Supporting Information

Triangular Triplatinum Complex with Four Bridging Si-ligands. Dynamic Behavior of the Molecule and Catalysis

Makoto Tanabe, Megumi Kamono, Kimiya Tanaka, and Kohtaro Osakada*

Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259-R1-3 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan E-mail: kosakada@res.titech.ac.jp

Table of contents

Table S1	Thermodynamic parameters of 1a-c and 2a-c	S2
Figure S1	ORTEP drawing of 1c	S 3
Table S2	Selected bond parameters of 1a-c	S 3
Table S3	Crystallographic data of 1c and 2a	S4
Figure S2	DFT calculations of 2a and $[{Pd(PMe_3)}_2(\mu - \eta^2 - HSiPh_2)_2]$	S5
Figure S3-S4	¹ H, ¹³ C{ ¹ H}, and ³¹ P{ ¹ H} NMR spectra of 1c	S6-S7
Table S4	NMR spectroscopic data of 1a-c	S7
Figures S5-S9	¹ H, ¹³ C{ ¹ H}, ²⁹ Si{ ¹ H}, and ³¹ P{ ¹ H} NMR spectra of $2a$	S8-S10
Figures S10-S14	VT ¹ H and ³¹ P{ ¹ H} NMR spectra of 1a-c and H_2SiAr_2	S11-S15
Figures S15-S19	Monitoring NMR spectra in the catalytic reactions	S16-S18
References		

Estimation of Equilibrium Constants between 1 and 2. Equilibrium constants of the following equation were determined by comparing of the ¹H NMR signals assigned to *ortho* hydrogens of **1a-c**, diarylsilanes, and **2a-c** at 293, 303, 313, and 323 K.

$$\{ Pt(PMe_3) \}_3(\mu - SiAr_2)_3 + H_2SiAr_2 \xrightarrow{K} \{ Pt(PMe_3) \}_3(H)_2(\mu - SiAr_2)_4 \}$$

$$1a: Ar = Ph,$$

$$1b: Ar = C_6H_4 - 4 - F,$$

$$1c: Ar = C_6H_4 - 4 - Me.$$

$$2a: Ar = Ph,$$

$$2b: Ar = C_6H_4 - 4 - F,$$

$$2c: Ar = C_6H_4 - 4 - Me.$$

$$2c: Ar = C_6H_4 - 4 - Me.$$

	Table 51.	1. Equilibrium constants and Thermodynamic Furtherers of Ta c and Za c					
	K ₂₉₃	K_{303}	<i>K</i> ₃₁₃	<i>K</i> ₃₂₃	ΔG°	ΔH°	ΔS
	[mol ⁻¹]	[mol ⁻¹]	$[mol^{-1}]$	$[mol^{-1}]$	[kJ mol ⁻¹]	[kJ mol ⁻¹]	[J mol ⁻¹ K ⁻¹]
1a	36.6	16.70	9.14	5.01	-7.96	-51.7	-146.9
1b	77.1	38.84	24.2	12.0	-9.95	-47.5	-126.1
1c	16.6	6.58	4.00	2.57	-5.85	-48.2	-142.1

Table S1. Equilibrium Constants and Thermodynamic Parameters of 1a-c and 2a-c

DFT Calculations. All calculations were performed with the Gaussian 09 program package (revision E.01).¹⁾ The structures of **2a** and $[{Pt(PMe_3)}_2(\mu-\eta^2-HSiPh_2)_2]$ were optimized by density functional theory (DFT) using the MPWB95 functional in conjunction with 6-31G(d,p) basis set (for H, C, P, and Si) and SDD basis set (for Pt). The density fitting procedure was used in conjunction with W06 auxiliary basis set that implemented in Gaussian 09. All optimized structures were verified to be local minima by hessian calculation. Cartesian coordinates of **2a** and $[{Pt(PMe_3)}_2(\mu-\eta^2-HSiPh_2)_2]$ are provided as a "xyz" file format.

Figure S1. ORTEP drawings of (a) 1c and (b) the side view (50% probability).

Table S2. Selected Bond Distances [Å] and Angles [deg] of Complexes $1a-c^a$				
	$1a^b$	$1\mathbf{b}^{c}$	1c	
	$(\mathrm{Ar}=\mathrm{C}_{6}\mathrm{H}_{5})$	$(Ar = C_6H_4-4-F)$	$(Ar = C_6H_4-4-Me)$	
Pt–Pt	2.697(1)-2.716(1)	2.7259(7)-2.7514(7)	2.7018(8)-2.7093(5)	
	(2.709(1))	(2.737(7))	(2.706(8))	
Pt–Si	2.337(5)-2.364(5)	2.342(3)-2.373(2)	2.338(2)-2.375(2)	
	(2.350(5))	(2.350(3))	(2.354(2))	
Pt–P	2.226(5)-2.247(4)	2.259(3)-2.265(2)	2.2246(2)-2.237(2)	
	(2.239(5))	(2.261(3))	(2.240(2))	
Pt-Pt-Pt	59.57(3)-60.17(3)	59.60(2)-60.52(2)	59.844(1)-60.122(2)	
	(60.0(3))	(60.00(2))	(60.00(2))	
Pt-Si-Pt	70.2(1)-70.5(1)	70.62(6)-71.92(8)	69.98(7)-70.31(7)	
	(70.4(1))	(71.22(8))	(70.17(7))	

a) the averaged values are displayed in parentheses. *b*) ref. 2. *c*) ref. 3.

	1c	2a		
Formula	$C_{102}H_{138}Si_6P_6Pt_6 \cdot C_4H_8O$	C _{66.5} H ₈₅ P ₃ Pt ₃ Si ₄ , 2.5(C ₄)		
formula wt	2961.12	1674.88		
Temperature	90	90		
cryst size/mm	0.034×0.047×0.076	0.026×0.046×0.048		
cryst syst	monoclinic	triclinic		
cryst color	yellow	red		
space group	P2/c (No. 13)	P1 (No. 2)		
a/Å	12.509(2)	12.607(2)		
b/Å	18.884(3)	12.700(2)		
$c/{ m \AA}$	24.163(4)	23.579(5)		
a∕deg	90	77.301(3)		
β/deg	90	84.488(3)		
γ/deg	90	62.944(2)		
$V/\text{\AA}^3$	5707(2)	3280(1)		
Ζ	2	2		
$D_{ m calcd}/ m g~cm^{-3}$	1.723	1.696		
<i>F</i> (000)	2864	1638		
μ/mm^{-1}	7.515	6.567		
	$-16 \le h \le 16$	$-10 \le h \le 14$		
index ranges	$-24 \le k \le 24$	$-14 \le k \le 14$		
	$-19 \le l \le 31$	$-23 \le l \le 27$		
no. of reflns meads	22755	15111		
no. of unique reflns	9930	10622		
R _{int}	0.0564	0.1379		
no. of obsed reflns $(I > 2\sigma(I))$	5668	5759		
Restraints	732	900		
Parameters	579	702		
$R, R_{\rm w} (I > 2\sigma(I))$	0.0439, 0.0675	0.0610, 0.1331,		
$R, R_{\rm w}$ (all data)	0.1026, 0.0780	0.1257, 0.1563		
GOF on F^2	0.789	0.840		

 Table S3.
 Crystallographic Data and Details of the Refinement of 1c and 2a

Figure S2. (a) Optimized structure and (b) its side view of **2a**. Selected bond distances of **2a** obtained from (c) X-ray results and (d) DFT calculations. Selected bond distances and Wiberg Bond Index around the bridging H ligand of (e) **2a** and (f) [{Pt(PMe_3)}_2(μ - η ²-HSiPh₂)₂] for comparison.

Figure S3. (a) ¹H NMR (400 MHz) and (b) ¹³C {¹H} NMR (126 MHz) spectra of 1c (C_6D_6 , 298 K).

Figure S4. ${}^{31}P{}^{1}H$ NMR spectra of 1c (202 MHz, C₆D₆, 298 K).

Table S4. The Coupling Constants [Hz] and Pt–Pt Bond Distances [Å] of Complexes 1a-c						
Ar	$J_{ m PtP}$	$^{2}J_{\mathrm{PtP}}$	${}^{3}J_{\mathrm{PP}}$	$J_{ m SiPt}$	$J_{ m PtPt}$	Pt–Pt
$\frac{1a^a}{(Ar = C_6H_5)}$	2959	418	86	945	2950	2.697(1)-2.716(1)
$\mathbf{1b}^{b}$ (Ar = C ₆ H ₄ -4-F)	2962	411	85	948	2500	2.7259(7)-2.7514(7)
1c (Ar = C ₆ H ₄ -4-Me)	2977	425	85	938		2.7018(8)-2.7093(5)

a) ref. 2. *b*) ref. 3.

Figure S5. ¹H NMR spectrum after dissolution of isolated **2a**, giving **1a** and H_2SiPh_2 in 1:1 ratio (400 MHz, C_6D_6 , r.t.).

Figure S6. ¹H NMR spectrum of the mixture contains containing **2a** and H_2SiPh_2 in 1:3 ratio (500 MHz, toluene- d_{8} , 265 K).

Figure S7. (a) ${}^{13}C{}^{1}H$ NMR spectra of the mixture contains containing **2a** and H₂SiPh₂ in 1:3 ratio (123 MHz, THF-*d*₈, 263 K), (b) in the aromatic region, and (c) in the PMe₃ region.

Figure S8. ²⁹Si{¹H} NMR spectrum of the mixture contains containing **2a** and H₂SiPh₂ in 1:3 ratio (99 MHz, THF- d_8 , 263 K). The signals with asterisks are identified as satellite signals coupled with ¹⁹⁵Pt nucleus.

Figure S9. ³¹P{¹H} NMR spectrum of the mixture contains containing **2a** and H₂SiPh₂ in 1:3 ratio (202 MHz, toluene- d_8 , 265 K).

Figure S10. (a) ¹H NMR and (b) ³¹P{¹H} NMR spectra of the mixture contains containing **2a** and H₂SiPh₂ in 1:3 ratio in toluene- d_8 at -30, -50, -70, and -90 °C.

Figure S11. (a) ¹H NMR and (b) ³¹P{¹H} NMR spectra of the mixture contains containing **2a** and H₂SiPh₂ in 1:10 ratio in toluene- d_8 at 0, -30, and -90 °C.

Figure S12. (a) ¹H NMR and (b) ³¹P{¹H} NMR spectra of the mixture contains containing **2a** and H₂SiPh₂ in 1:3 ratio in toluene-*d*₈ at 20, 30, 40, and 50 °C. **Si** = H₂SiPh₂, **I.S.** = internal standard.

Figure S13. (a) ¹H NMR and (b) ³¹P{¹H} NMR spectra of the mixture contains containing **2b** and H₂Si(C₆H₄-4-F) in 1:3 ratio in toluene-*d*₈ at 20, 30, 40, and 50 °C. *Si* = H₂Si(C₆H₄-4-F), **I.S.** = internal standard.

Figure S14. (a) ¹H NMR and (b) ³¹P{¹H} NMR spectra of the mixture contains containing **2c** and $H_2Si(C_6H_4-4-Me)$ in 1:3 ratio in toluene-*d*₈ at 20, 30, 40, and 50 °C. **Si** = $H_2Si(C_6H_4-4-Me)$, **I.S.** = internal standard.

Figure S15. Monitoring ¹H NMR spectra of the mixtures in hydrosilyation of 4-methylbenzaldehyde with H_2SiPh_2 catalyzed by **1a** (400 MHz, C_6D_6 , 298 K). *Si* = H_2SiPh_2 , **I.S.** = internal standard.

Figure S16. ${}^{31}P{}^{1}H$ NMR spectrum of the mixtures in hydrosilyation of 4-methylbenzaldehyde with H₂SiPh₂ catalyzed by **1a** after 1 h (400 MHz, C₆D₆, 298 K).

Figure S17. Monitoring ¹H NMR spectra of the mixtures in hydrosilyation of 4-methylbenzaldehyde with $H_2Si(C_6H_4-4-F)_2$ catalyzed by **1b** (400 MHz, C_6D_6 , 298 K). *Si* = $H_2Si(C_6H_4-4-F)$, *Ald* = 4-methylbenzaldehyde, **I.S.** = internal standard.

Figure S18. ¹H NMR spectrum of the mixtures in the hydrosilyation of 4-(trifluoromethyl)phenylaldehyde with H₂SiPh₂ catalyzed by **1a** (400 MHz, C₆D₆, 298 K). *Si* = H₂SiPh₂, **I.S.** = internal standard. *Ald* = 4-(trifluoromethyl)phenylaldehyde,

Figure S19. ¹H NMR spectrum of the mixtures in the hydrosilyation of methyl(phenyl)ketone with H_2SiPh_2 catalyzed by **1a** (400 MHz, C₆D₆, 298 K). **I.S.** = internal standard.

Figure S20. Monitoring ¹H NMR spectra of the mixtures in the dehydrocoupling of phenol and H₂SiPh₂ (400 MHz, C₆D₆, 298 K). *Si* = H₂SiPh₂, *P* = phenol, **I.S.** = internal standard.

References

- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
- 2) Osakada, K.; Tanabe, M.; Tanase, T. Angew. Chem. Int. Ed. 2000, 39, 4053-4055.
- 3) Tanaka, K.; Kamono, M.; Tanabe, M.; Osakada, K. Organometallics 2015, 34, 2985–2990.