Supporting Information

Identification of emerging brominated chemicals as the transformation products of tetrabromobisphenol A (TBBPA) derivatives in soil

Aifeng Liu¹, Jianbo Shi^{1,2,3} *, Guangbo Qu^{1,3} *, Ligang Hu^{1,3}, Qianchi Ma^{1,3}, Maoyong Song^{1,3}, Chuanyong Jing^{1,3}, Guibin Jiang^{1,3}

¹ State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China

² Institute of Environment and Health, Jianghan University, Wuhan 430056, China

³ College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding author

Tel/fax: +86-10-62849129

E-mail: jbshi@rcees.ac.cn (Jianbo Shi)

gbqu@rcees.ac.cn (Guangbo Qu)

This Supporting Information contains 11 figures and 7 tables.

Instrumental Parameters of UHPLC-Orbitrap HRMS	S 3
Elution Program Employed in HPLC-UV Analysis	S 3
Structure Identification through the MS ² Spectra of Figure S4 and S5	S9
Synthesis Procedure and ¹ HNMR Data	S14
Figure S1	S4
Figure S2	S5
Figure S3	S6
Figure S4	S7
Figure S5	S 8
Figure S6	S10
Figure S7	S11
Figure S8	S12
Figure S9	S13
Figure S10	S16
Figure S11	S17
Table S1	S18
Table S2	S21
Table S3	S22
Table S4	S23
Table S5	S25
Table S6	S26
Table S7	S28
References	S29

Instrumental Parameters of UHPLC-Orbitrap HRMS

Methanol (A) and water (B) were applied as mobile phases at a flow rate of 0.6 mL/min. The mobile phase gradient was initially 80:20 (v/v, A/B) and kept for 2 min, then increased to 100% A along 10 min and returned to 80:20 (v/v, A/B) in 1 min and then kept for 2 additional min. The recommended values were used in the full scan acquisition under heated electrospray ionization (HESI) mode without further optimization. The parameters used for the mass spectrometer were the following: full scan range (m/z), 100 to 1000; pray voltage, 2500 V; sweep gas flow rate, 1 respective arbitrary units; sheath gas flow rate, 40 respective arbitrary units; aux gas flow rate, 10 respective arbitrary units; ion transfer tube temperature, 350 °C; vaporizer temperature, 200 °C; MS¹ detector, Orbitrap; MS¹ resolution, 120,000; MS¹ scan range, 100-1000; MS¹ maximum injection time, 100 ms; MS¹ automated gain control (AGC) target, 100,000; S-lens RF level, 60 V; MS² higher-energy collisional dissociation (HCD) collision energy, 45%; MS² detector, Orbitrap; MS² isolation, 16; MS² resolution, 15,000; MS² AGC target, 50,000; MS² maximum injection time, 35 ms; MS² start mass, 50. Xcalibur Qual and Quan Browser software were used for the qualitative and quantitative calculation.

Elution Program Employed in HPLC-UV Analysis Thermo Utimate 3000 HPLC coupled with a UV detector were used for the instrumental analysis. And ZORBAX ODS (150×3.0 mm, 5 µm, Agilent) column was used for the purity analysis and degradation products analysis. Methanol (A) and water (B) were applied as the mobile phases at a flow rate of 0.35 mL/min. The flow gradient was 80:20 (v/v, A/B) initially, and kept for 2 min, then increased to 100% A in 9 min and held for 2 min. The gradient was then returned to 80:20 (v/v, A/B) in 1 min and kept for 2 min. The wavelength of UV detector was set at 214 nm.

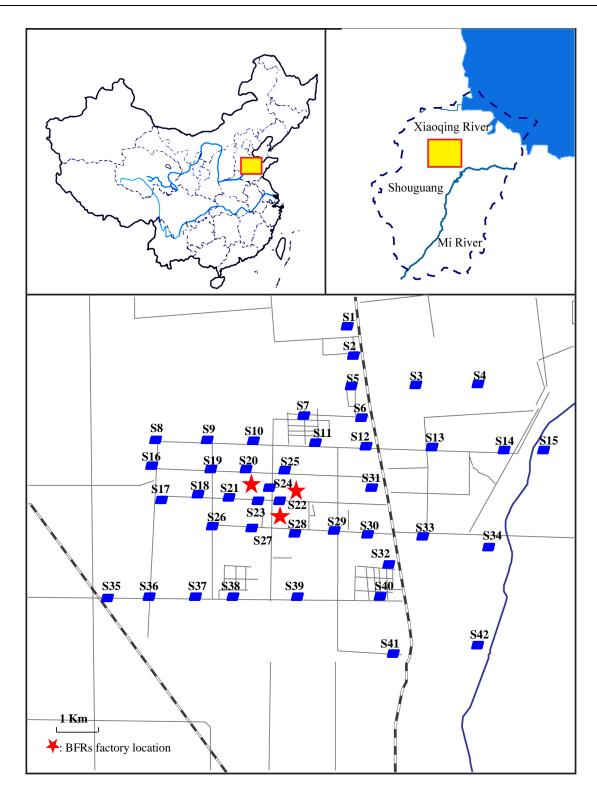


Figure S1. Sampling sites map.

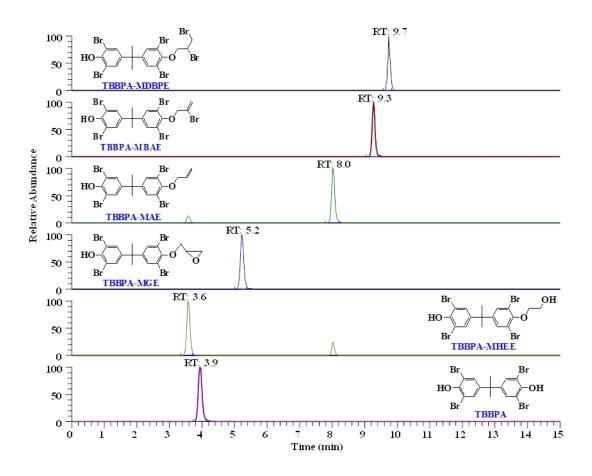


Figure S2. Mass chromatography of TBBPA and five TBBPA byproducts or possible

transformation products.

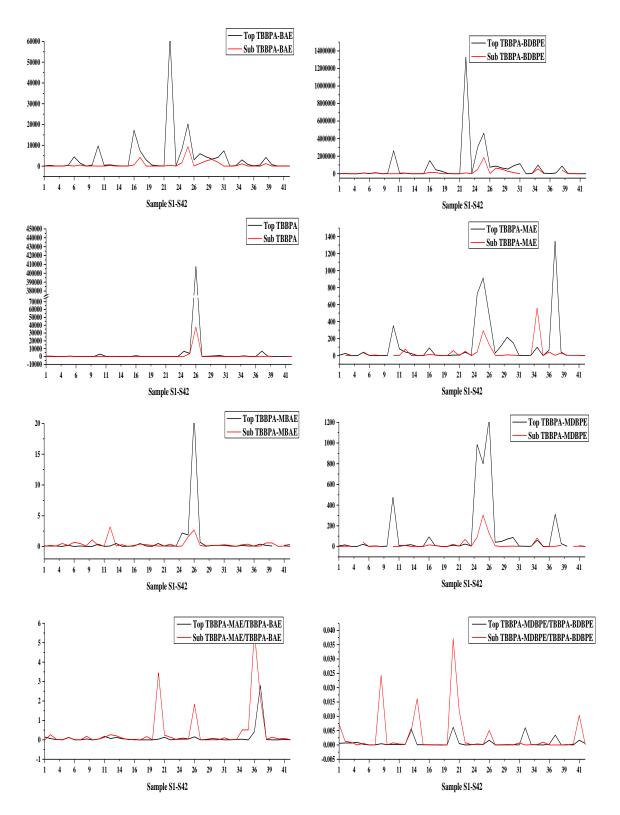


Figure S3. Concentration distribution in the top layer and sublayer soil samples for TBBPA, main derivatives and byproducts.

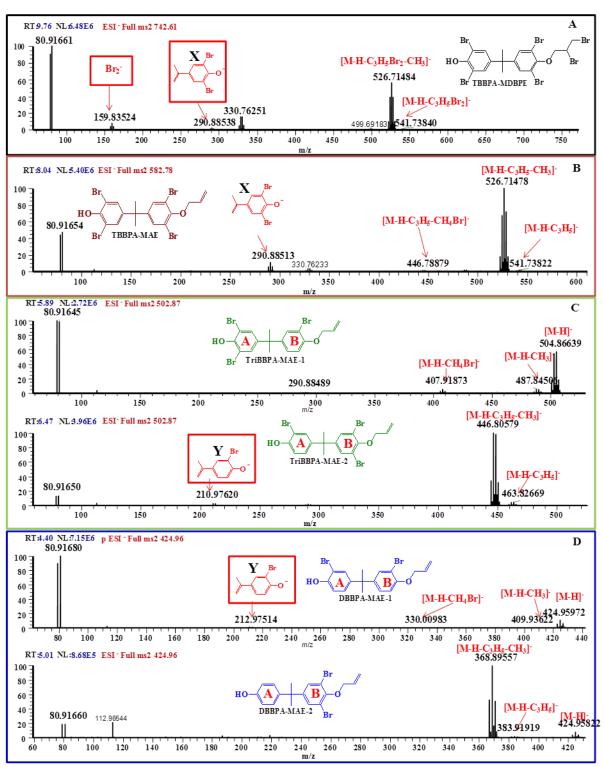


Figure S4. Mass spectrum of TBBPA-MDBPE, TBBPA-MAE and CCAs transformation products detected at RTs of 5.9/6.5, 4.4/5.0 min.

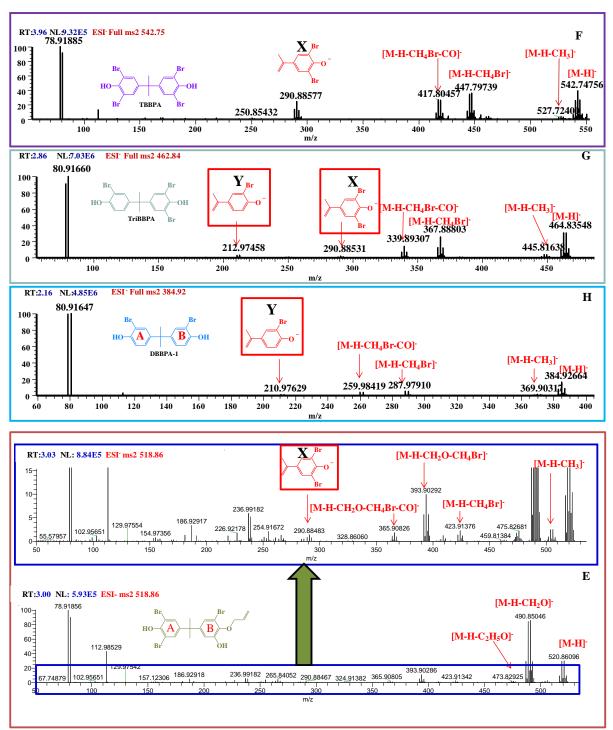


Figure S5. Mass spectrum of TBBPA and the CCAs transformation products detected at RTs of 2.9, 2.2 min and 3.0 min.

Structure Identification through the MS^2 Spectra of Figure S4 and S5. The same fragmentation steps of TriBBPA-MAE, TriBBPA-MAE (RT 6.5 min) and DBBPA-MAE (RT 5.0 min) for the precursor $[M-H]^{-1}$ were observed by producing the segments $[M-H-C_3H_5]^{-1}$ and $[M-H-C_3H_5-CH_3]^{-}$, which indicated the cleavage of ether bond and the loss of • CH₃ TriBBPA-MAE (RT 6.5 min) and DBBPA-MAE (RT 5.0 min) probably had the similar structures with TBBPA-MAE, which indicated there are two bromine atoms at aromatic ring B. The two bromine atoms at aromatic ring B would be helpful for the cleavage of ether bond to form [M-C₃H₅]⁻ in mass analysis. So the possible structures of TriBBPA-MAE (RT 6.5 min) and DBBPA-MAE (RT 5.0 min) would be TriBBPA-MAE-2 and DBBPA-MAE-2 in Figure S5, respectively. TriBBPA-MAE (RT 5.9 min) and DBBPA-MAE (RT 4.4 min), TriBBPA, DBBPA showed similar fragmentation behaviors with TBBPA by forming the segments $[M-H-CH_3]^{-}$ and $[M-H-CH_4Br]^{-}$. **TBBPA** reported has been to form 4-isopropylene-2,6-dibromophenol with a rearrangement of propyl group by the loss of dibromophenol moiety.^{1, 2} The same fragments were also observed in the MS² spectra of TBBPA-MDBPE, TBBPA-MAE, TBBPA and TriBBPA (Figure S4 and S5, X). A 4-isopropylene-2,6-dibromophenol fragment was also observed in the MS² spectrum of HTriBBPA-MAE (Figure S5 E) which indicated there were two bromine atoms at aromatic ring A and the hydroxyl group might at ring B. The daughter ions at m/z 210.97620/212.97513 for TriBBPA-MAE, DBBPA-MAE, TriBBPA and DBBPA (Figure S4, S5, Y) might be 4-siopropyenr-2-bromophenol formed by the fragmentation at the same position with TBBPA-MDBPE, TBBPA-MAE, TBBPA and TriBBPA. Meanwhile, the daughter ion clusters at m/z 210.97705/212.97498 detected in DBBPA MS² spectrum (Figure S5 Y) indicated there was one bromine atom at ring A and B, respectively. The possible structures of the transformation products were shown in Figure S4 and S5. Further confirmation about the structures of the isomers is still relied on the commercial available standards of these compounds.

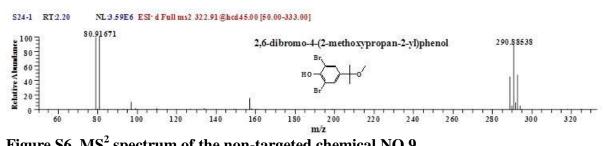


Figure S6. MS² spectrum of the non-targeted chemical NO.9.



Figure S7. FTICR-MS spectra of the transformation products of TBBPA-MDBPE. CMF, calculated molecular formula given by Bruker Dltoncis SmartFormula with a mass deviation tolerance of 1 ppm; EP, error ppm, the value expresses the deviation with the theoretical molecular formula; mSigma, the isotope pattern matching factor, indicates the agreement between the measured and the theoretical isotopic pattern of the target compounds.

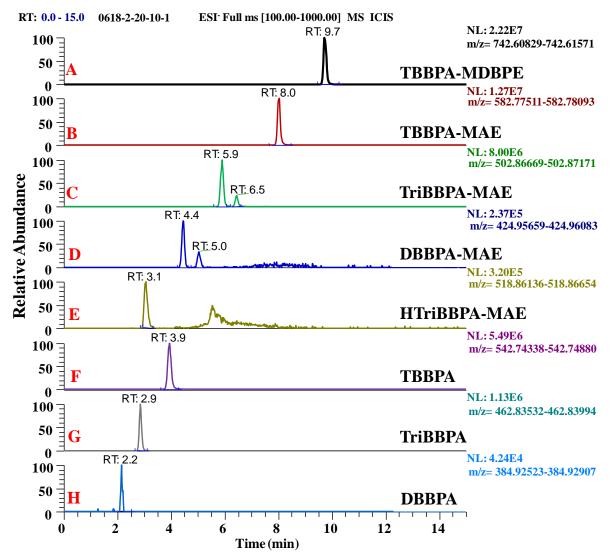
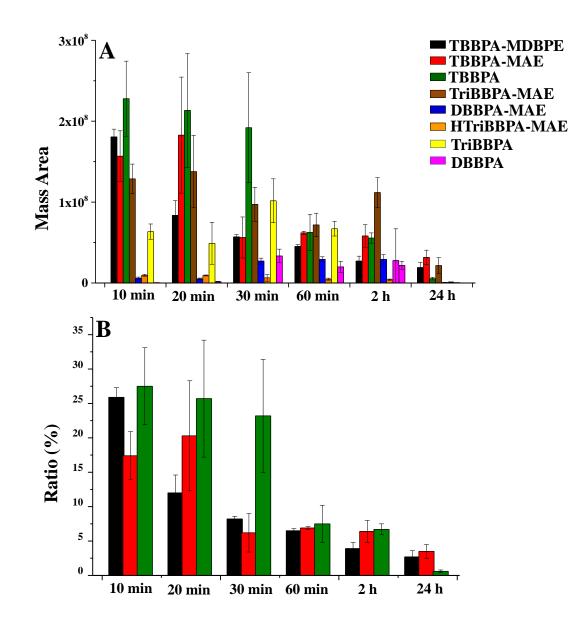



Figure S8. Mass chromatography of transformation products of TBBPA-MDBPE.

Figure S9. Transformation of TBBPA-MDBPE in 24 hours. (A) based on the mass area of the analytes. (B) based on the molar ratio of the analytes compared to the initial TBBPA-MDBPE.

Synthesis Procedure and ¹HNMR Data.

TBBPA-MDHPE

To a solution of TBBPA-MAE (584 mg) in acetone (2 mL) and water (5 mL), NMO (N-methyl morpholine-n-oxide) and OsO₄ was added at room temperature under the protection of N₂ flow. After the reaction mixture was stirred under ice bate condition for 2 hours, then at room temperature for 12 hours. After the reaction was completed, the reaction mixture was added 200 mg sodium dithionite, 2 g magnesium silicate and diluted with 8 mL water. After being shaked for 30 minutes the residue was removed. The solution was adjusted to pH=2 with H_2SO_4 , and extracted with DCM and purified with gel chromatography, giving TBBPA-MDHPE in a yield of 87%.

¹HNMR (400 MHz, DMSO) δ 9.858 (s, 1 H), 7.439 (s, 2 H), 7.368 (s, 2 H), 4.960 (s, 1H) 4.619 (s, 1 H), 3.861-3.899 (t, 3 H), 3.426-3.538 (m, 1 H), 3.341-3.415 (d, *J*=29.6 Hz, 1 H), 1.586 (s, 6 H); UHPLC-Orbitrap-HRMS (ESI) caled for C₁₈H₁₇Br₄O₄⁻ [M - H]⁻ 616.78249, found 616.78241.

TBBPA-MBHPE

To a solution of TBBPA-MGE (600 mg) in CHCl₃ (30 mL), 82 μ L HBr (47% in water) was added dropwise. After being stirred at room temperature for 8 hours, the reaction mixture was diluted with 50 mL water and extracted with DCM. After concentrated with rotary evaporator, the residue was purified with gel chromatography, giving TBBPA-MBHPE in a yield of 85%.

¹HNMR (400 MHz, DMSO) δ 9.844 (s, 1 H), 7.455 (s, 2 H), 7.371 (s, 2 H), 5.602-5.616 (d, J = 5.6 Hz, 1H), 4.060-4.113 (m, 1 H), 3.932-3.946 (d, J = 5.6 Hz, 2 H), 3.719-3.755 (m, 1 H), 3.577-3.617 (m, 1 H), 1.589 (s, 6 H); UHPLC-Orbitrap-HRMS (ESI) caled for C₁₈H₁₆Br₅O₃⁻ [M - H]⁻ 678.69809/680.69604, found 678.69812/680.69598.

TBBPA-MHPE

To a solution of TBBPA-MAE (584 mg) in anhydrous THF (20 mL), 9-BBN (9-Borabicyclo [3.3.1] nonane, 610 mg) was added at room temperature. After the reaction

mixture was stirred under a mild N_2 flow for 12 hours, 3 mL Sodium hydroxide solution (360 mg in 3 mL water) was added at one time, then, 3 mL H_2O_2 (30%) was added dropwise in 10 to 15 minutes. The reaction mixture was then stirred at room temperature for 5 hours. After the reaction was completed, the reaction mixture was diluted with CH_2Cl_2 and washed with saturated solution of sodium bicarbonate and water. The organic layer was dried over anhydrous MgSO₄. After removal of the organic solvent, the residue was purified by column chromatography, giving TBBPA-MHPE in a yield of 60%.

¹HNMR (400 MHz, DMSO) δ 7.437 (s, 2 H), 7.364 (s, 2 H), 4.016-3.983 (t, *J* = 13.2, 6.8 Hz, 2 H), 3.624-3.593 (t, *J* = 12.4, 6.4 Hz, 2 H), 2.083 (s, 2 H), 1.960-1.896 (m, 2 H), 1.585 (s, 6 H); UHPLC-Orbitrap-HRMS (ESI) caled for C₁₈H₁₇Br₄O₃⁻ [M - H]⁻ 600.78757, found 600.78748.

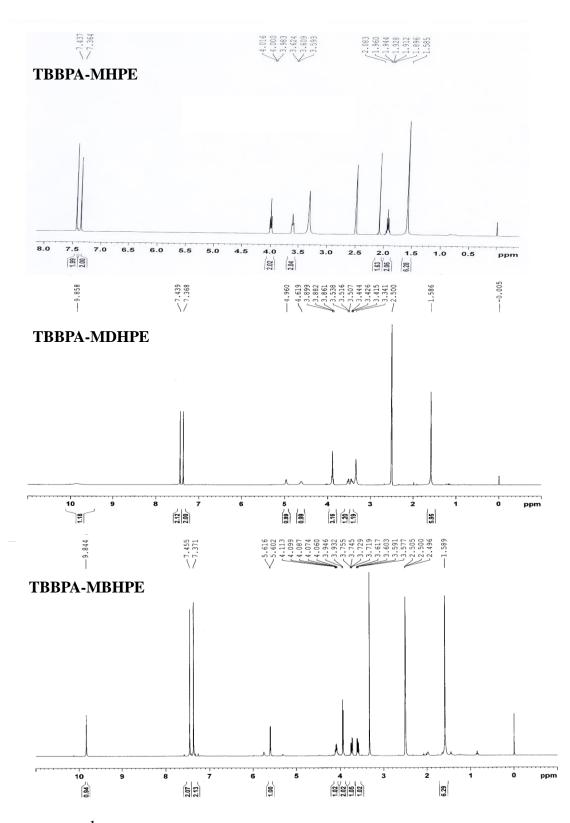


Figure S10. ¹HNMR spectrum of synthesized TBBPA-MHPE, RBBPA-MDHPE and TBBPA-MBHPE.

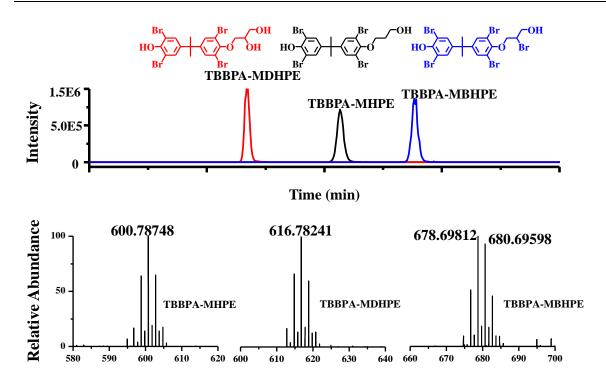


Figure S11. HRMS chromatography and spectra of synthesized TBBPA-MDHPE, TBBPA-MBHPE and TBBPA-MHPE.

Chemicals NO.	Abbreviation	Full name	Structure ^{<i>a</i>} or possible structure ^{<i>b</i>}
1	TBBPA-MBHPE	TBBPA mono(2-bromo-3-hydroxypropyl ether)	Br Br Br Br a
2	TBBPA-MDHPE	TBBPA mono(2,3-dihydroxypropyl ether)	$ \begin{array}{c} \mathbf{Br} \\ \mathbf{HO} \\ \mathbf{Br} \\ \mathbf{Br} \\ \mathbf{Br} \\ \mathbf{Br} \\ \mathbf{Br} \\ \mathbf{HO} $
3	TBBPA-MHPE	TBBPA mono(3-hydroxypropyl ether)	Br OH a HOBr Br Br
4	TBBPA-MME	TBBPA mono(methyl ether)	$ \begin{array}{c} \mathbf{Br} & \mathbf{Br} & \mathbf{Br} \\ \mathbf{HO} & \mathbf{Br} & \mathbf{Br} & \mathbf{Br} \\ \end{array} $
5	TriBBPA-MAE	TriBBPA mono (allyl ether)	Br HO Br Br
6	DBBPA-MAE	DBBPA mono (allyl ether)	$\begin{array}{c} \mathbf{Br} \\ \mathbf{HO} \\$
7	TriBBPA	tribromobisphenol A	Br Br a HO OH Br
8	DBBPA	dibromobisphenol A	Br Br HO-C-HOH HO-C-HOH Br Br

Table S1. Chemicals and their structures detected in transformation process and soil samples.

Continued				
Chemicals NO.	Abbreviation	Full name	Structure ^{<i>a</i>} or possible structure ^{<i>b</i>}	_
9		2,6-dibromo-4-(2-methoxypropan-2-yl)phenol	b b b b b b b b	
		2,6-dibromo-4-(2-(2-hydroxy)-propyl)-methoxybe nzene	HO + O + O = O $Br = O$	
10	DBP	dibromophenol	Br ₂ OH	
11	TriBP	tribromophenol	Br ₃ OH	
12	TeBP	tetrabromophenol	Br ₄ OH	
13	MHDBDE	methoxyl-hydroxy-dibromobispenylether		
14	HPBDE	hydroxy-pentabromodiphenylether		
15	TBBPA	tetrabromobisphenol A	$ \begin{array}{c} \mathbf{Br} & \mathbf{Br} & \mathbf{Br} \\ \mathbf{HO} & \mathbf{HO} & \mathbf{HO} \\ \mathbf{Br} & \mathbf{Br} & \mathbf{Br} \end{array} $	
16	TBBPA-MAE	TBBPA mono(allyl ether)	$ \begin{array}{c} \mathbf{Br} \\ \mathbf{HO} \\ \mathbf{Br} $	
17	TBBPA-MBAE	TBBPA mono(2-bromoallyl ether)	$ \begin{array}{c} \mathbf{Br} \\ \mathbf{Br} $	

Continued

Chemicals NO.	Abbreviation	Full name	Structure ^{<i>a</i>} or possible structure ^{<i>b</i>}
18	TBBPA-MDBPE	TBBPA mono(2,3-dibromopropyl ether)	$ \begin{array}{c} \mathbf{Br} & \mathbf{Br} \\ \mathbf{HO} & \mathbf{Br} & \mathbf{Br} \\ \mathbf{Br} & \mathbf{Br} & \mathbf{Br} \end{array} $
19	TBBPA-MHEE	TBBPA mono(2-hydroxyethyl ether)	$ \begin{array}{c} \mathbf{Br} & \mathbf{Br} & \mathbf{OH} \\ \mathbf{HO} & \mathbf{HO} & \mathbf{HO} \\ \mathbf{Br} & \mathbf{Br} & \mathbf{Br} \end{array} $
20	TBBPA-MGE	TBBPA mono(glycidyl ether)	$ \begin{array}{c} \mathbf{Br} \\ \mathbf{HO} \\ \mathbf{Br} $
21	TBBPA-BAE	TBBPA bis(allyl ether)	$ \begin{array}{c} \mathbf{Br} \\ \mathbf{O} \\ \mathbf{Br} \\ \mathbf{Br} \\ \mathbf{Br} \end{array} $
22	TBBPA-BDBPE	TBBPA bis(2,3-dibromopropyl ether)	$\mathbf{Br} \xrightarrow{\mathbf{Br}} \mathbf{Br} \xrightarrow{\mathbf{Br}} \mathbf{Br}$

API Source and Mod	e		
API Source		Mode	
Source Type	ESI (-)	Detection mode	Broadband
Capillay +	4000 V	TD(acquisition)	4M
End Plate Offset	—500 V	TD(Tune/Display)	4M (Full Resolution)
Dry Gas	2.0 L/min	Estimate R.P	240000 at m/z 400
Dry Tem	180 °C	Transient Length	0.8389 sec
Ion Transfer			
Source Optics		Collision Cell	
Capillary Exit	—200.0 V	Collision Voltage	4.0 V
Deflector Plate	—180.0 V	DC Extract Bias	(-0.5) V
Funnel 1	—100 V	RF frequency Collision RF	2 MHz
Skimmer 1	—25.0 V	Amplitude	600.0 vpp
Funnel RF Amplitude	130.0 vpp		
Octopole		Transfer Optics	
Trequency	5 MHz	Time of Flight	0.6 ms
RF Amplitude	200.0 vpp	Frequency	2 MHz
Quadrupole		RF Amplitude	150.0 vpp
Q1 Mass	100.0 m/z		

Table S2. Instrumental parameters of FT-ICR MS.

Table S3. Method	performance	data for	the analytical	method.

			TBBPA	TBBPA-	TBBPA	TBBPA	TBBPA-	TBBPA-	TBBPA-	TBBPA	TBBPA	TBBPA
		TBBPA	-BAE	BDBPE	-MAE	-MBAE	MDBPE	MGE	MHEE	-MHPE	-MDHPE	-MBHPE
Soil	Recovery	85%	94%	95%	78%	86%	92%	86%	88%	92%	94%	95%
	MDL(ng/g dw)	0.1	0.4	3	0.02	0.02	0.09	0.08	0.09	0.06	0.12	0.06

Tal	ble S4.	Targeted	l conce	ntratio	ons (ng	/g dw)	of TBE	SPA ana	logs in	n soil s	amples.	а	
	TBBPA -BAE	TBBPA- BDBPE	TBBPA		TBBPA	TBBPA -MDBPE	TBBPA	TBBPA -MDHPE		TBBPA -MGE	TBBPA -MBHPE	TOC	PH
S1-1	40.0	9862.2	444.9	6.0	0.1	5.8	ND	ND	ND	ND	0.2	0.67%	8.15
S1-2	2.0	41.0	3.7	ND	0.04	0.3	ND	ND	ND	ND	ND	0.24%	8.40
S2-1	413.3	21704.1	448.2	26.1	0.1	15.4	ND	ND	ND	0.2	1.2	0.97%	8.02
S2-2	16.8	2579.5	18.2	4.5	0.2	3.3	ND	ND	ND	ND	ND	0.52%	8.08
S3-1	20.3	2946.3	14.9	0.3	0.1	2.0	ND	ND	ND	ND	ND	0.52%	9.35
S3-2	11.7	1842.5	9.8	0.2	0.1	1.7	ND	ND	ND	ND	ND	0.47%	8.80
S4-1	53.8	530.2	39.8	0.3	0.04	0.5	ND	ND	ND	ND	ND	0.26%	8.24
S4-2	4.1	195.7	2.4	ND	0.5	ND	ND	ND	ND	ND	ND	0.36%	8.15
S5-1	317.3	82256.9	486.4	41.2	0.2	21.6	0.05	ND	1.0	0.5	0.8	1.17%	8.33
S5-2	273.2	77542.9	309.0	32.6	0.2	42.7	ND	ND	1.7	ND	0.2	1.14%	8.06
S6-1	4464.5	27270.7	69.8	1.2	0.03	1.6	ND	ND	ND	ND	0.2	0.31%	8.54
S6-2	33.0	7209.6	19.7	0.5	0.7	0.1	ND	ND	ND	ND	ND	0.46%	8.64
S7-1	1441.3	123625.6	109.6	5.4	0.1	5.5	ND	ND	0.04	ND	ND	0.18%	8.49
S7-2	505.3	90310.8	15.2	0.3	0.5	2.5	ND	ND	ND	ND	ND	1.24%	7.39
S8-1	17.6	2560.1	19.8	0.8	0.04	1.1	ND	ND	ND	ND	0.2	0.72%	8.29
S8-2	1.1	37.1	1.4	0.2	0.1	0.9	ND	ND	ND	ND	ND	0.80%	8.46
S9-1	512.0	21621.0	22.6	0.7	0.03	2.9	ND	ND	ND	ND	ND	0.28%	8.39
S9-2	85.0	2506.8	2.9	ND	1.1	ND	ND	ND	ND	ND	ND	0.49%	7.70
S10-1	9703.3	2624049.6	3214.9	351.8	0.4	474.2	3.7	0.5	3.3	4.6	12.5	1.41%	7.46
S10-2	14.2	1441.4	10.1	0.5	0.2	1.1	ND	ND	ND	ND	ND	0.36%	8.32
S11-1	441.2	68755.9	187.8	78.7	0.04	8.5	ND	ND	0.1	1.1	1.6	0.54%	8.18
S11-2	12.8	2109.4	6.6	1.7	0.1	0.7	ND	ND	ND	ND	ND	0.28%	9.46
S12-1	620.4	67960.9	223.9	42.9	0.1	11.3	ND	ND	ND	0.7	2.0	0.06%	8.31
S12-2	291.6	53879.0	58.3	77.4	3.2	11.6	ND	ND	ND	4.3	3.4	0.85%	7.96
S12-2	195.5	3055.5	143.0	24.2	0.5	17.3	ND	ND	ND	1.1	1.5	0.67%	8.40
S13-2	6.9	146.1	15.9	1.4	0.1	0.7	ND	ND	ND	ND	ND	0.38%	8.13
S13-2	15.8	5987.7	43.1	0.9	0.05	0.5	ND	ND	ND	ND	ND	0.46%	8.05
S14-2	3.5	111.3	3.0	0.3	0.3	1.8	ND	ND	ND	ND	ND	0.83%	7.94
S15-1	60.0	13520.0	18.3	1.6	0.05	1.0	ND	ND	ND	ND	ND	0.61%	8.32
S15-2	15.9	2850.3	0.1	0.1	0.03	0.3	ND	ND	ND	ND	ND	0.35%	8.48
		1504072.6	944.9	91.4	0.05	93.1	0.1	0.2	0.1	1.0	3.5	0.66%	8.75
	571.4	164960.2	59.4	15.8	0.2	15.3	ND	ND	ND	ND	0.4	0.85%	8.40
	7361.5	461392.0	35.0	5.8	0.5	10.0	ND	ND	ND	ND	ND	0.90%	8.65
S17-2		136308.4	31.3	6.6	0.4	10.0	ND	ND	ND	ND	ND	0.58%	8.93
S17-2 S18-1		285903.1	1.2	0.0	0.1	2.0	ND	ND	ND	ND	ND	0.54%	8.78
S18-2	10.3	1882.5	0.6	1.7	0.3	0.2	ND	ND	ND	ND	ND	0.43%	9.12
S10-2	495.5	30093.5	4.5	0.8	0.04	1.3	ND	ND	ND	ND	0.2	0.57%	8.98
S19-1 S19-2	29.4	9072.3	4.5 0.8	0.8	0.04	0.04	ND	ND	ND	ND	ND	0.73%	8.40
S19-2 S20-1	29.4 179.0	2011.0	138.8	0.2 6.6	0.2	12.5	ND	ND	ND	0.4	0.5	0.73%	8.40 8.47
S20-1 S20-2	179.0	598.7	68.5	59.6	0.5	22.2	ND	0.2	0.4	1.2	1.3	0.62%	8.32
	50.0	598.7 11717.2	68.5 5.0	59.6 6.7	0.1	5.5	ND		0.4 ND	1.2 ND	1.5 ND		8.32 8.27
S21-1 S21-2	50.0 4.1	235.1	5.0 2.1	0.7 1.0	0.1	5.5 2.8		ND	ND			0.42%	
							ND	ND		ND	ND	0.27%	8.86 8.50
		13283014.4	135.9	40.6	0.1	23.6	ND	ND	0.1	0.6	0.6	0.46%	8.50
S22-2		92915.7	59.2	51.8	0.4	69.2	ND	0.1	0.1	0.4	1.3	0.74%	8.02
S23-1	194.3	74170.1	79.8	5.4	0.1	6.6	ND	ND	ND	ND	0.3	0.92%	8.18
S23-2	20.2	5064.4	19.7	0.3	0.03	0.8	ND	ND	ND	ND	ND	0.60%	8.63

S23

Co	ntinued	1											
	TBBPA -BAE	TBBPA- BDBPE	TBBPA	TBBPA -MAE	TBBPA -MBAE	TBBPA -MDBPE	TBBPA -MHEE	TBBPA -MDHPE	TBBPA -MHPE	TBBPA -MGE	TBBPA -MBHPE	TOC	PH
S24-1	8132.2	3086140.5	6628.1	727.1	2.2	987.0	13.7	20.4	18.1	25.9	85.0	0.90%	7.81
S24-2	1607.8	524651.8	26.6	42.9	0.1	89.9	ND	0.2	0.3	1.0	4.0	0.71%	8.63
S25-1	20270.3	4634018.1	4021.8	913.2	1.9	800.1	10.4	17.5	14.9	64.4	78.5	0.45%	8.44
S25-2	9367.0	1854155.3	3852.8	293.7	1.6	303.5	0.1	2.0	0.2	3.7	14.5	0.89%	8.07
S26-1	3057.0	743373.6	407643.1	475.2	21.3	1233.6	ND	0.01	178.8	ND	ND	0.49%	8.40
S26-2	70.8	24717.2	37704.5	129.4	2.7	125.8	0.2	ND	ND	1.5	1.4	0.50%	8.23
S27-1	5973.4	874815.1	205.8	29.6	0.7	42.0	ND	ND	0.1	1.4	0.3	0.41%	8.31
S27-2	1247.9	637692.5	112.0	4.1	0.2	7.2	ND	ND	ND	0.1	0.4	0.81%	7.84
S28-1	4480.0	656660.4	302.5	115.6	0.1	48.2	0.4	1.2	1.0	5.1	4.5	0.63%	8.31
S28-2	2455.3	520014.0	0.4	2.3	0.04	0.8	ND	ND	ND	0.2	ND	2.28%	7.65
S29-1	3345.7	535754.9	780.9	216.7	0.2	71.5	0.5	3.8	3.1	15.6	11.5	1.58%	7.91
S29-2	3278.1	267571.5	87.8	8.9	0.2	3.4	ND	ND	ND	ND	0.6	0.21%	8.37
S30-1	4157.1	925566.5	1217.5	151.2	0.2	88.1	0.7	3.0	2.4	14.4	11.3	1.07%	7.86
S30-2	1852.2	132824.5	60.9	5.3	0.2	4.0	ND	ND	ND	0.4	0.4	0.83%	8.39
S31-1	7366.0	1152208.8	19.7	1.9	0.2	4.8	ND	ND	ND	ND	ND	1.07%	8.28
S31-2	30.0	2231.3	1.5	3.2	0.3	1.6	ND	ND	ND	ND	0.2	0.58%	8.13
S32-1	26.4	364.7	13.1	0.1	0.1	2.2	ND	ND	ND	ND	ND	0.37%	8.85
S32-2	3.1	ND	1.9	ND	0.2	ND	ND	ND	ND	ND	ND	0.88%	8.28
S33-1	247.5	18729.1	5.4	6.0	0.04	2.3	ND	ND	ND	ND	0.2	0.42%	8.43
S33-2	149.1	15830.2	4.1	2.6	0.04	1.4	ND	ND	ND	ND	0.2	0.50%	8.52
S34-1	3029.4	985168.2	845.9	99.0	0.2	61.3	ND	ND	ND	0.6	1.5	1.70%	8.43
S34-2	1091.7	568425.6	330.5	559.4	0.3	82.9	1.0	5.2	5.1	42.4	29.8	0.10%	8.26
S35-1	768.3	66188.2	15.7	0.1	0.1	0.6	ND	ND	ND	ND	ND	0.60%	8.73
S35-2	4.1	393.0	11.7	2.1	0.4	0.4	ND	ND	ND	ND	ND	0.57%	8.88
S36-1	162.3	9826.7	67.3	66.5	0.1	2.8	ND	ND	0.1	1.1	1.3	0.26%	9.08
S36-2	7.5	ND	30.6	42.0	0.05	1.4	ND	ND	ND	0.4	1.0	0.24%	8.67
S37-1	480.9	90928.5	6930.6	1344.6	0.4	313.7	1.9	6.6	5.8	19.9	36.2	0.58%	9.47
S37-2	2.0	ND	20.2	4.3	0.1	2.3	ND	ND	ND	ND	ND	0.41%	9.35
S38-1	4183.8	880374.8	388.6	41.5	0.2	28.1	ND	ND	ND	0.3	0.4	1.23%	8.31
S38-2	1195.7	413453.9	297.2	30.6	0.6	11.7	ND	ND	ND	0.4	0.6	2.45%	7.93
S39-1	695.5	18180.9	36.8	0.9	0.1	2.1	ND	ND	ND	ND	ND	0.84%	8.78
S39-2	33.5	9153.6	9.0	4.6	0.6	ND	ND	ND	ND	ND	1.7	0.59%	8.58
S40-1	31.9	11391.6	28.3	ND	ND	ND	ND	ND	ND	ND	ND	2.19%	7.80
S40-2	12.2	4656.3	ND	0.6	0.04	1.5	ND	ND	ND	ND	ND	0.75%	8.18
S41-1	44.0	4302.3	0.3	0.8	0.2	7.1	ND	ND	ND	ND	ND	0.92%	8.00
S41-2	2.6	336.9	0.1	0.2	0.1	3.5	ND	ND	ND	ND	ND	0.17%	8.52
S42-1	27.2	2110.1	39.4	0.1	0.3	1.1	ND	ND	ND	ND	ND	1.02%	8.05
S42-2	9.1	ND	28.3	0.1	0.03	0.4	ND	ND	ND	ND	ND	0.81%	7.99
	acv	1 means	4100 4000	1			4b a and	h 1.00000		00	a datam	aim a d a	

^{*a*}SX-1 means the top lay soil, SX-2 means the sub-layer soil; TOC was determined with O.I. analytical solids TOC analyzer (O.I. Analytical, USA). A Thermo Orion 3 Star pH Benchtop meter was used to measure the pH value. The detailed procedures about the TOC and pH detection were described somewhere.³

		TBBPA	TBBPS-	TBBPA	TBBPA	TBBPA	TBBPA-	TOC
		-BAE	BDBPE		-MAE	-MBAE	MDBPE	
TBBPA-	Correlation Coefficient	0.928						
BDBPE	Sig. (2-tailed)	< 0.05						
	Correlation Coefficient	0.598	0.632					
TBBPA	Sig. (2-tailed)	< 0.05	< 0.05					
TBBPA	Correlation Coefficient	0.620	0.690	0.800				
-MAE	Sig. (2-tailed)	< 0.05	< 0.05	< 0.05				
TBBPA	Correlation Coefficient	0.641	0.465	0.455	0.396			
-MBAE	Sig. (2-tailed)	< 0.05	< 0.05	< 0.05	< 0.05			
TBBPA	Correlation Coefficient	0.545	0.646	0.752	0.857	0.419		
-MDBPE	Sig. (2-tailed)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		
TOC	Correlation Coefficient	0.291	0.373	0.325	0.277	0.069	0.355	
TOC	Sig. (2-tailed)	< 0.05	< 0.05	< 0.05	< 0.05	0.533	< 0.05	
DU	Correlation Coefficient	-0.117	205	-0.284	-0.186	0.017	-0.280	-0.494
PH	Sig. (2-tailed)	0.290	0.061	< 0.05	0.091	0.877	< 0.05	< 0.05

Table S5. Spearman's rank correlation test results.

	TBBPA-MME/TBBPA	TriBBPA-MAE/TBBPA	DBBPA-MAE/TBBPA	TriBBPA/TBBPA	DBBPA/TBBPA
S1-1	2.89%	0.22%	ND	9.80%	0.07%
S1-2	0.28%	ND	ND	0.32%	ND
S2-1	3.70%	0.25%	ND	14.00%	0.35%
S2-2	3.32%	ND	ND	3.65%	ND
S3-1	3.85%	ND	ND	2.05%	ND
S3-2	1.23%	ND	ND	0.53%	ND
S4-1	5.42%	ND	ND	0.70%	ND
S4-2	0.11%	ND	ND	0.22%	ND
S5-1	7.64%	1.70%	0.99%	13.92%	4.87%
S5-2	9.01%	3.00%	3.03%	8.91%	5.01%
S6-1	11.87%	ND	ND	1.69%	0.09%
S6-2	10.65%	ND	ND	1.89%	ND
S7-1	25.67%	ND	ND	0.88%	ND
S7-2	9.46%	ND	ND	3.45%	ND
S8-1	6.32%	ND	ND	1.17%	ND
S8-2	23.52%	ND	ND	0.40%	ND
S9-1	10.74%	ND	ND	0.64%	ND
S9-2	12.02%	ND	ND	0.26%	ND
S10-1	28.47%	0.42%	0.003%	5.09%	0.15%
S10-2	4.36%	ND	ND	ND	ND
S11-1	7.82%	0.35%	ND	4.39%	0.04%
S11-2	3.18%	ND	ND	0.52%	0.14%
S12-1	16.88%	0.47%	ND	4.18%	0.06%
S12-2	11.18%	ND	ND	0.61%	ND
S13-1	3.05%	ND	0.02%	2.81%	0.02%
S13-2	0.44%	ND	ND	2.21%	ND
S14-1	2.40%	ND	ND	1.96%	ND
S14-2	2.03%	ND	ND	1.37%	ND
S15-1	6.17%	ND	ND	2.62%	ND
S15-2	2.63%	ND	ND	1.13%	ND
S16-1	3.16%	2.31%	0.09%	25.80%	0.98%
S16-2	9.17%	1.12%	ND	5.68%	0.14%
S17-1	0.80%	ND	ND	5.02%	ND
S17-2	0.69%	ND	ND	1.18%	ND
S18-1	0.55%	ND	ND	ND	ND
S18-2	27.42%	ND	ND	ND	ND
S19-1	182.50%	ND	ND	1.95%	0.77%
S19-2	13.86%	ND	ND	ND	ND
S20-1	5.19%	ND	0.04%	1.98%	0.06%
S20-2	23.40%	1.98%	0.22%	3.44%	0.25%
S21-1	29.27%	ND	12.18%	5.30%	2.74%
S21-2	4.62%	ND	1.70%	0.10%	ND
S22-1	85.09%	3.46%	1.11%	2.12%	0.29%
S22-2	21.70%	1.68%	0.69%	3.16%	0.17%

Table S6. Mass chromatography peack area ratios of untargeted TBBPA analogscompared to TBBPA in soil samples.

Continued

	TBBPA-MME/TBBPA	TriBBPA-MAE/TBBPA	DBBPA-MAE/TBBPA	TriBBPA/TBBPA	DBBPA/TBBPA
S23-1	12.06%	ND	ND 2.17%		0.15%
S23-2	2.37%	ND	ND 0.29%		ND
S24-1	12.51%	1.10%	0.08% 7.07%		0.35%
S24-2	32.49%	8.98%	0.60% 6.12%		1.08%
S25-1	4.78%	1.56%	0.29%	12.20%	0.27%
S25-2	0.80%	0.23%	0.05%	3.83%	0.06%
S26-1	2.63%	ND	ND	1.68%	0.02%
S26-2	1.83%	0.01%	0.00%	4.31%	0.09%
S27-1	24.59%	ND	ND	2.59%	0.16%
S27-2	3.41%	ND	ND	0.65%	0.01%
S28-1	17.37%	1.12%	ND	3.55%	0.15%
S28-2	1.46%	0.14%	ND	3.34%	0.00%
S29-1	7.44%	1.41%	0.02%	6.60%	0.31%
S29-2	1.89%	ND	ND	4.10%	0.08%
S30-1	8.43%	0.57%	0.04%	4.75%	0.60%
S30-2	4.50%	0.66%	ND	3.70%	0.10%
S31-1	20.32%	ND	ND	0.58%	ND
S31-2	11.68%	ND	ND	3.69%	4.67%
S32-1	0.47%	ND	ND	0.58%	ND
S32-2	1.43%	ND	ND	ND	ND
S33-1	18.47%	ND	ND	4.58%	0.11%
S33-2	12.43%	ND	ND	2.51%	ND
S34-1	4.50%	0.58%	ND	7.20%	0.32%
S34-2	6.25%	ND	ND	4.93%	0.05%
S35-1	1.18%	ND	ND	ND	ND
S35-2	23.71%	ND	ND	0.82%	ND
S36-1	12.69%	2.92%	ND	3.36%	0.34%
S36-2	16.71%	3.87%	ND	3.15%	ND
S37-1	3.32%	0.74%	0.19%	5.87%	0.12%
S37-2	15.62%	ND	ND	1.26%	0.06%
S38-1	7.34%	ND	ND	1.27%	ND
S38-2	4.55%	ND	ND	5.04%	ND
S39-1	20.18%	ND	ND	1.54%	ND
S39-2	6.04%	ND	ND	1.18%	ND
S40-1	ND	ND	ND	ND	ND
S40-2	1.84%	ND	ND	0.43%	0.01%
S41-1	31.23%	ND	ND	ND	ND
S41-2	10.94%	ND	ND	0.61%	ND
S42-1	4.24%	ND	ND	ND	ND
S42-2	0.77%	ND	ND	0.31%	ND

	WS^b	$\log K_{\rm ow}^{\ \ c}$	$\log K_{\mathrm{aw}}^{d}$	$\log K_{\mathrm{oa}}^{e}$	$\log K_{\rm oc}^{f}$	BCF^{g}
TBBPA-BDBPE	1.2E-10	11.5	-8.8	20.3	7.4	81
TBBPA-BAE	3.1E-07	10.0	-5.3	15.3	6.6	442
TBBPA-BHEE	1.6E-04	6.8	-11.1	17.9	4.0	7720
TBBPA-BGE	3.3E-05	7.4	-10.3	17.7	5.0	8428
TBBPA-MDBPE	6.9E-07	9.4	-9.9	19.3	6.3	928
TBBPA-MBAE	4.8E-06	9.0	-8.9	17.9	6.1	1388
TBBPA-MAE	3.5E-05	8.6	-8.2	16.8	5.9	2163
TBBPAMGE	3.5E-04	7.3	-10.9	18.2	5.1	9440
TBBPA-MHEE	3.8E-03	6.8	-12.6	19.4	4.5	7793
TBBPA-MHPE	1.2E-03	7.3	-12.5	19.7	5.0	5380
TBBPA-MDHPE	1.2E-03	6.6	-13.9	20.4	3.9	5405
TBBPA-MBHPE	2.1E-04	7.6	-13.4	21.0	5.1	3964
TriBBPA-MAE	6.5E-04	7.7	-7.8	15.5	5.4	5905
HTriBBPA-MAE	1.3E-03	7.2	-11.7	19.0	5.3	10150
DBBPA-MAE	1.2E-02	6.8	-7.4	14.2	4.9	14910
TBBPA	1.0E-03	7.2	-11.0	18.2	5.2	10580
TriBBPA	1.9E-02	6.3	-10.6	16.9	4.7	6797
DBBPA	0.3	5.4	-10.2	15.6	4.3	1758
MBBPA	5.7	4.5	-9.8	14.4	3.8	455
BPA	172.7	3.6	-9.1	12.8	3.1	72

Table S7. Calculated physical-chemical constants^{*a*} of TBBPA, TBBPA derivatives and potential transformation products.

^{*a*}Calculated by US EPA Suite V 4.1;

^{*b*}Water solubility, (mg/L);

^{*c*}octanol-water partition coefficient;

^{*d*}air-water partition coefficient;

^{*e*}octanol-air partition coefficient;

^fsoil absorption coefficient;

^{*g*}bioconcentration factor (L/kg, wet-wt).

References

(1) Gallart-Ayala, H.; Moyano, E.; Galceran, M. T., Liquid chromatography/multi-stage mass spectrometry of bisphenol A and its halogenated derivatives. *Rapid Commun. Mass Spectrom.* **2007**, *21*, (24), 4039-4048.

(2) Saint-Louis, R.; Pelletier, E., LC-ESI-MS-MS method for the analysis of tetrabromobisphenol A in sediment and sewage sludge. *Analyst* **2004**, *129*, (8), 724-730.

(3) Gao, Y.; Fu, J. J.; Zeng, L. X.; Li, A.; Li, H. J.; Zhu, N. L.; Liu, R. Z.; Liu, A. F.; Wang, Y. W.; Jiang, G. B., Occurrence and fate of perfluoroalkyl substances in marine sediments from the Chinese Bohai Sea, Yellow Sea, and East China Sea. *Environ. Pollut.* **2014**, *194*, 60-68.