Sangbin Jeon^{†,‡} and Sunkyu Han*^{†,‡}

† Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST) Daejeon 34141, Republic of Korea

Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141, Republic of Korea

Supporting Information

1. General Procedures	S2
2. Materials and Instrumentations	S2
3. Comprehensive List of Dimeric and Oligomeric Securinega Alkaloid	<u>S4</u>
4. Experimental Procedures and Physical Data for Compounds	S7
4.1. Comparison of spectroscopic data of compound 25	<u>S8</u>
4.2. Synthesis of silyl enolether 30	S9
4.3. Synthesis of γ -hydroxylated enone 31	S10
<u>4.4. Synthesis of α',γ-dihydroxylated enone 24</u>	S11
4.5. Synthesis of dimer 23	S12
4.6. Synthesis of α' -hydroxylated enone S1	S14
4.7. Synthesis of phosphonate ester S2	S15
4.8. Synthesis of monomeric butenolide 22	S16
4.9. Synthesis of acetylated dimer 32	S17
4.10. Synthesis of phosphonate ester 33	S18
4.11. Synthesis of dimeric butenolide 21	<u>S19</u>
4.12. Synthesis of flueggenine C (6)	S20
5. Comparison of Spectroscopic Data of Natural and Synthetic Flueggenine C	S21
5.1. Tabulated ¹ H NMR data of natural and synthetic flueggenine C	S21
5.2. Tabulated ¹³ C NMR data of natural and synthetic flueggenine C	S22
6. References	<u>S23</u>
7. Copies of ¹ H NMR, ¹³ C NMR Spectra and HPLC Traces of New Compounds	S24

1. General Procedures

All reactions were performed in oven-dried or flame-dried round-bottomed flasks. Unless otherwise noted, the flasks were fitted with rubber septa and reactions were conducted under a positive pressure of argon. Stainless steel syringes or cannula were used to transfer air-and moisture-sensitive liquids. Flash column chromatography was performed as described by Still et al. using silica gel (60-Å pore size, 40–63 μ m, 4-6% H₂O content, Merck).¹ Analytical thin–layer chromatography (TLC) was performed using glass plates pre-coated with 0.25 mm silica gel impregnated with a fluorescent indicator (254 nm). Thin layer chromatography plates were visualized by exposure to ultraviolet light, an aqueous solution of ceric ammonium molybdate (CAM) and/or a potassium permanganate (KMnO₄).

2. Materials and Instrumentations

Unless otherwise stated, all commercial reagents and solvents were used without additional purification with the following exceptions: dichloromethane and tetrahydrofuran were purchased from Merck and Daejung Inc., respectively and were purified by the method of Grubbs et al. under positive argon pressure.²

Proton and carbon nuclear magnetic resonance spectra were recorded with Bruker Ascend 400 (400 MHz), Bruker Avance III HD Nano bay (400 MHz), Agilent Technologies DD2 (600 MHz), Bruker AVANCE III HD (800MHz), or Bruker AVANCE III HD (900MHz) with 1H-(13C/15N)Z-G cryogenic probe spectrometers. Proton nuclear magnetic resonance spectra are referenced from the residual protium in the NMR solvent (CDCl₃: δ 7.24 (CHCl₃)). Data are reported in the following manners: chemical shift in ppm [multiplicity (s = singlet, d = doublet, m = multiplet, app = apparent, br = broad), coupling constant(s) in Hertz, integration]. Carbon-13 nuclear magnetic resonance spectra are referenced from the carbon resonances of the solvent (CDCl₃: δ 77.23, CD₃OD: δ 49.15). Data are reported in the following manners: chemical shift in ppm. 800MHz and 900MHz NMR experiments were operated by E. H. Kim at Korea Basic Science Institute. High resolution mass spectra were obtained from KAIST Research Analysis Center (Daejeon) by using ESI method. Chiral HPLC analysis was performed on an Agilent Technologies 1100 Series system. Specific rotation [α]_D was obtained by JASCO P-1020 polarimeter.

3. Comprehensive List of Dimeric and Oligomeric Securinega Alkaloids

Figure S1. Structure of known dimeric securinega alkaloids.³

flueggenine G

flueggine B

nн

ó

flueggether A

flueggenine C

H,

ò

fluevirinine A

flueggedine

norsecurinamine B

suffruticosine

Figure S2. Structure of known trimeric securinega alkaloids.^{3,4}

fluevirosine A

fluevirosine G

C

H

fluevirosine D

fluevirosine H

fluevirosine E

flueggether D

fluevirosine F

Figure S3. Structure of known tetrameric and pentameric securinega alkaloids.^{3,4}

fluevirosinine H

fluevirosinine I

fluevirosinine J

4. Experimental Procedures and Physical Data for Newly Synthesized Compounds

Scheme S1. An overview of the synthetic pathways

Table S1. Comparison of ¹H NMR spectroscopic data of compound 25

Jeon, S.; Han, S. ⁵ δ_1 (ppm ; multi, <i>J</i> in Hz)	Jiang, S. et al. ⁶ δ_2 (ppm ; multi, J in Hz)	deviation $\Delta \delta = \delta_1 - \delta_2$ (ppm)
6.99 – 6.93 (m, 1H)	7.02 – 6.99 (m, 1H)	-0.04
6.01 (d, 9.9, 1, 1H)	6.06 (d, 9.6, 1H)	-0.05
4.21 (s, 1H)	4.26 (s, 1H)	-0.06
3.96 (s, 1H)	4.00 (s, 1H)	-0.04
3.54 (brs, 1H)	3.60 (brs, 1H)	-0.06
3.36 – 3.24 (m, 2H)	3.37 – 3.32 (m, 2H)	-0.04
2.39 – 2.25 (m, 2H)	2.45 – 2.34 (m, 2H)	-0.07
1.97 – 1.88 (m, 1H)	1.98 – 1.96 (m, 1H)	-0.04
1.81 – 1.74 (m, 1H)	1.87 – 1.83 (m, 1H)	-0.07
1.67 (brs, 1H)	1.70 (brs, 1H)	-0.03
1.41 (s, 9H)	1.46 (s, 9H)	-0.05

Table S2. Comparison of ¹³C NMR spectroscopic data of compound 25

Jeon, S.; Han, S. ⁷ δ_1 (ppm)	Jiang, S. et al. ⁶ δ_2 (ppm)	deviation $\Delta \delta = \delta_1 - \delta_2$ (ppm)
202.8	201.3	1.5
157.7	156.2	1.5
153.8	152.1	1.7
128.2	126.7	1.5
80.8	79.4	1.4
80.5	78.9	1.6
60.2	58.9	1.3
49.2	47.7	1.5
34.2	32.5	1.7
28.9 (3)	27.3	1.6
26.7	25.3	1.4
26.5	24.9	1.6
25.6	24.0	1.6

<u>*Tert*-butyl</u> (R)-2-((R)-1,2-bis((trimethylsilyl)oxy)cyclohexa-2,4-dien-1-yl)pyrroledine-1carboxylate 30:

To a stirred solution of 25^6 (336 mg, 1.19 mmol, 1 equiv) and *N*,*N*-diisopropylethyl amine (1.072 mL, 5.97 mmol, 5.00 equiv) in CH₂Cl₂ (11 mL) at -78 °C was added trimethylsilyl trifluoromethanesulonate (552 µL, 2.98 mmol, 2.50 equiv) dropwise under argon. After 1 h, saturated aqueous sodium bicarbonate solution (20 mL) was added to the reaction mixture, and the layers were separated. The aqueous layer was extracted with dichloromethane (3 × 20 mL), and the combined organic layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography (silica gel: diam. 5cm, ht. 10 cm; eluent: ethyl acetate : hexanes = 1 : 20) to afford **30** (325 mg, 64%) as a colorless oil.

¹**H** NMR (400.1 MHz, CDCl₃): δ 5.69 (s, 1H), 5.53 (app d, 1H), 4.98 (app d, 1H), 4.10 (d, J = 40.7 Hz, 1H), 3.57 (app d, 1H), 3.24–3.12 (m, 1H), 2.51 (dd, J = 17.0, 5.4 Hz, 1H), 2.31 (d, J = 17.2 Hz, 1H), 2.16 (t, J = 9.1 Hz, 1H), 2.04-1.89 (m, 1H), 1.72–1.53 (m, 2H), 1.43 (s, 9H), 0.23 (s, 9H), 0.05 (s, 9H) (Mixture of rotamers).

¹³C NMR (100.6 MHz, CDCl₃): δ 155.9, 154.8, 122.7, 121.0, 101.7, 101.2, 79.5, 78.8, 61.2, 60.8, 47.4, 46.9, 36.8, 28.7 (3), 27.0, 26.6, 24.7, 23.7, 2.2 (3), 0.2 (3) (Mixture of rotamers).

HRMS (ESI): Calculated for C₂₁H₃₉NO₄Si₂ [M+Na]⁺: 448.2310, found: 448.2317.

 $[\alpha]^{20}$ _D: 105.5° (*c* = 1.0 in CH₂Cl₂).

TLC (ethyl acetate : hexanes = 1 : 20) Rf: 0.35 (CAM, KMnO₄, UV).

<u>*Tert*-butyl (R)-2-((1R,5R)-5-hydroxy-2-oxo-1-((trimethylsilyl)oxy)cyclohex-3-en-1-yl)pyr</u> rolidine-1-carboxylate 31:

To a stirred solution of **30** (404 mg, 0.950 mmol, 1 equiv) in CH_2Cl_2 (5 mL) at -78 °C was added freshly prepared 57.5 mM dimethyldioxirane solution⁸ (15.6 mL, 0.90 mmol, 0.95 equiv) in acetone under argon. After 30 min, the reaction mixture was concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography (silica gel: diam. 2.5cm, ht. 10 cm; eluent: ethyl acetate : hexanes = 1 : 2) to afford **31** (280 mg, 80%) as a colorless oil.

¹**H NMR** (400.1 MHz, CDCl₃): δ 6.84 (dt, J = 10.3, 2.0 Hz, 1H), 5.94 (dd, J = 10.4, 2.4 Hz, 1H), 5.42 (s, 1H), 4.02 (d, J = 7.7 Hz, 1H), 3.55 (d, J = 8.5 Hz, 1H), 3.31 (d, J = 6.1 Hz, 1H), 3.23 (ddd, J = 10.7, 8.9, 5.4 Hz, 1H), 2.71 – 2.53 (m, 1H), 2.07 – 1.78 (m, 3H), 1.74 – 1.48 (m, 2H), 1.44 (s, 9H), 0.07 (s, 9H).

¹³C NMR (100.6 MHz, CDCl₃): δ 202.3, 156.3, 153.2, 127.7, 84.0, 79.8, 66.2, 60.1, 48.2, 45.0, 28.6 (3), 25.5, 24.6, 2.3 (3).

HRMS (ESI): Calculated for C₁₈H₃₁NO₅Si [M+Na]⁺: 392.1864, found: 392.1849.

 $[\alpha]^{20}$ _D: 47.8° (*c* = 1.0 in CH₂Cl₂).

TLC (ethyl acetate : hexanes = 1 : 3) Rf: 0.24 (CAM, KMnO₄, UV).

Tert-butyl (R)-2-((1R,5S)-1,5-dihydroxy-2-oxocyclohex-3-en-1-yl)pyrrolidine-1-carboxyl ate 24:

To a stirred solution of **31** (160 mg, 0.43 mmol, 1 equiv) in CH₂Cl₂ (5 mL) at 23 °C was added triethylamine trihydrofluoride (705 μ L, 4.32 mmol, 10.0 equiv) under argon. After 7 h, saturated aqueous sodium bicarbonate solution (10 mL) was added to the reaction mixture, and the layers were separated. The aqueous layer was extracted with dichloromethane (3 × 10 mL), and the combined organic layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography (silica gel: diam. 2.5cm, ht. 10 cm; eluent: ethyl acetate : hexanes = 1 : 1) to afford **24** (121 mg, 95%) as a colorless oil.

 α',γ -dihydroxylated enone **24** was found to be higher than 99% ee by chiral HPLC analysis [CHIRALPAK IC 1 mL/min; 80% hexanes and 20% ethanol over 20 min; $t_{\rm R}$ = 8.3 min].

¹**H** NMR (400.1 MHz, CDCl₃): δ 6.91 (d, J = 10.2 Hz, 1H), 6.01 (d, J = 9.9 Hz, 1H), 5.17 (s, 1H), 4.38 (s, 1H), 4.00 (s, 1H), 3.54 (s, 1H), 3.44 – 3.26 (m, 2H), 2.60 (d, J = 8.5 Hz, 1H), 1.96–1.84 (m, 1H), 1.79 (dd, J = 12.9, 9.0 Hz, 1H), 1.74 – 1.58 (m, 3H), 1.40 (s, 9H).

¹³C NMR (100.6 MHz, CDCl₃): δ 200.9, 156.8, 153.7, 126.6, 80.3, 79.9, 65.6, 60.5, 48.2, 43.2, 28.6 (3), 26.2, 24.8.

HRMS (ESI): Calculated for C₁₅H₂₃NO₅ [M+Na]⁺: 320.1468, found: 320.1445.

 $[\alpha]^{20}$ **D**: 47.4° (*c* = 0.3 in CH₂Cl₂).

TLC (ethyl acetate : hexanes = 1 : 1) Rf: 0.28 (CAM, KMnO₄, UV).

<u>Di-tert-butyl</u> 2,2'-((1'R,2'R,3R,4'R,5R)-2',3,4',5-tetrahydroxy-2,5'-dioxo-[1,1'-bi(cyclohe xan)]-6-ene-3,4'-diyl)(2R,2'R)-bis(pyrrolidine-1-carboxylate) 23:

To a solution of **24** (33 mg, 0.11 mmol, 1 equiv) in THF (1 mL) at 23 °C was added 2.0 M aqueous potassium hydroxide solution (55 μ L, 0.11 mmol, 1.00 equiv) under argon. After 12 h, the reaction mixture was concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography (silica gel: diam. 2.5 cm, ht. 10 cm; eluent: ethyl acetate : hexanes = 2 : 1) to afford **23** (3 mg, 9%) as a colorless oil.

<u>Di-tert-butyl</u> 2,2'-((1'R,2'R,3R,4'R,5R)-2',3,4',5-tetrahydroxy-2,5'-dioxo-[1,1'-bi(cyclohe xan)]-6-ene-3,4'-diyl)(2R,2'R)-bis(pyrrolidine-1-carboxylate) 23:

To a solution of **24** (38 mg, 0.13 mmol, 1 equiv) in THF (1 mL) at 23 °C was added tetra-*n*-butylammonium hydroxide 40 wt% solution in H₂O (83 μ L, 0.13 mmol, 1.00 equiv) under argon. After 1 h, the reaction mixture was concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography (silica gel: diam. 2.5 cm, ht. 10 cm; eluent: ethyl acetate : hexanes = 2 : 1) to afford **23** (1 mg, 3%) as a colorless oil.

<u>Di-tert-butyl</u> 2,2'-((1'R,2'R,3R,4'R,5R)-2',3,4',5-tetrahydroxy-2,5'-dioxo-[1,1'-bi(cyclohe xan)]-6-ene-3,4'-diyl)(2R,2'R)-bis(pyrrolidine-1-carboxylate) 23:

To a solution of **24** (25 mg, 0.08 mmol, 1 equiv) in THF (1 mL) at 23 °C was added tetra-*n*-butylammonium fluoride 1.0 M solution in THF (84 μ L, 0.08 mmol, 1.00 equiv) under

Page S13 / S52

argon. After 3 h, the reaction mixture was concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography (silica gel: diam. 2.5 cm, ht. 10 cm; eluent: ethyl acetate : hexanes = 2 : 1) to afford **23** (15 mg, 60%) as a colorless oil.

¹**H NMR** (400.1 MHz, CDCl₃ with 1% CD₃OD): δ 6.76 (s, 1H), 4.96 (s, 1H), 4.10 (s, 1H), 3.90 (dd, J = 7.1, 3.9 Hz, 2H), 3.69 (t, J = 9.3 Hz, 1H), 3.60 – 3.36 (m, 3H), 3.30 (ddd, J = 11.1, 8.0, 4.6 Hz, 1H), 3.01 (d, J = 14.4 Hz, 1H), 2.73 (d, J = 13.2 Hz, 1H), 2.23 (d, J = 14.3 Hz, 1H), 2.04 – 1.84 (m, 5H), 1.80 – 1.59 (m, 6H), 1.42 (s, 9H), 1.41 (s, 9H).

¹³**C NMR** (100.6 MHz, CDCl₃): δ 209.0, 201.3, 158.0, 156.5, 150.3, 135.6, 81.3, 81.2, 80.1, 79.6, 68.4, 64.7, 63.2, 61.2, 48.4, 48.3, 43.5, 42.7, 41.5, 37.3, 28.7, 28.6 (3), 28.6 (3), 26.1, 24.9, 24.6.

HRMS (ESI): Calculated for C₃₀H₄₆N₂O₁₀ [M+Na]⁺: 617.3045, found: 617.3060.

TLC (ethyl acetate : hexanes = 3 : 1) Rf: 0.20 (CAM, KMnO₄, UV).

 $[\alpha]^{20}$ **D**: -0.5° (*c* = 1.0 in CH₂Cl₂).

<u>*Tert*-butyl</u> (R)-2-((1R,5R)-5-acetoxy-1-hydroxy-2-oxocyclohex-3-en-1-yl)pyrrolidine-1carboxylate S1:

To a stirred solution of **31** (352 mg, 1.18 mmol, 1 equiv) in CH₂Cl₂ (10 mL) at 23 °C was added triethylamine (985 μ L, 7.10 mmol, 6.00 equiv), acetic anhydride (336 μ L, 3.55 mmol, 3.00 equiv), and 4-dimethylaminopyridine (144 mg, 1.18 mmol, 1.00 equiv). After 1 h, saturated aqueous ammonium chloride solution (10 mL) was added and the layers were separated. The aqueous layer was extracted with dichloromethane (3 × 10 mL), and the combined organic layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting crude residue was purified by column chromatography (silica gel: diam. 4 cm, ht. 8 cm; eluent: ethyl acetate : hexanes = 3 : 7) to afford **S1** (314 mg, 78%) as a colorless oil.

¹**H** NMR (400.1 MHz, CDCl₃): δ 6.79 – 6.68 (m, 1H), 6.16 (dd, J = 10.4, 2.3 Hz, 1H), 6.11 – 5.57 (m, 1H), 4.25 – 3.75 (m, 2H), 3.65 – 3.25 (m, 2H), 2.85 – 2.68 (m, 1H), 2.04 (s, 3H), 2.02 (d, J = 2.3 Hz, 1H), 1.93 – 1.71 (m, 4H), 1.43 – 1.37 (m, 9H) (Mixture of rotamers).

¹³C NMR (100.6 MHz, CDCl₃): δ 201.0, 193.3, 170.2, 169.1, 156.1, 148.2, 129.1, 80.1, 78.7, 68.1, 61.8, 48.2, 39.0, 28.5, 26.0, 24.7, 21.7, 21.2 (Mixture of rotamers).

HRMS (ESI): Calculated for C₁₇H₂₅NO₆ [M+Na]⁺: 362.1574, found: 344.1595.

 $[\alpha]^{20}$ _D: 40.1° (*c* = 1.0 in CH₂Cl₂).

TLC (ethyl acetate : hexanes = 1 : 3) Rf: 0.23 (CAM, KMnO₄, UV).

<u>*Tert*-butyl</u> (R)-2-((1R,5R)-5-acetoxy-1-(2-(diethoxyphosphoryl)acetoxy)-2-oxocyclohex-<u>3-en-1-yl)pyrrolidine-1-carboxylate S2:</u>

To a stirred solution of **S1** (314 mg, 0.93 mmol, 1 equiv) in THF (6 mL) at 90 °C was added a solution of *N*,*N'*-dicyclohexylcarbodiimide (1.91 g, 9.26 mmol, 10.0 equiv) in THF (4 mL) under argon. After 5 min, a solution of diethylphosphonoacetic acid (744 μ L, 4.63 mmol, 5.00 equiv) in THF (4 mL) was added slowly via syringe pump over 1 h. After 30 min, the reaction mixture was filtered and concentrated under reduced pressure. The resulting crude residue was purified by column chromatography (silica gel: diam. 4 cm, ht. 8 cm; eluent: ethyl acetate : hexanes = 1 : 1 \rightarrow 2 : 1) to afford **S2** (277 mg, 58%) as a colorless oil.

¹**H NMR** (400.1 MHz, CDCl₃): δ 6.80 (dt, J = 10.4, 1.9 Hz, 1H), 6.27 (s, 1H), 6.13 (dd, J = 10.4, 2.2 Hz, 1H), 4.33 – 4.25 (m, 1H), 4.23 – 4.15 (m, 4H), 3.80 – 3.60 (m, 1H), 3.40 (ddd, J = 11.0, 8.3, 5.1 Hz, 1H), 3.07 – 2.80 (m, 3H), 2.64 (dd, J = 12.5, 6.4 Hz, 1H), 2.29 – 2.18 (m, 1H), 2.15 – 2.05 (m, 4H), 1.90 – 1.75 (m, 2H), 1.46 (s, 9H), 1.36 (td, J = 7.1, 2.8 Hz, 6H) (Mixture of rotamers).

¹³C NMR (150.7 MHz, CDCl₃): δ 192.6, 170.0, 163.9, 156.1, 147.8, 129.5, 85.9, 80.5, 68.5, 62.9 (2), 60.1, 48.3, 35.6, 34.7, 34.2, 28.5 (3), 25.3, 24.8, 21.1 (2), 16.5 (Mixture of rotamers).

HRMS (ESI): Calculated for C₂₃H₃₆NO₁₀P [M+Na]⁺: 540.1969, found: 540.2020.

 $[\alpha]^{20}$ **D**: 26.7° (*c* = 1.0 in CH₂Cl₂).

TLC (ethyl acetate : hexanes = 5 : 1) Rf: 0.35 (CAM, KMnO₄, UV).

<u>*Tert*-butyl</u> (R)-2-((6R,7aS)-6-hydroxy-2-oxo-6,7-dihydrobenzofuran-7a(2H)-yl)pyrrolidi ne-1-carboxylate 22:

To a stirred solution of **S2** (277 mg, 0.53 mmol, 1 equiv) in THF (10 mL) at 0 °C was added sodium hydride (60% dispersion in mineral oil, 65 mg, 1.60 mmol, 3.00 equiv) under argon and the reaction mixture was slowly warmed to 23 °C. After 30 min, MeOH (10 mL) was added to the reaction mixture. After 30 min, brine (20 mL) and ethyl acetate (20 mL) was added to the reaction mixture and the layers were separated. The aqueous layer was extracted with ethyl acetate (3×20 mL). The combined organic layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography (silica gel: diam. 4 cm, ht. 10 cm; eluent: ethyl acetate : hexanes = 1 : 1) to afford **22** (124 mg, 72%) as a white crystalline solid.

¹**H NMR** (400.1 MHz, CDCl₃): δ 6.50 (dd, *J* = 10.1, 2.3 Hz, 1H), 6.25 (ddd, *J* = 10.2, 2.5, 1.2 Hz, 1H), 5.82 (s, 1H), 5.30 (s, 1H), 4.16 – 4.02 (m, 1H), 3.56 (dd, *J* = 8.9, 8.3 Hz, 1H), 3.37 (ddd, *J* = 11.0, 8.8, 5.0 Hz, 1H), 3.03 – 2.76 (m, 2H), 2.01 – 1.52 (m, 5H), 1.44 (s, 9H).

¹³C NMR (100.6 MHz, CDCl₃): δ 172.6, 165.7, 156.5, 143.1, 120.0, 112.7, 90.4, 80.3, 66.3, 59.4, 47.5, 41.8, 28.6 (3), 25.3, 24.8.

HRMS (ESI): Calculated for C₁₇H₂₃NO₅ [M+Na]⁺: 344.1468, found: 344.1477.

 $[\alpha]^{20}$ _D: 41.4° (*c* = 1.0 in CH₂Cl₂).

TLC (ethyl acetate : hexanes = 5 : 1) Rf: 0.6 (CAM, KMnO₄, UV).

<u>Di-tert-butyl</u> 2,2'-((1'R,2'R,3R,4'R,5R)-2',5-diacetoxy-3,4'-dihydroxy-2,5'-dioxo-[1,1'-bi (cyclohexan)]-6-ene-3,4'-diyl)(2R,2'R)-bis(pyrrolidine-1-carboxylate) 32:

To a stirred solution of **31** (279 mg, 0.75 mmol, 1 equiv) in CH₂Cl₂ (7.5 mL) at 23 °C was added 1 M tetra-*n*-butylammonium fluoride solution in THF (755 μ L, 0.75 mmol, 1.00 equiv) under argon. After 3 h, triethylamine (627 μ L, 4.53 mmol, 6.00 equiv), acetic anhydride (214 μ L, 2.26 mmol, 3.00 equiv), and 4-dimethylaminopyridine (92 mg, 0.75 mmol, 1.00 equiv) was added to the reaction mixture. After 1 h, saturated aqueous sodium bicarbonate solution (10 mL) was added to the reaction mixture, and the layers were separated. The aqueous layer was extracted with dichloromethane (3 × 20 mL), and the combined organic layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography (silica gel: diam. 2.5cm, ht. 11 cm; eluent: ethyl acetate : hexanes = 1 : 1) to afford **32** (190 mg, 74%) as a colorless oil.

Acetylated dimer **32** was found to be higher than 99% ee by chiral HPLC analysis [CHIRALPAK IC 1 mL/min; 80% hexanes and 20% ethanol over 15 min; $t_R = 10.2$ min].

¹**H NMR** (400.1 MHz, CDCl₃): δ 6.45 (s, 1H), 6.00 (s, 1H), 5.52 (s, 1H), 5.42(s, 1H), 4.08 (s, 1H), 3.88 (d, *J* = 5.4 Hz, 1H), 3.79 (s, 1H), 3.65 (s, 1H), 3.46 (s, 1H), 3.41 – 3.28 (m, 3H), 3.28 – 3.16 (m, 1H), 2.70 (dd, *J* = 12.9, 5.0 Hz, 1H), 2.28 –2.11 (m, 3H), 2.04 (s, 3H), 2.01 (s, 3H), 1.98 – 1.54 (m, 9H), 1.42 (s, 9H), 1.40 (s, 9H).

¹³C NMR (150.7 MHz, CDCl₃): δ 209.4, 200.4, 170.1, 169.9, 157.4, 156.3, 144.4, 137.8, 80.6, 80.3, 79.8, 78.5, 69.4, 67.4, 62.5 (2), 48.5, 48.3, 48.2, 40.7, 39.4, 38.3, 37.3, 28.7 (3), 28.6 (3), 28.1, 26.2, 24.8, 21.2 (2).

HRMS (ESI): Calculated for C₃₄H₅₀N₂O₁₂ [M+Na]⁺: 701.3256, found: 701.3255.

 $[\alpha]^{20}$ _D: 4.5° (*c* = 0.5 in CH₂Cl₂).

TLC (ethyl acetate : hexanes = 1 : 1) Rf: 0.25 (CAM, KMnO₄, UV).

Di-*tert*-butyl 2,2'-((1'R,2'R,3R,4'R,5R)-2',5-diacetoxy-3,4'-bis(2-(diethoxyphosphoryl)ac etoxy)-2,5'-dioxo-[1,1'-bi(cyclohexan)]-6-ene-3,4'-diyl)(2R,2'R)-bis(pyrrolidine-1-carbox ylate) 33:

To a stirred solution of **32** (80 mg, 0.12 mmol, 1 equiv) in THF (2 mL) at 90 °C was added a solution of *N*,*N*'-dicyclohexylcarbodiimide (486 mg, 2.4 mmol, 20.0 equiv) in THF (2 mL) under argon. After 5 min, a solution of diethylphosphonoacetic acid (190 μ L, 1.2 mmol, 10.0 equiv) in THF (1 mL) was added slowly via syringe pump over 2 h. After 1 h, the reaction mixture was filtered and concentrated under reduced pressure. The resulting crude residue was purified by column chromatography (silica gel: diam. 2.5 cm, ht. 10 cm; eluent: ethyl acetate : hexanes = 5 : 1 \rightarrow 40 : 1) to afford **33** (62 mg, 51%) as a colorless oil.

¹**H** NMR (400.1 MHz, CDCl₃): δ 6.74 (s, 1H), 6.27 (s, 1H), 5.57 (s, 1H), 4.49 (s, 1H), 4.21 – 4.10 (m, 9H), 3.82 – 3.54 (m, 3H), 3.39 – 3.27 (m, 2H), 3.00 – 2.76 (m, 5H), 2.72 – 2.62 (m, 2H), 2.58 – 2.46 (m, 2H), 2.16 – 1.89 (m, 10H), 1.86 – 1.57 (m, 5H), 1.43 (s, 9H), 1.41 (s, 9H), 1.32 (td, *J* = 7.1, 3.1 Hz, 12H) (Mixture of rotamers).

¹³C NMR (201.2 MHz, CDCl₃): δ 203.2, 191.9, 170.4, 170.0, 163.8, 163.6, 156.4, 156.2, 145.4, 137.6, 88.2, 86.1, 80.5, 80.3, 68.8, 67.5, 63.0 (2), 62.9 (3), 60.8, 60.3, 48.2, 48.1, 40.2, 36.1, 35.6, 35.5, 34.9, 34.8, 34.0, 33.7, 28.5 (6), 25.8, 25.5, 24.9 (2), 21.2 (2), 16.6 (4) (Mixture of rotamers).

HRMS (ESI): Calculated for C₄₆H₇₂N₂O₂₀P₂ [M+Na]⁺: 1057.4046, found: 1057.4046.

 $[\alpha]^{20}$ **D**: 37.4° (*c* = 0.3 in CH₂Cl₂).

TLC (ethyl acetate = 1) Rf: 0.1 (CAM, KMnO₄, UV).

<u>Di-tert-butyl</u> 2,2'-((5'R,6R,6'R,7aS,7'aS)-6,6'-dihydroxy-2,2'-dioxo-4',5',6,6',7,7'-hexahy dro [4,5'-bibenzofuran]-7a,7'a(2H,2'H)-diyl)(2R,2'R)-bis(pyrrolidine-1-carboxylate) 21:

To a stirred solution of **33** (62 mg, 0.06 mmol, 1 equiv) in THF (3 mL) at 0 °C was added sodium hydride (60% dispersion in mineral oil, 24 mg, 0.60 mmol, 10.0 equiv) under argon and the reaction mixture was slowly warmed to 23 °C. After 1 h, MeOH (3 mL) was added to the reaction mixture. After 30 min, brine (10 mL) and ethyl acetate (10 mL) were added to the reaction mixture and the layers were separated. The aqueous layer was extracted with ethyl acetate (3×10 mL), and the combined organic layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting crude residue was purified by flash column chromatography (silica gel: diam. 2.5 cm, ht. 10 cm; eluent: ethyl acetate : hexanes = 3 : 1) to afford **21** (20 mg, 52%) as a colorless oil.

¹**H NMR** (400.1 MHz, CDCl₃): 6.25 (s, 1H), 6.00 (s, 1H), 5.78 (s, 1H), 5.21 (s, 1H), 4.75 (s, 1H), 4.34 (d, *J* = 8.2 Hz, 1H), 4.01 (d, *J* = 8.2 Hz, 1H), 3.62 – 3.51 (m, 2H), 3.44 – 3.35 (m, 2H), 3.31 (s, 1H), 2.95 – 2.85 (m, 1H), 2.77 (d, *J* = 15.1 Hz, 1H), 2.64 – 2.51 (m, 2H), 2.01 – 1.55 (m, 10H), 1.48 (s, 9H), 1.45 (s, 9H), 1.39 – 1.30 (m, 2H).

¹³C NMR (226.4 MHz, CDCl₃): δ 172.3, 171.9, 169.5, 168.4, 156.8, 156.4, 140.0, 130.5, 117.0, 112.8, 90.9, 90.8, 80.7, 80.4, 67.7, 66.1, 59.2, 58.8, 47.6, 47.4, 41.4, 41.0, 39.7, 28.9, 28.6 (6), 25.5, 25.0 (2), 24.8.

HRMS (ESI): Calculated for C₃₄H₄₆N₂O₁₀ [M+Na]⁺: 665.3045, found: 665.3088.

 $[\alpha]^{20}$ _D: 140.5° (*c* = 0.1 in CH₂Cl₂).

TLC (ethyl acetate : hexanes = 6 : 1) Rf: 0.33 (CAM, KMnO₄, UV).

Flueggenine C (6):

To a stirred solution of **21** (10.9 mg, 0.017 mmol, 1 equiv) in CH₂Cl₂ (1 mL) at 0 °C was added triethylamine (19.1 μ L, 0.137 mmol, 8.00 equiv), and methanesulfonyl chloride (5.3 μ L, 0.068 mmol, 4.00 equiv). After 30 min, trifluoroacetic acid (1 mL) was added to the reaction mixture at 23 °C. After 30 min, the reaction mixture was concentrated under reduced pressure. The resulting crude was dissolved in THF (1 mL) and saturated aqueous potassium carbonate solution (1 mL) was added. The mixture was stirred at 23 °C. After 30 min, brine (10 mL) and ethyl acetate (10 mL) were added and the layers were separated. The aqueous layer was extracted with ethyl acetate (3 × 10 mL), and the combined organic layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting crude material concentrated under reduced pressure. The resulting crude was discover anhydrous sodium sulfate and concentrated under reduced pressure. The resulting crude residue was purified by column chromatography (silica gel: diam. 1.5 cm, ht. 4 cm; eluent: methanol : dichloromethane = 1 : 15) to afford **6** (4.3 mg, 62%) as a white amorphous powder.

¹**H** NMR (800.2 MHz, CDCl₃)⁹: δ 6.44 (d, *J* = 6.6 Hz, 1H), 5.76 (s, 1H), 5.69 (d, *J* = 2.3 Hz, 1H), 3.65 – 3.62 (m, 1H), 3.40 (td, *J* = 6.6, 3.2 Hz, 1H), 3.28 (dt, *J* = 8.6, 3.7 Hz, 1H), 3.21 – 3.18 (m, 2H), 3.16 (t, *J* = 8.0 Hz, 1H), 3.08 (dt, *J* = 5.6, 2.4 Hz, 1H), 3.05 (dd, *J* = 8.5, 2.5 Hz, 1H), 3.02 (d, *J* = 16.8 Hz, 1H), 2.62 (td, *J* = 9.8, 5.5 Hz, 1H), 2.56 – 2.51 (m, 2H), 2.28 (dd, *J* = 11.5, 5.7 Hz, 1H), 2.03 – 1.96 (m, 3H), 1.96 – 1.90 (m, 1H), 1.83 – 1.72 (m, 4H), 1.58 (d, *J* = 10.6 Hz, 1H), 1.49 (d, *J* = 11.5 Hz, 1H).

¹³**C NMR** (201.1 MHz, CDCl₃): δ 173.6, 172.7, 172.3, 169.2, 140.2, 134.5, 131.1, 110.0, 107.4, 92.3, 92.2, 66.5, 65.4, 64.3, 59.6, 57.9, 55.5, 43.0, 35.7, 30.1, 29.9, 29.6, 29.1, 27.8, 27.0, 26.9.

HRMS (ESI): Calculated for C₂₄H₂₆N₂O₄ [M+Na]⁺: 429.1785, found: 429.1766.

 $[\alpha]^{20}$ **D**: -83° (*c* = 0.13 in MeOH).

TLC (mehthanol : dichloromethane = 1 : 3) Rf: 0.2 (CAM, KMnO₄, UV).

5. Comparison of Spectroscopic Data of Natural and Synthetic Flueggenine C

fluggenine C (6)

Table S3. Comparison of ¹H NMR spectroscopic data of natural and synthetic flueggenine C (6)

position	natural 6^{3d} δ_1 (ppm ; multi, <i>J</i> in Hz)	synthetic 6^9 δ_2 (ppm ; multi, <i>J</i> in Hz)	deviation $\Delta \delta = \delta_1 - \delta_2$ (ppm)
2	3.15 (dd, 8.7, 7.5)	3.16 (t, 8.0)	-0.01
3	a 1.97 (m)	a 1.99 (m)	-0.02
	b 1.77 (m)	b 1.78 (m)	-0.01
4	a 1.98 (m)	a 1.99 (m)	-0.01
	b 1.78 (m)	b 1.78 (m)	0
5	a 3.27 (m)	a 3.28 (dt, 8.6, 3.7)	-0.01
	b 2.52 (m)	b 2.54 (m)	-0.02
7	3.63 (dd, 6.6, 4.6)	3.64 (m)	-0.01
8	2.55 (dd, 10.6, 4.6)	2.54 (m)	0.01
	1.58 (d, 10.6)	1.58 (d, 10.6)	0
12	5.75 (s)	5.76 (s)	-0.01
15	6.43 (d, 6.5)	6.44 (d, 6.6)	-0.01
2'	3.18 (m)	3.19 (m)	-0.01
3'	a 1.92 (m)	a 1.93 (m)	-0.01
	b 1.75 (m)	b 1.77 (m)	-0.02
4'	a 1.99 (m)	a 1.99 (m)	0
	b 1.76 (m)	b 1.77 (m)	-0.01
5'	a 3.39 (m)	a 3.40 (td, 6.6, 3.2)	-0.01
	b 2.61 (m)	b 2.62 (td, 9.8, 5.5)	-0.01
7′	3.07 (m)	3.08 (m)	-0.01
8′	a 2.28 (dd, 11.4, 5.7)	a 2.28 (dd, 11.5, 5.7)	0
	b 1.48 (d, 11.4)	b 1.49 (d, 11.5)	-0.01
12′	5.69 (d, 1.8)	5.69 (d, 2.3)	0
14′	β 3.06 (ddd, 16.3, 7.9,	β 3.06 (m)	0
	1.8)		
	α 3.01 (d, 16.3)	α 3.02 (d, 16.8)	-0.01
15'	3.17 (m)	3.19 (m)	-0.02

-

position natural 6		synthetic 6 δ ₂ (ppm)	deviation $\Delta \delta = \delta_1 - \delta_2$
	or (ppin)	02 (ppm)	(ppm)
2	65.4	65.4	0
3	29.6	29.6	0
4	27.0	27.0	0
5	55.4	55.5	-0.1
7	59.6	59.6	0
8	35.7	35.7	0
9	92.2	92.2	0
11	172.3	172.3	0
12	107.4	107.4	0
13	169.3	169.2	0.1
14	134.5	134.5	0
15	140.2	140.2	0
2'	66.4	66.5	-0.1
3'	29.1	29.1	0
4'	26.9	26.9	0
5'	57.9	57.9	0
7′	64.3	64.3	0
8'	30.1	30.1	0
9'	92.3	92.3	0
11'	172.7	172.7	0
12'	110.0	110.0	0
13'	173.6	173.6	0
14'	27.8	27.8	0
15′	42.9	43.0	-0.1

Table S4. Comparison of $^{13}\mathrm{C}$ NMR spectroscopic data of natural and synthetic flueggenine C (6)

³ (a) Gan. L. -S.; Fan, C. -Q.; Yang, S. -P.; Wu, Y.; Lin, L. -P.; Ding, J.; Yue, J. M. *Org. Lett.* **2006**, *8*, 2285. (b) Qin, S.; Liang, J. -Y.; Gu, Y. -C.; Guo Y. -W. *Tetrahedron Lett.* **2008**, *49*, 7066. (c) Zhao, B. X.; Wang, Y.; Zhang, D. M.; Jiang, R. W.; Wang, G. C.; Shi, J. M.; Huang, X. J.; Chen, W. M.; Che, C. T.; Ye, W. C. *Org. Lett.* **2011**, *13*, 3888. (d) Zhang, H.; Wei, W.; Yue, J. M. *Tetrahedron* **2013**, *69*, 3942. (e) Zhao, B. -X.; Wang, Y.; Li, C.; Wang, G. -C.; Huang, X. -J.; Fan, C. -L.; Li, Q.-M.; Zhu, H. -J.; Chen, W. -M.; Ye, W. -C. *Tetrahedron Lett.* **2013**, *54*, 4708. (f) Li, X. -H.; Cao, M. -M.; Zhang, Y.; Li, S. -L.; Di, Y. -T.; Hao, X. -J. *Tetrahedron Lett.* **2014**, *55*, 6101. (g) Zhang, H.; Zhang, C. -R.; Han, Y. -S.; Wainberg, M. A.; Yue, J. -M. *RSC Adv.* **2015**, *5*, 107045. (h) Zhang, H.; Han, Y. S.; Wainberg, M. A.; Yue, J. -M. *Org. Lett.* **2015**, *17*, 6274. (j) Zhang, H.; Han, Y. -S.; Wainberg, M. A.; Yue, J. -M. *Org. Lett.* **2015**, *17*, 6274. (j) Zhang, H.; Han, Y. -S.; Wainberg, M. A.; Yue, J. -M. *Org. Lett.* **2015**, *17*, 6274. (j) Zhang, H.; Han, Y. -S.; Wainberg, M. A.; Yue, J. -M. *Org. Lett.* **2015**, *17*, 6274. (j) Zhang, H.; Han, Y. -S.; Wainberg, M. A.; Yue, J. -M. *Org. Lett.* **2015**, *17*, 6274. (j) Zhang, H.; Han, Y. -S.; Wainberg, M. A.; Yue, J. -M. *Org. Lett.* **2015**, *17*, 6274. (j) Zhang, H.; Han, Y. -S.; Wainberg, M. A.; Yue, J. -M. *Org. Lett.* **2015**, *17*, 6274. (j) Zhang, H.; Han, Y. -S.; Wainberg, M. A.; Yue, J. -M. *Org. Lett.* **2015**, *17*, 6274. (j) Zhang, H.; Han, Y. -S.; Wainberg, M. A.; Yue, J. -M. *Org. Lett.* **2015**, *17*, 6274. (j) Zhang, H.; Han, Y. -S.; Wainberg, M. A.; Yue, J. -M. *Tetrahedron Lett.* **2016**, *57*, 1798.

⁴ Zhang, H.; Zhang, C. -R.; Zhu, K. -K.; Gao, A. -H.; Luo, C.; Li, J.; Yue, J. -M. Org. Lett. **2013**, *15*, 120.

⁵ NMR data is obtained in CDCl₃.

⁶ For the synthesis of compound **25**: Ma, N.; Yao, Y.; Zhao, B.-X.; Wang, Y.; Ye, W.-C.; Jiang, S. *Chem. Comm.* **2014**, *50*, 9284.

⁷ NMR data is obtained in CD₃OD.

⁸ Taber, D. F.; DeMatteo, P. W.; Hassan, R. A. Org. Synth. 2013, 90, 350.

⁹ Proton nuclear magnetic resonance spectra are referenced from the residual protium in the NMR solvent (CDCl₃: δ 7.26 (CHCl₃)) for direct comparison with the isolation paper.

² Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics* **1996**, *15*, 1518.

7. Copies of ¹H NMR, ¹³C NMR Spectra and HPLC Traces of New Compounds

An Accelerated Intermolecular Rauhut–Currier Reaction Enchlos the Total Synthesis of (.) Elucation

Enables the Total Synthesis of (–)-I Jeon, S. and Han, S.*	Iueggenine C	7.24 6.96 6.96 6.95 6.95	6.02 6.02 6.00 7.21 7.25 7.355 7.355 7.355	2.2.3.8 2.3.2 2.3.	2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33	Page 525/552 6 6 7 7 7 6 9 9 7 9 7 7 7 6 9 9 7 9 7 7 7 7
ParameterValue1 Solventcdcl32 Spectrometer Frequency599.213 Nucleus1H			HO N Boc 25			
		CDCI ₃	Т- <u>16</u>		 ۲. ۲. ۲. ۲. ۳. ۲. ۲. ۲. ۲. ۲. ۲. ۲.	
2.0 11.5 11.0 10.5 10.0 \$).5 9.0 8.5 8	.0 7.5 7.0 6	. 5 6.0 5.5 5.0 f1 (ppm)	4.5 4.0 3.5 3.0	2.5 2.0 1.5 1	.0 0.5 0.0 -0.5 -1.0

Dago \$25 / \$52

Page S27	7 / S52
----------	---------

	155.90154.82	~ 122.67 ~ 121.04	<101.73 <101.25	79.55 78.77 77.54 77.23 76.91	61.23 60.85	47.37 46.95		2.21 0.25
ParameterValue1 SolventCDCI32 Spectrometer Frequency100.613 Nucleus13C		TMSC N H Boc	OTMS	CDCI₃				
garritysiaasiaan barbaarijitayyoonalaa mitaan galaan yoo balaan yoo baayoo baayoo baayoo bar	www.www.audustra.uudate.co.co.co.co.co.co.co.co.co.co.co.co.co.	Wardard putpensident by prospectrum of the	irour frager, graf builden finder parent	,			on water and the second s	
			10 100 0					10 0

Page	S31	/ S52
------	-----	-------

32001, 3. and Han, 3. 60 00 7 			—126.62	80.31 79.94 77.55 76.91 65.58 60.49	—48.21 —43.21	∠28.59 26.24 24.84
Parameter 1 Solvent 2 Spectrometer Frequency 3 Nucleus	Value CDCI3 100.62 13C		HO N Boc 24 OH	CDCI₃		
220 210 200 1	90 180 170	160 150 140	130 120 110 100 9 f1 (ppm)	аналинания 1	50 40	

An Accelerated Enables the Tota Jeon, S. and Har	Intermolecular Rauhut–Currier Reaction Il Synthesis of (–)-Flueggenine C n, S.*		Page S33 / S52
CHIRALPAK IC 1mI	/min, 80:20=Hex:EtOH in 20m	in 	
Acq. Operator	: JH.Jin	Seq. Line	: 3
Acq. Instrument	: Instrument 1	Location	: Vial 12
Injection Date	: 3/9/2017 3:55:23 PM	Inj	: 1
		Inj Volume	: 5 µl
Acq. Method	: C:\Chem32\1\DATA\DAICEL\1	2017-03-09 15-1	6-23\1.M
Last changed	: 3/9/2017 3:54:08 PM by JH	.Jin	
	(modified after loading)		
Analysis Method	: C:\CHEM32\1\DATA\DAICEL\1	2017-03-09 15-1	6-23\012-0301.D\DA.M (1.M)
Last changed	: 3/9/2017 5:25:00 PM by JH	.Jin	
Sample Info	: IC,Hex/EtOH=80/20		

Area Percent Report with Performance

Mult	tiplier		:	1.00	000	
Dilution			:	1.0000		
Use	Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: DAD1 B, Sig=230,4 Ref=off

RetTime [min]	k'	Area [mAU*s]	Height [mAU]	Symm.	Width [min]	Plates	Resol ution	Select ivity
5.757	-	48.92553	5.11523	0.85	0.1500	8161	-	-
6.983	-	35.12663	3.15693	0.81	0.1700	9347	4.50	1.21
7.583	-	1.48401e4	1195.54419	0.73	0.1889	8929	1.97	1.09
8.424	-	1.49591e4	1069.42249	0.73	0.2111	8821	2.47	1.11

An Accelerated Enables the Tota Jeon, S. and Har	An Accelerated Intermolecular Rauhut–Currier Reaction Enables the Total Synthesis of (–)-Flueggenine C Jeon, S. and Han, S.*								
CHIRALPAK IC 1mI	/min, 80:20=Hex:EtOH in 20min								
Acq. Operator	: JH.Jin	Seq. Line : 1							
Acq. Instrument	: Instrument 1	Location : Vial 23							
Injection Date	: 3/9/2017 3:17:40 PM	Inj: 1							
		Inj Volume : 5 µl							
Acq. Method	: C:\Chem32\1\DATA\DAICEL\1 201	L7-03-09 15-16-23\1.M							
Last changed	: 3/9/2017 3:16:21 PM by JH.Jir	1							
Analysis Method	: C:\CHEM32\1\DATA\DAICEL\1 201	L7-03-09 15-16-23\023-0101.D\DA.	M (1.M)						
Last changed	: 3/9/2017 5:25:28 PM by JH.Jir	1							
Sample Info	: IC,Hex/EtOH=80/20								

Area Percent Report with Performance

Mult	tiplier		:	1.00	000	
Dilution			:	: 1.0000		
Use	Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: DAD1 B, Sig=230,4 Ref=off

RetTime	k'	Area	Height	Symm.	Width	Plates	Resol	Select
[min]		[mAU*s]	[mAU]		[min]		ution	ivity
8.325	-	4327.17725	323.11252	0.80	0.2044	9185	-	-

An Accelerated Intermolecular Rauhut-Currier Reaction Enables the Total Synthesis of (-)-Flueggenine C

Page S37 / S52

7.24 6.52 6.49	6.28 6.27 6.27 6.26 6.25 6.25 6.25 6.24 6.24 6.24 6.24	0.44 5.82 5.30 4.09 4.07	3.59 3.58 3.57 3.55 3.55 3.55	3.53 3.40 3.30 3.38 3.37 3.36 3.37 3.36	3.35 3.34 2.94 2.93 2.93	2.90 2.87 2.87 2.86 2.86	1.91 1.90 1.89	1.88 1.87 1.86 1.84 1.84	1.78 1.76 1.76 1.75 1.75	1.72 1.71 1.70 1.68	1.64 1.62 1.61 1.60 1.59
Parameter	Value										
1 Solvent	CDCI3				-						
2 Spectrometer Freque	ncy 400.13				Ő						
3 Nucleus	1H				X						
				N BO	0 H H 22						
				I							
			CDCI₃		^	/	_^^_	^			
				1.00 _년 1.03 _년 1.01 _년	0.93-]	L-86.0	0.97日 1.08日	2.01	4.88 16 16 16		
) 11.5 11.0 10.5	10.0 9.5 9.0	8.5 8.0	7.5 7.0	6.5 6.0 f1	5.5 5.0 (ppm)	4.5 4.0	3.5	3.0 2.5	2.0 1.5	1.0 0.5	0.0 -0.5

-1.(

Page S42 / S52

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0

An Accelerated Intermo Enables the Total Synth Jeon, S. and Han, S.*	lecular Rauhut–Currier Reacti esis of (–)-Flueggenine C	on	7.24	6.45	-6.00 5.52 7.52 1.08	- 3.87 - 3.87 - 3.65 -	22550 22500 225500 225500 2500 25000 25000 25000 25000 25000 25000 25000 25000 25000	~ 3.19 ~ 2.69 r 2.22	2.18 2.16 2.04 1.98	Page:	843/852 643/852 843/852 843/852 843/852 843/852 843/852 843/852 843/852 843/852 843/852 843/852
Parameter 1 Solvent 2 Spectrometer Frequency 3 Nucleus	Value CDCI3 400.13 1H			→ H	AcO, 0 0	BocN	́ОН				
				N H Boc	ŌAc	32	Õ				
			CDCI ₃								
							M	^	Mul	J	
0 11.5 11.0 10.5 1	0.0 9.5 9.0	8.5 8.0	7.5 7.0		6.0 5.5	5.0 4.5	۲۰۰۲ ۲۰۰۲ ۲۰۰۲ ۲۰۰۲ ۲۰۰۲ ۲۰۰۲ ۲۰۰۲ ۲۰۰	F50 : 	68.5 68.5	1.0 0.5	0.0 -0.5 -1.0

5.5 5.0 4.5 4.0 f1 (ppm)

Enables the Tota Jeon, S. and Han	I Synthesis of (–)-Flueggenine C , S.*		Page S45 / S52
CHIRALPAK IC 1ml	/min, 80:20=Hex:EtOH in 15m	in	
Acq. Operator	: JH.Jin	Seq. Line : 4	
Acq. Instrument	: Instrument 1	Location : Vial 13	
Injection Date	: 3/9/2017 4:11:40 PM	Inj: 1	
		Inj Volume : 5 µl	
Acq. Method	: C:\Chem32\1\DATA\DAICEL\1	2017-03-09 15-16-23\1.M	
Last changed	: 3/9/2017 4:10:28 PM by JH	.Jin	
	(modified after loading)		
Analysis Method	: C:\CHEM32\1\DATA\DAICEL\1	2017-03-09 15-16-23\013-0401.	$D \setminus DA.M$ (1.M)
Last changed	: 3/9/2017 5:25:39 PM by JH	.Jin	
Sample Info	: IC,Hex/EtOH=80/20		

Area Percent Report with Performance

Mult	iplier		:	1.00	000	
Dilution			: 1.0000			
Use	Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: DAD1 B, Sig=230,4 Ref=off

RetTime	k'	Area	Height	Symm.	Width	Plates	Resol	Select
[min]		[mAU*s]	[mAU]		[min]		ution	ivity
8.229	-	7502.57275	358.97012	1.07	0.2933	4360	-	-
10.331	-	7286.40674	269.34409	0.98	0.3933	3822	3.60	1.26

An Accelera Enables the Jeon, S. and	ited Inte Total Sy Han, S.	rmolecular Rauhut–Currier Reaction /nthesis of (–)-Flueggenine C *					Pag	e S46 / S52
CHIRALPAK IC 1	mL/n	nin, 80:20=Hex:EtOH in 15m	in					
Acq. Operator	:	JH.Jin	Seq. Line	:	====	==== 2	===	
Acq. Instrumen	ıt :	Instrument 1	Location	:	Via	al 2	24	
Injection Date	:	3/9/2017 3:38:58 PM	Inj	:	-	1		
			Inj Volume	:	51	l		
Acq. Method	:	C:\Chem32\1\DATA\DAICEL\1	2017-03-09 15-1	L6-	-23`	\1.M	М	
Last changed	:	3/9/2017 3:53:53 PM by JH	.Jin					
		(modified after loading)						
Analysis Metho	d :	C:\CHEM32\1\DATA\DAICEL\1	2017-03-09 15-1	L6-	-23`	\024	4-0201.D\DA.M (1.M)
Last changed	:	3/9/2017 5:26:05 PM by JH	.Jin					
Sample Info	:	IC,Hex/EtOH=80/20						

Area Percent Report with Performance

Mult	tiplier		:	1.00	000	
Dilution			: 1.0000			
Use	Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: DAD1 B, Sig=230,4 Ref=off

RetTime	k '	Area	Height	Symm.	Width	Plates	Resol	Select
[min]		[mAU*s]	[mAU]		[min]		ution	ivity
10.174	_	3851.31836	168.86855	0.77	0.3467	4771	-	_

4

Parameter	Value
1 Solvent	CDCI3
2 Spectrometer Frequency	400.13
3 Nucleus	1H

~ 4 4 4 4 4 4

 $\begin{array}{c} + & + & + & + \\ - & + & + & + & + & + \\ - & + & + & + & + \\ - & + & + & + & + \\ - & + & + & + & + &$

4

75 72 43

 σ 2

Page S48 / S52

Page	S49	/	S52
------	-----	---	-----

	Parameter	Value
1	Solvent	CDCI3
2	Spectrometer Frequency	400.13
3	Nucleus	1H

