Supporting Information

Palladium-Catalyzed Asymmetric Benzylic Substitution of Secondary Benzyl Carbonates with Nitrogen and Oxygen Nucleophiles

Atifah Najib, Koji Hirano,* and Masahiro Miura*
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

Contents

Instrumentation and Chemicals S1-S2
Experimental Procedures S3
Detailed Optimization Studies S4-S5
X-Ray Analysis S6
Chiral HPLC Charts of Enantioenriched Products S7-S27
Characterization Data for Products S28-S58

Instrumentation and Chemicals

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded at $400 \mathrm{MHz}, 100 \mathrm{MHz}$, and 376 MHz , respectively, for CDCl_{3} solutions. HRMS data were obtained by APCI using TOF. GC analysis was carried out using a silicon $\mathrm{OV}-17$ column (2.6 mm i.d. x 1.5 m) or a CBP-1 capillary column $(0.5 \mathrm{~mm}$ i.d. x 25 m). TLC analyses were performed on commercial glass plates bearing a 0.25 mm layer of Merck silica gel $60 \mathrm{~F}_{254}$. Silica gel (Wakosil C-200) was used for column chromatography. Gel permeation chromatography (GPC) was performed by LC-6AD (pump, SHIMADZU, $3.5 \mathrm{~mL} / \mathrm{min}$ CHCl_{3}) and SPD-20A (UV detector, SHIMADZU, 254 nm) with two in-line GPC H-2001 (20 x 500 mm , particle size: $15 \mu \mathrm{~m}$) and $\mathrm{H}-2002$ columns ($20 \times 500 \mathrm{~mm}$, particle size: $15 \mu \mathrm{~m}$) (preparative columns, Shodex, CHCl_{3} eluent) or by LC-20AR (pump, SHIMADZU, $7.5 \mathrm{~mL} / \mathrm{min} \mathrm{EtOAc}$) and SPD-20A (UV detector, SHIMADZU, 254 nm) with two in-line YMC-GPC T2000 ($20 \times 600 \mathrm{~mm}$, particle size: $10 \mu \mathrm{~m}$) (preparative columns, YMC, EtOAc eluent). Unless otherwise noted, materials obtained from commercial suppliers were used as received. MeCN was dried on a Glass Contour Solvent dispensing system (Nikko Hansen \& Co., Ltd.) prior to use. DMSO was freshly distilled from CaH_{2}. (R)- and (S)-BINAP were purchased from Aldrich. $\left[\mathrm{CpPd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]$ was prepared
according to the literature. ${ }^{1}$ Starting carbonates 1, including (S)-1a, were synthesized from the corresponding carbinols. ${ }^{2}$ All reactions were carried out under nitrogen atmosphere unless otherwise noted.

[^0]
Experimental Procedures

Synthesis of (R)-3aa (0.25 mmol scale; Table 1, entry 1): In a glovebox filled with nitrogen (R)-BINAP ($7.8 \mathrm{mg}, 0.0125 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(69.1 \mathrm{mg}, 0.5 \mathrm{mmol})$, and $\mathrm{CpPd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)(2.7 \mathrm{mg}, 0.0125$ mmol) were placed in a 20 mL two neck flask. The flask was sealed with a septum and taken out of the glovebox. $\mathrm{MeCN}(2.0 \mathrm{~mL})$ was added, and the suspension was stirred for 10 min . A solution of tert-butyl (2-naphthyl (phenyl) methyl) carbonate (1a; $83.6 \mathrm{mg}, \quad 0.25 \mathrm{mmol}$) and N-methyl- N-tosylamide (2a; $55.6 \mathrm{mg}, 0.30 \mathrm{mmol}$) in MeCN $(1.0 \mathrm{~mL})$ was then added to the flask, and the suspension was stirred for 6 h at $60^{\circ} \mathrm{C}$. The resulting mixture was quenched with water and then extracted three times with ethyl acetate. The combined organic layer was dried over sodium sulfate. Concentration in vacuo and subsequent purification by column chromatography on silica gel with hexane/ethyl acetate (1/10 to $1 / 5 \mathrm{v} / \mathrm{v})$ as an eluent gave $(R)-N, 4$-dimethyl- N-(naphthalen-2-yl(phenyl)methyl)benzenesulfonamide $[(R)$ - 3aa; $79.3 \mathrm{mg}, 0.20$ mmol, $92: 8 \mathrm{er}$] in 80% yield: enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic sample (Chiralcel OD-H column, $95 / 5$ hexane/2-propanol, $0.50 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=24.7 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=29.2 \mathrm{~min}$).

Synthesis of (R)-3ia (1.0 mmol scale; Scheme 3): In a glovebox filled with nitrogen (R)-BINAP ($31.1 \mathrm{mg}, 0.05 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(276.4 \mathrm{mg}, 2.0 \mathrm{mmol}$), tert-butyl (phenanthren-9-yl (phenyl) methyl) carbonate ($384.5 \mathrm{mg}, 1.0 \mathrm{mmol}$), and $\mathrm{CpPd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)(10.6 \mathrm{mg}, 0.05 \mathrm{mmol})$ were placed in a 50 mL two neck flask. The flask was sealed with a septum and taken out of the glovebox. MeCN $(10 \mathrm{~mL})$ was added, and the suspension was stirred for 10 min . A solution of N-methyl- N-tosylamide $(\mathbf{2 a} ; 22.3 \mathrm{mg}, 1.20 \mathrm{mmol})$ in $\mathrm{MeCN}(2.0 \mathrm{~mL})$ was then added to the flask, and the suspension was stirred for 6 h at $60^{\circ} \mathrm{C}$. The resulting mixture was quenched with water and then extracted three times with ethyl acetate. The combined organic layer was dried over sodium sulfate. Concentration in vacuo and subsequent purification by column chromatography on silica gel with hexane/ethyl acetate $(1 / 5 \mathrm{v} / \mathrm{v})$ as an eluent gave (R)- N,4-dimethyl- N-(phenanthren-9-yl(phenyl)methyl)benzenesulfonamide [(R) - $\mathbf{3 i a} ; 421.7 \mathrm{mg}, 0.92 \mathrm{mmol}, 98: 2 \mathrm{er}]$ in 92% yield: enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic sample (Chiralpak AD-H column, 95/5 hexane/2-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=27.5 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=30.6 \mathrm{~min}$).

Detailed Optimization Studies

Table S1. Optimization Studies ${ }^{[a]}$

[a] Reaction conditions: $\left[\operatorname{CpPd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right](0.013 \mathrm{mmol})$, ligand $(0.013 \mathrm{mmol})$, base $(0.50 \mathrm{mmol}), 1 \mathbf{1 a}$ $(0.25 \mathrm{mmol}), \mathbf{2 a}(0.30 \mathrm{mmol}), \mathrm{MeCN}(3.0 \mathrm{~mL}), \mathrm{N}_{2}$. [b] Isolated yields are shown. [c] The enantiomeric ratios (er) are determined by HPLC analysis on a chiral stationary phase. n.d. $=$ not
determined.

(S, S)-BDPP

(R, R)-DPPBA

$\mathrm{Ar}=\mathrm{Ph}:(R)-\mathrm{BINAP}$
$\mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}:(R)-\mathrm{Xyl}-\mathrm{BINAP}$
$\mathrm{Ar}=3,5-(t-\mathrm{Bu})_{2}-4-\mathrm{MeOC}_{6} \mathrm{H}_{2}:(R)$-DTBM-BINAP

$\mathrm{Ar}=\mathrm{Ph}:(R)-\mathrm{MeO}-\mathrm{BIPHEP}$
$\mathrm{Ar}=3,5-(t-\mathrm{Bu})_{2}-4-\mathrm{MeOC}_{6} \mathrm{H}_{2}:$
(R)-DTBM-MeO-BIPHEP

$\mathrm{Ar}=\mathrm{Ph}:(R)-$ SEGPHOS
$\mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}:(R)$-DM-SEGPHOS
$\mathrm{Ar}=3,5-(t-\mathrm{Bu})_{2}-4-\mathrm{MeOC}_{6} \mathrm{H}_{2}:$
(R)-DTBM-SEGPHOS

(R)- H_{8}-BINAP

X-Ray Analysis

The X-ray quality crystals of (R) - $\mathbf{3 a a}$ were grown from heptane/ethyl acetate.

(R)-3aa, 92:8 er $[\alpha]_{D}{ }^{20}-7.76\left(c 0.50, \mathrm{CHCl}_{3}\right)$
Figure S1. ORTEP Drawing (CCDC 1536820) and Specific Rotation of (R)-3aa

Chiral HPLC Charts of Enantioenriched Products

3aa: The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALCEL OD-H column, $95 / 5 n$-hexane $/ 2$-propanol, $0.50 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=$ 24.7 min , minor isomer: $\mathrm{t}_{\mathrm{R}}=29.2 \mathrm{~min}$, UV detection at $250 \mathrm{~nm}, 30^{\circ} \mathrm{C}$).
rac-3aa

Peak \#	Ret. Time	Area	Area \%
1	27.959	13714526	50.12
2	33.391	13648943	49.88

3ab: The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALCEL OD-H column, $95 / 5 n$-hexane $/ 2$-propanol, $0.50 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=$ 27.7 min , minor isomer: $\mathrm{t}_{\mathrm{R}}=36.8 \mathrm{~min}$, UV detection at $220 \mathrm{~nm}, 30^{\circ} \mathrm{C}$).
rac-3ab

(R)-3ab

3ac: The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALCEL OD-H column, $95 / 5 n$-hexane $/ 2$-propanol, $0.50 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=$ 25.4 min , minor isomer: $\mathrm{t}_{\mathrm{R}}=28.1 \mathrm{~min}, \mathrm{UV}$ detection at $\left.250 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right)$.

(R)-3ac

3ad: The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALCEL OD-H column, $95 / 5 n$-hexane $/ 2$-propanol, $0.50 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=$ 15.8 min , minor isomer: $\mathrm{t}_{\mathrm{R}}=20.3 \mathrm{~min}$, UV detection at $\left.250 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right)$.
rac-3ad

(R)-3ad

Peak \#
1
2

Ret. Time
15.83
20.272

Area
11383054
1150531

Area \%
90.82
9.18

3ae: The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALCEL OD-H column, $97 / 3 n$-hexane/2-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=19.1$ min , minor isomer: $\mathrm{t}_{\mathrm{R}}=20.5 \mathrm{~min}$, UV detection at $\left.210 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right)$.

rac-3ae

3af: The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALCEL OD-H column, $97 / 3 n$-hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=23.8$ min , minor isomer: $\mathrm{t}_{\mathrm{R}}=26.9 \mathrm{~min}$, UV detection at $\left.270 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right)$.

The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALPAK AD-H column, $95 / 5 n$-hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=8.7$ min , minor isomer: $\mathrm{t}_{\mathrm{R}}=12.3 \mathrm{~min}$, UV detection at $\left.260 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right)$.

3ba: The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALPAK AD-H column, 99.5/0.5 n-hexane/2-propanol, $2.5 \mathrm{~mL} / \mathrm{min}(60 \mathrm{~min}$) then $90 / 10$ n-hexane/2-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=79.7 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=85.4 \mathrm{~min}, \mathrm{UV}$ detection at $228 \mathrm{~nm}, 30^{\circ} \mathrm{C}$).

3ca: The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALPAK AD-H column, $95 / 5 n$-hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=21.8$ min , minor isomer: $\mathrm{t}_{\mathrm{R}}=23.2 \mathrm{~min}$, UV detection at $220 \mathrm{~nm}, 30^{\circ} \mathrm{C}$).
rac-3ca

(R)-3ca

Peak \#
1
2

Ret. Time
21.785
23.196

$\overbrace{250}^{\circ}$
Area
1413377
2841805

Area \%
83.90
16.10

3da: The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALPAK AD-H column, 95/5 n-hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=35.7$ min , minor isomer: $\mathrm{t}_{\mathrm{R}}=37.9 \mathrm{~min}$, UV detection at $\left.230 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right)$.

rac-3da

3ea: The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALPAK AD-H column, $97 / 3 n$-hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=47.9$ min , minor isomer: $\mathrm{t}_{\mathrm{R}}=44.1 \mathrm{~min}$, UV detection at $228.0 \mathrm{~nm}, 30^{\circ} \mathrm{C}$).
rac-3ea

(S)-3ea

3fa: The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALPAK AD-H column, $97 / 3 n$-hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=20.5$ min , minor isomer: $\mathrm{t}_{\mathrm{R}}=18.7 \mathrm{~min}$, UV detection at $\left.220 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right)$.

3ga: The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALCEL OD-H column, $95 / 5 n$-hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=15.8$ min , minor isomer: $\mathrm{t}_{\mathrm{R}}=18.3 \mathrm{~min}$, UV detection at $\left.235 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right)$.

rac-3ga

(R)-3ga

Peak \#
1
2

3ge: The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALPAK AD-H column, $95 / 5 n$-hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=32.5$ min , minor isomer: $\mathrm{t}_{\mathrm{R}}=36.7 \mathrm{~min}$, UV detection at $235 \mathrm{~nm}, 30^{\circ} \mathrm{C}$).
rac-3ge

(R)-3ge

3ha: The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALPAK AD-H column, 95/5 n-hexane/2-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=24.7$ min , minor isomer: $\mathrm{t}_{\mathrm{R}}=19.4 \mathrm{~min}$, UV detection at $\left.220 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right)$.

3ia: The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALPAK AD-H column, $95 / 5 n$-hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=25.9$ 1 min , minor isomer: $\mathrm{t}_{\mathrm{R}}=29.2 \mathrm{~min}$, UV detection at $\left.260 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right)$.
rac-3ia

3ja: The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALPAK AD-H column, 95/5 n-hexane/2-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=24.0$ min , minor isomer: $\mathrm{t}_{\mathrm{R}}=20.3 \mathrm{~min}$, UV detection at $\left.220 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right)$.
rac-3ja

(R)-3 $\mathbf{j} \mathbf{a}$

3ka: The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALPAK AD-H column, 95/5 n-hexane/2-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=25.0$ min , minor isomer: $\mathrm{t}_{\mathrm{R}}=29.4 \mathrm{~min}$, UV detection at $\left.230 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right)$.
rac-3ka

(R)-3ka

6aa: The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALPAK AD-H column, $95 / 5 n$-hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=7.1$ min , minor isomer: $\mathrm{t}_{\mathrm{R}}=7.7 \mathrm{~min}$, UV detection at $235 \mathrm{~nm}, 30^{\circ} \mathrm{C}$).
rac-6aa

(R)-6aa

Peak \#	Ret. Time	Area	Area \%
1	7.101	16618327	85.69
2	7.711	2774602	14.31

6ab: The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALPAK AD-H column, $95 / 5 n$-hexane/2-propanol, $1.00 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=5.5$ min , minor isomer: $\mathrm{t}_{\mathrm{R}}=6.2 \mathrm{~min}$, UV detection at $235 \mathrm{~nm}, 30^{\circ} \mathrm{C}$).
rac-6ab

(R)- $\mathbf{6 a b}$

Peak \#
1
2

	0.00	$2.00 \quad 4.00$	6.00	8.00 10.00	12.00	14.00^{\prime}	16.00	18.00
Peak \#		Ret. Time		Area				
1		5.522		4280493			87.	
2		6.200		584371			12.	

6ac: The enantiomeric ratio was determined by HPLC analysis in comparison with authentic racemic material (CHIRALPAK AD-H column, $95 / 5 n$-hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=9.0$ min , minor isomer: $\mathrm{t}_{\mathrm{R}}=10.2 \mathrm{~min}$, UV detection at $\left.235 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right)$.
rac-6ac

(R)-6ac

Characterization Data for Products

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{19} \mathrm{~F}$ NMR spectra for all compounds are attached in the last part.
$N, 4$-Dimethyl- N-(naphthalen-2-yl(phenyl)methyl)benzenesulfonamide (3aa) Purified by column chromatography on silica gel with ethyl acetate/hexane ($1 / 10$ to $1 / 5 \mathrm{v} / \mathrm{v}$) as an eluent; $79.3 \mathrm{mg}(79 \%$, 92:8 er); white solid; mp $109-110{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 6.61(\mathrm{~s}$, $1 \mathrm{H}), 7.10-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.50(\mathrm{~m}, 2 \mathrm{H})$, 7.61-7.67 (m, 3H), $7.73(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.83(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.49$, $31.36,64.36,126.24,126.27,126.60,127.29,127.57,127.71,127.84,128.03,128.04,128.44,128.89$, 129.48, 132.70, 133.06, 135.82, 136.99, 138.39, 143.16; HRMS (APCI) $m / z(\mathrm{M}-\mathrm{H})^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}: 400.1355$, found: 400.1366. Chiralcel OD-H column, $95 / 5$ hexane/2-propanol, 0.50 $\mathrm{mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=24.7 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=29.2 \mathrm{~min}$.

4-Methoxy- N-methyl- N-(naphthalen-2-yl(phenyl)methyl)benzenesulfonamide (3ab) Purified by column chromatography on silica gel with ethyl acetate/hexane ($1 / 5 \mathrm{v} / \mathrm{v}$) as an eluent; $49.1 \mathrm{mg}(47 \%$, 90:10 er); white solid; mp 102-104 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.73(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 6.61(\mathrm{~s}$, $1 \mathrm{H}), 6.84(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.34(\mathrm{~m}, 3 \mathrm{H})$, 7.41-7.52 (m, 3H), 7.63-7.70 (m, 3H), $7.74(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.84(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 31.34,55.57,64.34,113.97$ (two peaks overlapped), 126.24, 126.60, 127.56, 127.70, 127.84, 128.02, 128.04, 128.44, 128.88, 129.35, 131.65, 132.69, 133.06, 135.87, 138.41, 162.67; HRMS (APCI) $m / z(\mathrm{M}-\mathrm{H})^{+}$for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}: 416.1315$, found: 416.1319. Chiralcel OD-H column, $95 / 5$ hexane $/ 2$-propanol, $0.50 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=27.7 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=36.8 \mathrm{~min}$.

4-Chloro- N-methyl- N-(naphthalen-2-yl(phenyl)methyl)benzenesulfonamide (3ac) Purified by column chromatography on silica gel with ethyl acetate/hexane ($1 / 10$ to $1 / 5 \mathrm{v} / \mathrm{v}$) as an eluent; 59.1 mg ($56 \%, 90: 10 \mathrm{er}$); oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.76(\mathrm{~s}, 3 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 7.09-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.21$ (dd, $J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.76$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.85(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.90,64.60,126.44,127.59$, $127.82,127.91,128.00,128.25,128.56,128.65,128.80,129.05,129.08,129.23,132.72,133.00$, 135.45, 137.96, 138.29, 138.84; HRMS (APCI) $m / z(M-H)^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClNO}_{2} \mathrm{~S}: 420.0820$, found: 420.0819. Chiralcel OD-H column, $95 / 5$ hexane $/ 2$-propanol, $0.50 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=$ 25.4 min , minor isomer: $\mathrm{t}_{\mathrm{R}}=28.1 \mathrm{~min}$.
$\boldsymbol{N , 2 , 4 , 6 - T e t r a m e t h y l - N - (n a p h t h a l e n - 2 - y l (p h e n y l) m e t h y l) b e n z e n e s u l f o n a m i d e ~ (3 a d) ~ P u r i f i e d ~ b y ~}$ column chromatography on silica gel with ethyl acetate/hexane ($1 / 80 \mathrm{v} / \mathrm{v}$) as an eluent; $76.2 \mathrm{mg}(71 \%$, 91:9 er); white solid; mp $73-75^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 6 \mathrm{H}), 2.74(\mathrm{~s}$, $3 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 2 \mathrm{H}), 7.15-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.66-7.73(\mathrm{~m}$, $1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.85(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.93,31.34,55.58$, $64.32,113.82,113.96,126.25,126.60,127.55,127.70,127.83,128.02,128.05,128.44,128.88,129.35$, 129.98, 131.61, 132.68, 135.85, 138.40, 162.66; HRMS (APCI) $m / z(\mathrm{M}-\mathrm{H})^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}$: 428.1679, found: 428.1679. Chiralcel OD-H column, $95 / 5$ hexane/2-propanol, $0.50 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=15.8 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=20.3 \mathrm{~min}$.
N-Methyl- N-(naphthalen-2-yl(phenyl)methyl)thiophene-2-sulfonamide (3ae) Purified by column chromatography on silica gel with ethyl acetate/hexane ($1 / 10$ to $1 / 5 \mathrm{v} / \mathrm{v}$) as an eluent; $78.0 \mathrm{mg}(79 \%$, 93:7 er); oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.80(\mathrm{~s}, 3 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=3.8,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.11-7.17 (m, 2H), 7.20 (dd, $J=8.6 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.28-7.34 (m, 3H), 7.43-7.53 (m, 5H), 7.67-7.73 $(\mathrm{m}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.85(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.54,64.80$, $126.33,126.35,126.44,127.16,127.58,127.80,127.86,128.08,128.13,128.49,128.82,131.43$, 131.91, 132.75, 133.07, 135.56, 138.06, 140.59; HRMS (APCI) $m / z(M-H)^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}_{2}$: 392.0773, found: 392.0767. Chiralcel OD-H column, $97 / 3$ hexane/2-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=19.1 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=20.5 \mathrm{~min}$.
N-Methyl- N-(naphthalen-2-yl(phenyl)methyl)methanesulfonamide (3af) Purified by column chromatography on silica gel with ethyl acetate/hexane ($1 / 5 \mathrm{v} / \mathrm{v}$) as an eluent; $41.6 \mathrm{mg}(51 \%, 90: 10 \mathrm{er})$; brown solid; mp $116-118{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H})$, 7.31-7.45 (m, 6H), 7.48-7.55 (m, 2H), 7.71 (s, 1H), 7.78-7.84 (m, 1H), 7.84-7.90 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.92,38.29,64.53,126.42,126.48$ (two peaks overlapped), 127.65, 127.89, 128.08 (two peaks overlapped), 128.45, 128.74, 128.87, 132.86, 133.15, 135.45, 137.85; HRMS (APCI) $m / z(\mathrm{M}-\mathrm{H})^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}: 324.1053$, found: 324.1060. Chiralcel OD-H column, $97 / 3$ hexane/2-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=23.8 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=26.9 \mathrm{~min}$.

4-(Naphthalen-2-yl(phenyl)methyl)morpholine (3ag) Purified by column chromatography on silica gel with ethyl acetate/hexane ($1 / 20$ to $1 / 10 \mathrm{v} / \mathrm{v}$) as an eluent; $44.7 \mathrm{mg}(59 \%, 88: 12 \mathrm{er}$); white solid; mp
$126-128{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.44(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.73(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 4.37(\mathrm{~s}$, $1 \mathrm{H}), 7.17(\mathrm{tt}, J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{dtd}, J=14.6,6.9,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.53$ $(\mathrm{m}, 2 \mathrm{H}), 7.60(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $52.78,67.23,76.83,125.70,125.81,126.02,126.67,127.11,127.59,127.78,128.01,128.37,128.58$, 132.75, 133.47, 139.91, 142.18; HRMS (APCI) $m / z(M-H)^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}: 302.1539$, found: 302.1540. Chiralpak AD-H column, $95 / 5$ hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=8.7 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=12.3 \mathrm{~min}$.
N-((4-Methoxyphenyl)(naphthalen-2-yl)methyl)- N,4-dimethylbenzenesulfonamide (3ba) Purified by column chromatography on silica gel with ethyl acetate/hexane ($1 / 5 \mathrm{v} / \mathrm{v}$) as an eluent; $86.3 \mathrm{mg}(80 \%$, 89:11 er); oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.80$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.59-7.68(\mathrm{~m}, 3 \mathrm{H})$, $7.73(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.84(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.47,31.22,55.30,63.86$, $113.74,126.17,126.18,126.46,127.27,127.46,127.54,127.98,128.02,129.45,130.26,130.34$, $132.65,133.06,136.16,137.05,143.08,159.09$; HRMS (APCI) $m / z(\mathrm{M}-\mathrm{H})^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}$: 430.1477, found: 430.1477. Chiralpak AD-H column, 99.5/0.5 hexane/2-propanol, $2.5 \mathrm{~mL} / \mathrm{min}$ (60 min) then $90 / 10$ hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=79.7 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=85.4$ min.

$\boldsymbol{N}, 4-$ Dimethyl- \boldsymbol{N}-(naphthalen-2-yl(4-trifluoromethyl)phenyl)methyl)benzenesulfonamide

Purified by column chromatography on silica gel with ethyl acetate/hexane ($1 / 5 \mathrm{v} / \mathrm{v}$) as an eluent; 63.4 $\mathrm{mg}(54 \%, 84: 16 \mathrm{er})$; white solid; mp 100-102 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.74$ (s, $3 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=8.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35$ $(\mathrm{s}, 1 \mathrm{H}), 7.44-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.75(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.79-7.84 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.49,31.43,64.00,123.87(\mathrm{q}, J=271 \mathrm{~Hz}), 125.42$ ($\mathrm{q}, J=3.4 \mathrm{~Hz}$), 126.44, 126.8, 126.58, 127.23, 127.61, 128.00, 128.24, 128.36, 128.91, 129.59, 129.92 ($\mathrm{q}, J=31.8 \mathrm{~Hz}$), $132.79,132.98,134.75,136.70,142.70,143.49 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ -62.51; HRMS (APCI) m/z (M-H) ${ }^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}: 468.1240$, found: 468.1238. Chiralpak AD-H column, $95 / 5$ hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=21.8 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=$ 23.2 min .
N-((4-Chlorophenyl)(naphthalen-2-yl)methyl)-N,4-dimethylbenzenesulfonamide (3da) Purified
by column chromatography on silica gel with ethyl acetate/hexane ($1 / 10$ to $1 / 5 \mathrm{v} / \mathrm{v}$) as an eluent; 67.4 $\mathrm{mg}(63 \%, 87: 13 \mathrm{er}) ;$ oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~s}$, $1 \mathrm{H}), 7.43-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.84(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.52,31.30,63.74,126.39,126.40,126.44,127.25,127.58,127.92,128.00,128.22$, $128.63,129.57,130.12,132.73,132.99,133.62,135.18,136.80,137.03,143.38$; HRMS (APCI) m / z $(\mathrm{M}-\mathrm{H})^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{ClNO}_{2} \mathrm{~S}: 434.0976$, found: 434.0975. Chiralpak AD-H column, $95 / 5$ hexane/2-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=35.7 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=37.9 \mathrm{~min}, \mathrm{UV}$ detection at $230 \mathrm{~nm}, 30^{\circ} \mathrm{C}$).
N-((3-Methoxyphenyl)(naphthalen-2-yl)methyl)-N,4-dimethylbenzenesulfonamide (3ea) Purified by column chromatography on silica gel with ethyl acetate/hexane ($1 / 5 \mathrm{v} / \mathrm{v}$) as an eluent; $89.7 \mathrm{mg}(83 \%$, 92:8 er); white solid; mp $98-100{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}$, $3 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{dt}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.24$ $(\mathrm{m}, 4 \mathrm{H}), 7.42-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.73(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.82(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.49,31.46,55.17,64.30,113.20,114.45,121.27,126.22,126.26,126.60$, $127.28,127.56,127.80,128.03,128.05,129.41,129.49,132.70,133.04,135.72,136.95,140.01$, 143.17, 159.66; HRMS (APCI) $m / z(M-H)^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}: 430.1477$, found: 430.1470 . Chiralpak AD-H column, $97 / 3$ hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=47.9 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=44.1 \mathrm{~min}$.
$\boldsymbol{N}, 4-$ Dimethyl- N-(naphthalen-2-yl(o-tolyl)methyl)benzenesulfonamide (3fa) Purified by column chromatography on silica gel with ethyl acetate/hexane ($1 / 10$ to $1 / 5 \mathrm{v} / \mathrm{v}$) as an eluent; $74.1 \mathrm{mg}(71 \%$, 96:4 er); oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.95$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{dd}, J$ $=7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=6.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=7.3,1.6 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.78,21.47,32.30,62.01,125.89,126.20,126.22,126.61$, $127.33,127.43,127.57,127.76,127.95,128.26,128.46,129.34,130.93,132.64,133.03,136.07$, 136.76, 136.98, 137.32, 143.06; HRMS (APCI) $m / z(M-H)^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}: 414.1528$, found: 414.1521. Chiralpak AD-H column, $97 / 3$ hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=20.5 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=18.7 \mathrm{~min}$.

N-((6-Methoxynaphthalen-2-yl)(phenyl)methyl)-N,4-dimethylbenzenesulfonamide (3ga) Purified

 by column chromatography on silica gel with ethyl acetate/hexane ($1 / 10$ to $1 / 5 \mathrm{v} / \mathrm{v}$) as an eluent; 68.2 $\mathrm{mg}(63 \%, 89: 11 \mathrm{er}) ;$ oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 6.58(\mathrm{~s}$, $1 \mathrm{H}), 7.06-7.20(\mathrm{~m}, 7 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.50,31.30,55.36,64.29,105.55,119.02,126.88,127.21,127.29$, $127.62,127.76,128.40,128.47,128.79,129.46,129.50,133.42,133.88,137.03,138.55,143.10$, 157.99; HRMS (APCI) $m / z(M-H)^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}: 430.1471$, found: 430.1475. Chiralcel OD-H column, $95 / 5$ hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=15.8 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=$ 18.3 min .N-((6-Methoxynaphthalen-2-yl)(phenyl)methyl)- N-methylthiophene-2-sulfonamide (3ge) Purified by column chromatography on silica gel with ethyl acetate/hexane ($1 / 10$ to $1 / 5 \mathrm{v} / \mathrm{v}$) as an eluent; 67.5 mg (62%, $92: 8 \mathrm{er}$); oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.79(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{dd}$, $J=3.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.26-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.47,55.35,64.75,105.58$, $119.10,126.94,127.05,127.12,127.58,127.74,128.44,128.50,128.72,129.54,131.35,131.85$, $133.15,133.95,138.24,140.68,158.07$; HRMS (APCI) $m / z(\mathrm{M}-\mathrm{H})^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}_{2}: 422.0879$, found: 422.0872. Chiralpak AD-H column, $95 / 5$ hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=$ 32.5 min , minor isomer: $\mathrm{t}_{\mathrm{R}}=36.7 \mathrm{~min}$.
$N, 4-$ Dimethyl- N-(naphthalen-1-yl(phenyl)methyl)benzenesulfonamide (3ha) Purified by column chromatography on silica gel with ethyl acetate/hexane ($1 / 10$ to $1 / 5 \mathrm{v} / \mathrm{v}$) as an eluent; $62.6 \mathrm{mg}(62 \%$, 82:18 er); white solid; mp $142-144{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 6.96$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), \quad 7.10-7.25(\mathrm{~m}, 7 \mathrm{H}), 7.32(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.51,32.30,61.70,124.07,124.92,125.85,126.58,126.85,127.07,127.35,127.54$, 128.49, 128.73, 129.34, 129.71, 131.34, 133.88, 134.73, 136.82, 139.20, 143.02; HRMS (APCI) m / z (M-H) ${ }^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}: 400.1366$, found: 400.1369. Chiralpak AD-H column, $95 / 5$ hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=24.7 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=19.4 \mathrm{~min}$
$\boldsymbol{N}, 4-$ Dimethyl- \boldsymbol{N}-(phenanthren-9-yl(phenyl)methyl)benzenesulfonamide (3ia) Purified by column chromatography on silica gel with ethyl acetate/hexane ($1 / 5 \mathrm{v} / \mathrm{v}$) as an eluent; $113.1 \mathrm{mg}(>99 \%$, $96: 4$
er); white solid; mp 98-100 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 6.99-7.06(\mathrm{~m}$, $2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.17-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.67(\mathrm{~m}, 7 \mathrm{H}), 8.00(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 21.46, 32.38, 62.18, 122.44, 123.11, 125.00, 126.56, 126.67, 126.97, 127.06, 127.32, 127.73. 127.93, 128.61, 128.90, 129.00, 129.37, 130.15, 130.34, 130.79, 130.96, 132.83, 136.83, 138.85, 143.08; HRMS (APCI) $m / z(M-H)^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}: 450.1522$, found: 450.1523 Chiralpak AD-H column, $95 / 5$ hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=25.9 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=29.2$ min.
$\boldsymbol{N}, 4-$ Dimethyl- \boldsymbol{N}-(1-(naphthalen-2-yl)ethyl)benzenesulfonamide (3ja) Purified by column chromatography on silica gel with ethyl acetate/hexane ($1 / 10$ to $1 / 5 \mathrm{v} / \mathrm{v}$) as an eluent; $40.0 \mathrm{mg}(47 \%$, 52:48 er); white solid; mp 121-123 ${ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.39(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.44$ (s, $3 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 5.43(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H})$, 7.72-7.84 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 15.04, 21.57, 38.46, 54.90, 125.54, 126.08, 126.15, 126.20, 127.17, 127.58, 127.99, 128.24, 129.77, 132.74, 133.01, 137.23, 137.41, 143.21; HRMS (APCI) $m / z(\mathrm{M}-\mathrm{H})^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}: 338.1209$, found: 338.1207. Chiralpak AD-H column, $95 / 5$ hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=24.0 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=20.3 \mathrm{~min}$.
\boldsymbol{N}-(Benzo[b]thiophen-2-yl(phenyl)methyl)-N,4-dimethylbenzenesulfonamide (3ka) Purified by column chromatography on silica gel with ethyl acetate/hexane ($1 / 10 \mathrm{v} / \mathrm{v}$) as an eluent followed by GPC with ethyl acetate; $34.9 \mathrm{mg}(34 \%, 88: 12 \mathrm{er})$; white solid; mp $143-145{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.35(\mathrm{~m}$, $7 \mathrm{H}), 7.60-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.71-7.75(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.50,31.04,61.04,122.19$, $123.56,124.39,124.52,124.65,127.39,128.26,128.51,128.58,129.43,136.30,137.48,139.13$, 140.00, 143.06, 143.33; HRMS (APCI) $m / z(M-H)^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}_{2}$: 406.0930, found: 406.0928. Chiralpak AD-H column, $95 / 5$ hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=25.0 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=29.4 \mathrm{~min}$.
N-(2-Benzylbenzo[b]thiophen-3-yl)-N,4-dimethylbenzenesulfonamide (3ka') Purified by column chromatography on silica gel with ethyl acetate/hexane ($1 / 10 \mathrm{v} / \mathrm{v}$) as an eluent followed by GPC with ethyl acetate; $21.7 \mathrm{mg}(21 \%)$; oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.44(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{~d}, J=$ $16 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{ddd}, J=8.1,7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20$
(ddd, $J=8.1,7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.36(\mathrm{~m}, 7 \mathrm{H}), 7.66(\mathrm{t}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 21.59,34.19,37.72,121.26,122.74,124.01,124.14,126.79,127.66,128.60,128.97,129.27$, $129.71,135.62,136.72,136.75,139.11,143.70,145.49$; HRMS (APCI) $m / z(\mathrm{M}+\mathrm{H})^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}_{2}$: 408.1086, found: 408.1087.

2-(Phenoxy(phenyl)methyl)naphthalene (6aa) Purified by column chromatography on silica gel with ethyl acetate/hexane ($1 / 10$ to $1 / 5 \mathrm{v} / \mathrm{v}$) as an eluent; $64.1 \mathrm{mg}(83 \%, 86: 14 \mathrm{er})$; white solid; $\mathrm{mp} 92-94{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.36(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{tt}, J=7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.27$ (m, 3H), 7.27-7.36 (m, 2H), 7.38-7.49 (m, 4H), $7.52(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.83(\mathrm{~m}, 3 \mathrm{H}), 7.87$ (s, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 81.96,116.27,121.15,124.93,125.80,126.17,126.30,127.13$, $127.78,127.89,128.18,128.63,128.70,129.48,133.02,133.31,138.77,141.24,158.23$; HRMS (APCI) $m / z(\mathrm{M}-\mathrm{H})^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{O}: 309.1274$, found: 309.1274. Chiralpak AD-H column, $95 / 5$ hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=7.1 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=7.7 \mathrm{~min}$.

2-((4-(tert-Butyl)phenoxy)(phenyl)methyl)naphthalene (6ab) Purified by column chromatography on silica gel with ethyl acetate/hexane ($1 / 150 \mathrm{v} / \mathrm{v}$) as an eluent followed by GPC with chloroform; 67.8 $\mathrm{mg}(74 \%, 88: 12 \mathrm{er})$; white solid; $\mathrm{mp} 110-112{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.24(\mathrm{~s}, 9 \mathrm{H}), 6.33(\mathrm{~s}$, $1 \mathrm{H}), 6.90-6.96(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.52(\mathrm{dd}, J=8.6,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.76-7.84(\mathrm{~m}, 3 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.54,34.11,81.97,115.54$, $124.99,125.78,126.10$, 126.25 (two peaks overlapped), 127.14, 127.75, 127.81, 128.17, 128.57, 128.65, 132.98, 133.30, 138.95, 141.42, 143.67, 156.05; HRMS (APCI) $m / z(\mathrm{M}-\mathrm{H})^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{O}: 365.1900$, found: 365.1899. Chiralpak AD-H column, $95 / 5$ hexane/2-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=5.5 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=6.2 \mathrm{~min}$.

2-(Naphthalen-2-yl(phenyl)methoxy)naphthalene (6ac) Purified by column chromatography on silica gel with ethyl acetate/hexane ($1 / 150 \mathrm{v} / \mathrm{v}$) as an eluent followed by GPC with chloroform; 74.8 mg (83%, $91: 9 \mathrm{er}$); white solid; mp $129-130{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.53(\mathrm{~s}, 1 \mathrm{H}), \quad 7.18(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.61(\mathrm{~m}$, 2H), 7.70-7.77 (m, 2H), 7.78-7.87 (m, 3H), $7.94(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 81.35, 109.55, $119.47,123.78,124.83,125.74,126.13,126.25$ (two peaks overlapped), 126.89, 127.09, 127.57, $127.72,127.90,128.13,128.61,128.69,129.07,129.43,132.98,133.27,134.34,138.54,141.05$, 155.96; HRMS (APCI) m/z (M-H) ${ }^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{O}: 359.1430$, found: 359.1429. Chiralpak AD-H
column, $95 / 5$ hexane $/ 2$-propanol, $1.0 \mathrm{~mL} / \mathrm{min}$, major isomer: $\mathrm{t}_{\mathrm{R}}=9.0 \mathrm{~min}$, minor isomer: $\mathrm{t}_{\mathrm{R}}=10.2 \mathrm{~min}$.
［ ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3aa］

3aa

$$
\begin{aligned}
& \begin{array}{l}
135.8074 \\
133.0436 \\
132.6876 \\
129.4670 \\
128.8803 \\
128.4233 \\
128.0246 \\
127.8270 \\
127.6983 \\
127.5541 \\
127.2840 \\
126.5968 \\
126.2524 \\
126.2263
\end{array} \\
& \text { MMMNNNNNNNNNNNN }
\end{aligned}
$$

```
l
```

Iワサを・ワ9

140	130	120	110	100	90	80	70	60	50	40	30	20

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3ab]

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3ac]

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3ad]

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3ae]

140	130	120	110	100	90	80	70	60	50	40	30	20	10

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3af]

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 a g}$]

140	130	120	110	100	90	80	70	60	50	40	30	20

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3ba]

$$
\begin{array}{lllllllllllllllllllllll}
7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & \mathrm{ppm}
\end{array}
$$

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$, and ${ }^{19} \mathrm{~F}$ NMR Spectra of 3ca]

$$
\begin{aligned}
& \text { mMm v N N N N N NNNNNNMNNG }
\end{aligned}
$$

31.4310
-21.4883

［ ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3da］

のMの小ourninumbr	\％心	m	5
¢onN	－ 5 m	∞	\bigcirc
	mor	－	m
	\cdots •	－	．
mmmmNNNNNNNNNN	－	m	－1
－r－r $-1+\pi r-r+r$	NTr	40	m

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3ea]

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3fa]

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 g a}$]

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3ge]

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3ha]

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3ia]

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of ja]

-

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3ka]

3ka

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 3ka']

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{6 a a}$]

-158.2278
141.2449
-138.7658
133.3117
133.0198
129.4847
128.6982
128.6250
128.1818
127.8876
127.7785
127.1276
-126.2983
126.1675
125.8004
124.9269
121.1546
116.2720

[${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{6 a b}$]

$\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$ ，and ${ }^{19} \mathrm{~F}$ NMR Spectra of 6ac］

$$
\begin{aligned}
& \text { にすMm }
\end{aligned}
$$

[^0]: ${ }^{1}$ Tatsuno, Y.; Yoshida, T.; Otsuka, S.; Al-Salem, N.; Shaw, B. L. Inorg. Synth. 1990, 28, 342.
 ${ }^{2}$ (a) Braga, A. L.; Paixão, M. W.; Westermann, B.; Schneider, P. H.; Wessjohann, L. A. J. Org. Chem. 2008, 73, 2879. (b) Tabuchi, S.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2014, 79, 5401. (c) Tabuchi, S.; Hirano, K.; Miura, M. Chem.-Eur. J. 2015, 21, 16823.

