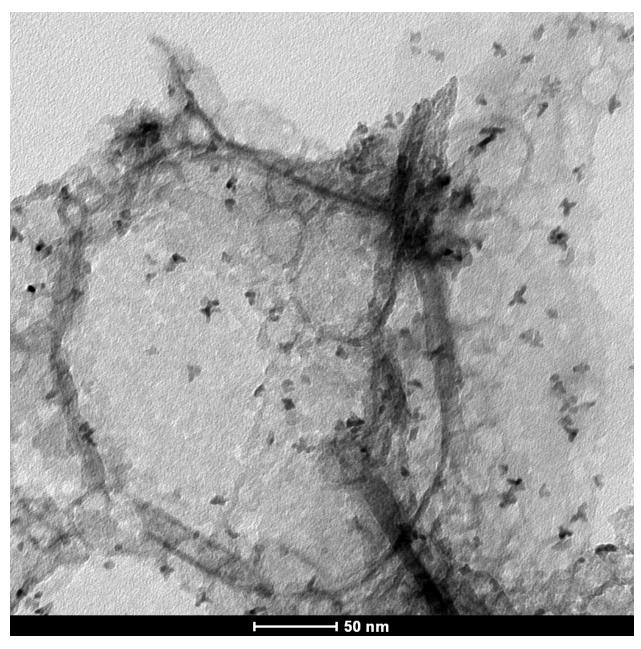

Figure S3. Microwave assisted thermal treatment at 175 °C for 15 min of Rh multipods synthesized using μ wI at 120 °C in EG in 9 min. Scale bar is 50 nm.


Figure S4. Microwave assisted thermal treatment at 175 °C for 60 min of Rh multipods synthesized using μ wI at 120 °C in EG in 9 min. Scale bar is 50 nm.


Figure S5. Oil bath assisted thermal treatment at 150 °C for 15 min of Rh multipods synthesized using CvH at 120 °C in EG in 9 min. Scale bar is 50 nm.


Figure S6. Microwave assisted thermal treatment at 175 °C for 15 min of Rh multipods synthesized using CvH at 120°C in EG in 9 min. Red circles indicate small Rh seeds. Scale bar is 50 nm.


Figure S7. Oil bath assisted thermal treatment at 175 °C for 15 min of Rh multipods synthesized using CvH at 120°C in EG in 9 min. Red circles indicate small Rh seeds. Scale bar is 50 nm.


Figure S8. Oil bath assisted thermal treatment at 175 °C for 60 min of Rh multipods synthesized using CvH at 120°C in EG in 9 min. Red circles indicate small Rh seeds. Scale bar is 50 nm.

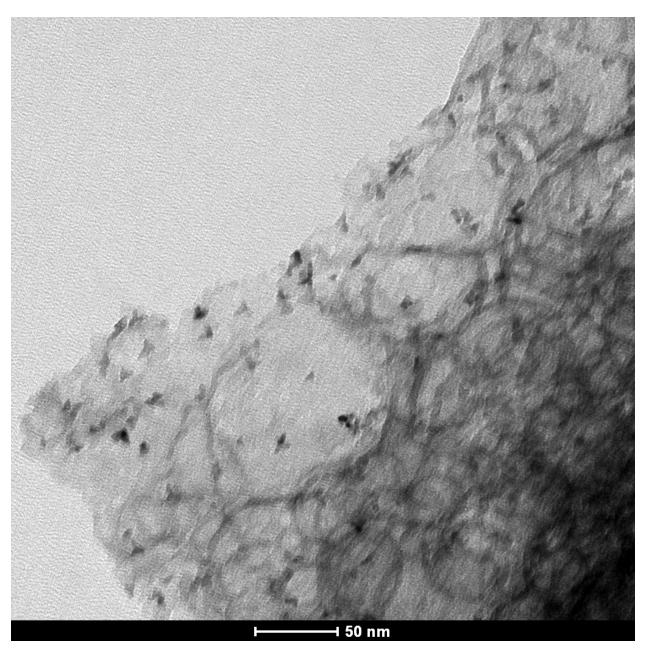

Figure S9. TEM image of Rh multipods synthesized under μ wI using two phase flow reaction at 120 °C for 9 minutes after being supported on amorphous silica; scale bar is 50 nm.

Figure S10. (A) TEM image of post-catalytic Rh multipods synthesized under μ wI using two phase flow reaction at 120 °C for 9 minutes after being supported on amorphous silica; scale bar is 50 nm.

Figure S11. TEM image of Rh multipods synthesized under CvH using two phase flow reaction at 120 °C for 9 minutes after being supported on amorphous silica; scale bar is 50 nm.

Figure S12. TEM image of post-catalytic Rh multipods synthesized under CvH using two phase flow reaction at 120 °C for 9 minutes after being supported on amorphous silica; scale bar is 50 nm.

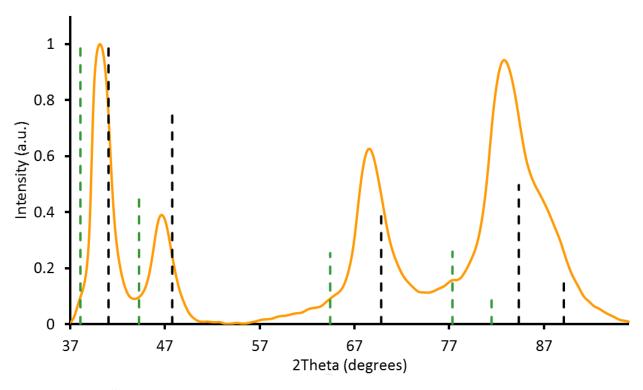
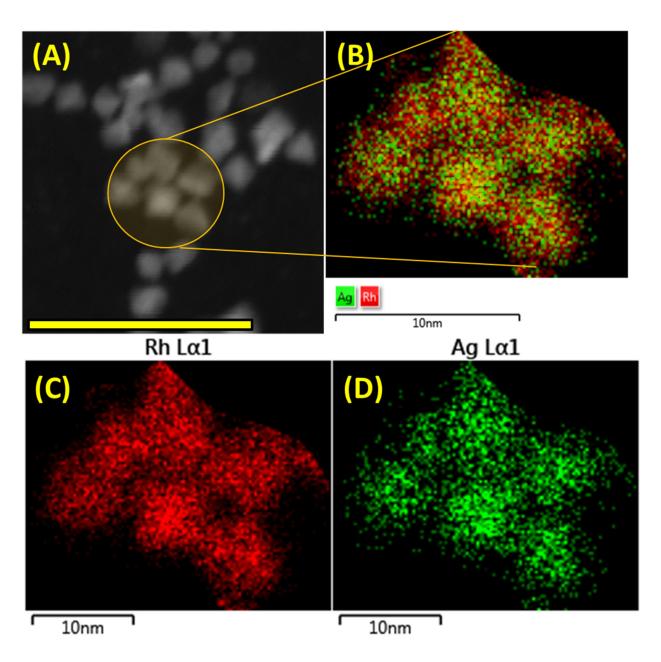
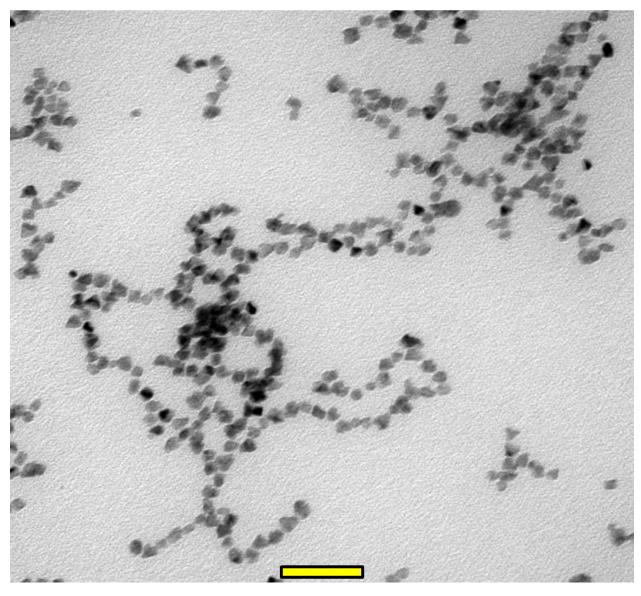




Figure S13. PXRD of $Rh_{70}Ag_{30}$ alloy NPs using two phase flow reaction.

Figure S14. (**A**) HAADF-STEM images of Rh₇₀Ag₃₀ alloy NPs synthesized using two phase flow reaction; (**B**)-(**D**) show 2D EDS mapping results. Scale bar is 50 nm.

Figure S15. TEM images of $Rh_{70}Ag_{30}$ alloy NPs using two phase flow reaction; scale bar is 50 nm.

Equation S1. Activity was calculated using the following formula:

$$Activity \ (\mu molg^{-1}s^{-1})$$

$$= (\frac{1}{Mass \ of \ catalyst \ used \ (g)} * \frac{C6H10 \ flow \ \left(\frac{mol}{min}\right) * 10^6}{60 \ \left(\frac{S}{min}\right)}$$

$$= \frac{\left(\frac{(Area \ counts \ for \ cyclohexane)}{(MW \ of \ cyclohexane)}\right)}{\left(\frac{(Area \ counts \ for \ cyclohexane)}{(MW \ of \ cyclohexane)}\right) + \left(\frac{(Area \ counts \ for \ cyclohexene)}{(MW \ of \ cyclohexene)}\right)}$$

Turnover frequency normalized for Rh loading was calculated using the formula:

$$TOF\left(S^{\text{-}l}\right) = \frac{\textit{Activity}*10^{\text{-}6}(\textit{mol}/(\mu\textit{mol})}{\frac{(\textit{Wt\% of Rh})}{(\textit{MW of Rh})}}*\frac{1}{\left[\textit{percentage of}\left(\frac{(\textit{Surface area})}{(\textit{Volume})}\right)\!\textit{for the NPs}\right]}$$

Kinetic studies and determination of activation energies.

The catalytic run was started at 25 °C and temperature was changed to 30 °C after attainment of steady state conversion of cyclohexene to cyclohexane at 25 °C. Temperature was held constant at 30 °C until the steady state was achieved again. This process was repeated for temperature values of 24, 18, 12, and 6 °C respectively. The activation energy values were obtained using the slope of the best fit line by plotting Ln (activity) $vs. \frac{1}{T(K)}$. The activity values were averaged using at least four points corresponding to steady state of the catalysts.