Supporting Information for

Low-Temperature Torrefaction of *Phyllostachys heterocycla cv. pubescens*: Effect of Two Torrefaction Procedures on the Composition of Bio-Oil Obtained

Xiaoyan Lv, Zhicheng Jiang, Jindong Li, Yue Wang, Dongmei Tong, and Changwei Hu*

Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China

E-mail: changweihu@scu.edu.cn. Phone / fax: (+86) 028-85411105.

Number of pages: 6

Number of figures: 8

Number of tables: 2

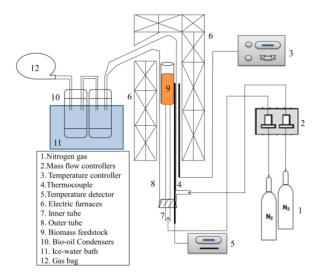


Figure S1. The schematic diagram of torrefaction process.

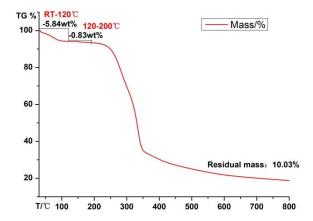
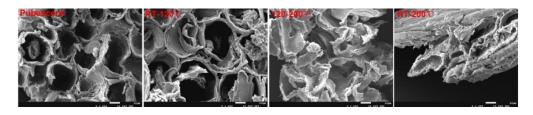



Figure S2. Thermogravimetric (TG) curve of *pubescens*.

Figure S3. SEM micrographs of raw material and solid residues. Reaction conditions: Two-step torrefaction and one-step torrefaction of *pubescens* at 200 °C for 2 h.

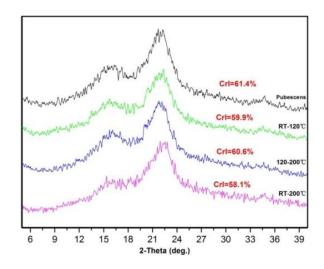
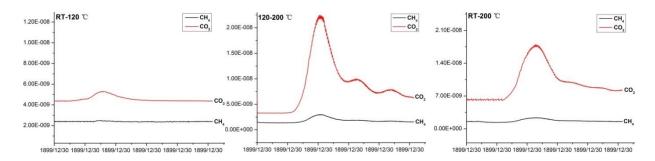



Figure S4. XRD of raw material and reaction residues.

Figure S5. The online mass spectrometry of the off-gas from torrefaction.

Table S1. Weight-average (Mw) and number-average (Mn) molecular weights and polydispersity (Mw/ Mn) of the oligomers

T/°C	RT-120°C	120-200°C		RT-200°C	
	a	a	b	a	b
Mw	428	646	271	662	267
Mn	367	528	265	535	261
Polydispersity	1.67	1.22	1.02	1.24	1.02

Table S2. Assignment of main lignin ¹³C-¹H correlation signals in HSQC spectra of liquid fraction according to literature

Labels	$\delta_{\rm C}/\delta_{\rm H}$ (ppm)	Assignment
OMe	56.0/3.74	C-H in methoyls
\mathbf{C}_{γ}	62.6/3.71	C_{γ} - H_{γ} in phenylcoumaran substructure (C)
\mathbf{C}_{γ}	67.02/4.12	γ -ethers
P_{OH}	71.66/3.18	Pyranose OH
C_{eta}	83.34/4.31	C_{β} - H_{β} in β -O-4
G_2	111.5/6.80	C ₂ -H ₂ in guaiacyl units (G)
$G_5, H_{3,5}$	115.3/6.68-6.99	C ₅ -H ₅ in guaiacyl units (G) or
		C _{3,5} -H _{3,5} in p-hydroxyphenyl units (H)
$S_{2,6}$	104.3/6.71	C _{2,6} -H _{2,6} in syringyl units (S)
S' _{2,6}	106.5/7.26	$C_{2,6}\text{-H}_{2,6}$ in $(C_{\alpha}\text{=}O)$ syringyl units (S)
4-O-5	109.5/6.61	4-O-5 unit
F_2	110.7/7.26	C ₂ -H ₂ in esterified ferulates or free ferulic acids
F_{β}	114.8/6.41	C_{β} - H_{β} in ferulates
$H_{2,6}$	128.2/7.19	C _{2,6} -H _{2,6} in p-hydroxyphenyl units (H)
H' _{2,6}	130.8/7.56	$C_{2,6}\text{-H}_{2,6}$ in oxidized ($C_\alpha = O$) p-hydroxyphenyl units (H)

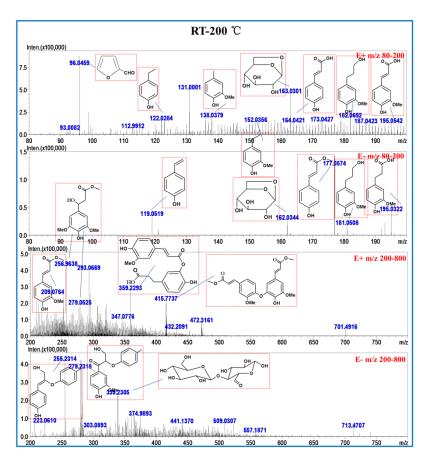
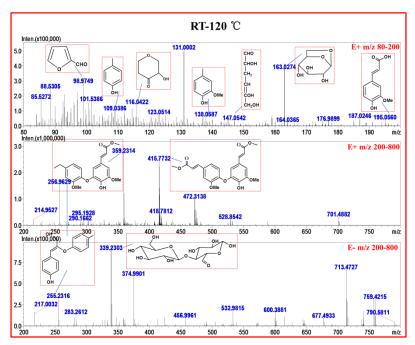
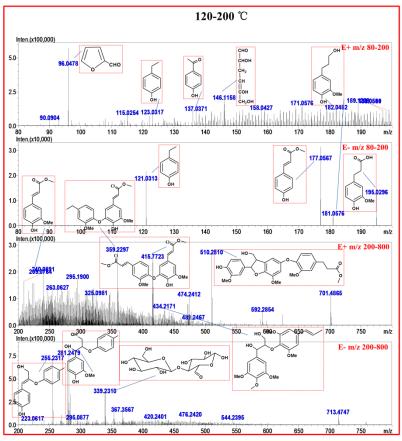




Figure S6. ESI-MS spectra of liquid products obtained from one-step torrefaction at RT-200 °C.

Figure S7. ESI-MS spectra of liquid products obtained from the first torrefaction step at RT-120 $^{\circ}$ C.

Figure S8. ESI-MS spectra of liquid products obtained from the second torrefaction step at 120-200 °C.