SUPPORTING INFORMATION

Cancer cell lysate entrapment in CaCO₃ engineered with polymeric TLR-agonists – Immune-modulating microparticles in view of personalized anti-tumor vaccination

Lien Lybaert¹, Keun Ah Ryu², Lutz Nuhn¹, Riet De Rycke^{3,4}, Olivier De Wever⁵, Alfred Chon², Aaron Esser-Kahn^{2*}, Bruno G. De Geest^{1*}

- ¹ Department of Pharmaceutics, Ghent University, Ghent, Belgium
- ² Department of Chemistry, University of California, Irvine (CA), USA
- ³ VIB Inflammation Research Center, Ghent University, Ghent, Belgium and Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
- ⁴ Department of Plant Systems Biology, VIB, Ghent, Belgium and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- ⁵ Laboratory of Experimental Cancer Research, Ghent University, Ghent, Belgium
- * Coressponding authors: <u>aesserka@uci.edu</u>, <u>br.degeest@ugent.be</u>

Figure S1. Cell viability measured by MTT assay of DC2.4 cells pulsed with different concentrations of CaCO₃ microparticles, with and without polymer coating (N = 6, ** : p < 0.01, *** : p < 0.001).

Figure S2. Characterization of the substitution of poly(HPMA-APMA) with the TLR7 agonist CL264 yielding TLR7-poly(HPMA-APMA): (A) Reaction scheme. (B) Size exclusion chromatography in DMA. (C) ¹H NMR analysis in D₂O.

Figure S3. Coating deposition efficiency of poly(HPMA-APMA) on CaCO₃ particles substituted with the TLR7-agonist CL264 compared to unsubstituted poly(HPMA-APMA) determined by UV-VIS spectroscopy.

Figure S4. Endotoxin LAL assay result of the CaCO₃ particles and the separate components used for the synthesis.