## Supporting Information

# Synergistic Visible Light Photoredox/Nickel Catalyzed Synthesis of Aliphatic Ketones via $\mathbf{N}$-C Cleavage of Imides 

Javad Amani, Rauful Alam, Shorouk Badir and Gary A. Molander *<br>Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231<br>South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States

## Contents:

General Considerations ..... S1
Synthesis of potassium secondary alkyltrifluoroborates ..... S1
General procedure for conversion of boronic acids to trifluoroborates ..... S1
Synthesis of $\operatorname{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \text { ppy }\right]_{2}($ bpy $) \mathrm{PF}_{6} \mathbf{1}$ as the photocatalyst ..... S2
Synthesis of 1-(3-phenylpropanoyl)piperidine-2,6-dione (2d) ..... S2
Synthesis of 2-(3-phenylpropanoyl)isoindoline-1,3-dione (2f) ..... S3
General Procedure for the Synthesis of $N$-acylpyrrolidine-2,5-diones ..... S3
High-Throughput Experiments in design and optimization of the photoredox cross-coupling reaction of $\mathbf{2 e}$ with potassium cyclohexyltrifluoroborate as model coupling partners ..... S8
Control experiments for the cross-coupling of $N$-acylpyrrolidine-2,5-dione with potassium alkyltrifluoroborates ..... S14
General procedure for the photoredox cross-coupling reaction of N -acylpyrrolidine-2,5-dione with potassium alkyltrifluoroborates ..... S14
NMR Spectra. ..... S26

## EXPERIMENTAL

General considerations: All reactions were carried out under an inert atmosphere of nitrogen or argon unless otherwise noted. THF was dried over activated alumina. Anhydrous 2-MeTHF, anhydrous CPME, $\operatorname{IrCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$, and $\mathrm{NiCl}_{2} \cdot \mathrm{dme}$ were purchased from commercial sources. Compounds 2a, ${ }^{1} \mathbf{2 b},{ }^{2} \mathbf{2 c},{ }^{3}$ and $\mathbf{2 g},{ }^{4}\left[\mathrm{Ni}(\right.$ dtbbpy $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl}_{2}{ }^{5}$, and $\left[\mathrm{Ni}(\mathrm{bpy})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl}_{2}{ }^{5}$ were synthesized according to the literature procedure. All other reagents were purchased commercially and used as received. Photoredox reactions were irradiated with blue LED lamp (Kessil KSH150B Blue LED Grow Light). Melting points $\left({ }^{\circ} \mathrm{C}\right)$ are uncorrected. NMR spectra were recorded on a 400 or 500 MHz spectrometer. Data are presented as follows: chemical shift (ppm), multiplicity (s $=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=\mathrm{broad})$, coupling constant $J(\mathrm{~Hz})$ and integration. Standard flash chromatography procedures were followed using 100-200 mesh silica gel. HRMS data were obtained by either ESI or CI using a TOF mass spectrometer.

## Synthesis of potassium secondary alkyltrifluoroborates:

Most of the potassium alkyltrifluoroborates were purchased commercially. In cases where the desired potassium organotrifluoroborate was not available, the corresponding boronic acid derivative was converted to the trifluoroborate by the following procedure.

General procedure for conversion of boronic acids to trifluoroborates. To a solution of boronic acid derivative in $\mathrm{MeOH}(0.1 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ saturated aq $\mathrm{KHF}_{2}(4.5 \mathrm{M})$ was added dropwise over 30 min . After completion of the reaction, followed by ${ }^{11} \mathrm{~B}$ NMR, the resulting suspension was concentrated under reduced pressure. The remaining $\mathrm{H}_{2} \mathrm{O}$ was removed by lyophilizer. The remaining solid was suspended in hot acetone ( 3 x 100 mL ) and filtered. The filtrate was
concentrated to a minimal volume $(5-20 \mathrm{~mL})$ and hexane or $\mathrm{Et}_{2} \mathrm{O}(\sim 200 \mathrm{~mL})$ were added to yield a white precipitate. The precipitate was isolated by filtration, washing with hexanes ( $\sim 30 \mathrm{~mL}$ ) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 30 \mathrm{~mL})$, to afford the desired secondary alkyltrifluoroborate.

## Synthesis of $\operatorname{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right]_{2}(\mathrm{bpy}) \mathrm{PF}_{6}$ as the photocatalyst 1:

Photocatalyst I was synthesized according to the literature procedure. ${ }^{6}$


Synthesis of 1-(3-phenylpropanoyl)piperidine-2,6-dione (2d). To a solution of glutarimide ( $565.5 \mathrm{mg}, 5.0 \mathrm{mmol}$ ) in anhydrous THF ( 50 mL ) was slowly added a 2.5 M solution of $n$-BuLi in hexane $(2.0 \mathrm{~mL}, 5.0 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$. Then hydrocinnamoyl chloride $(927.4 \mathrm{mg}, 5.5 \mathrm{mmol})$ was added to the reaction mixture at $-78{ }^{\circ} \mathrm{C}$. After 10 min the solution was allowed to reach $0^{\circ} \mathrm{C}$. Then it was treated with saturated aqueous $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ and transferred to a separatory funnel. The organic layer was separated and the aqueous layer was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous $\mathrm{MgSO}_{4}$ and concentrated. The residue was purified by column chromatography on silica gel, with EtOAc/hexanes mixtures as the eluent, to obtain product in pure form. The title compound was obtained as a white solid in $70 \%$ yield ( 2.2 mmol scale, 377.7 $\mathrm{mg}) . \mathrm{mp} 93-94{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 3 \mathrm{H}), 3.03(\mathrm{~s}$, $4 \mathrm{H}), 2.60(\mathrm{t}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 177.7,171.8$, 139.8, 128.8, 128.5, 126.6, 42.5, 32.4, 29.7, 17.4. FT-IR (neat): 1805, 1744, 1708, 1302, 1169, 1093, $629 \mathrm{~cm}^{-1}$; HRMS (CI+) m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{3}[\mathrm{M}]^{+}$245.1052, found 245.1050.


Synthesis of 2-(3-phenylpropanoyl)isoindoline-1,3-dione (2f). To a solution of phthalimide ( $735.6 \mathrm{mg}, 5.0 \mathrm{mmol}$ ) in anhydrous THF ( 50 mL ) was slowly added a 2.5 M solution of $n-\mathrm{BuLi}$ in hexane ( $2.0 \mathrm{~mL}, 2.0 \mathrm{mmol}$ ) at $-78{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was stirred at $78^{\circ} \mathrm{C}$ for 30 min . Then hydrocinnamoyl chloride ( $927.4 \mathrm{mg}, 2.2 \mathrm{mmol}$ ) was added to the reaction mixture at $-78^{\circ} \mathrm{C}$. After 10 min the solution was allowed to reach $0^{\circ} \mathrm{C}$. Then it was treated with saturated aqueous $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ and transferred to a separatory funnel. The organic layer was separated and the aqueous layer was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous $\mathrm{MgSO}_{4}$ and concentrated. The residue was purified by column chromatography on silica gel, with EtOAc/hexanes mixtures as the eluent, to obtain product in pure form. The title compound was obtained as a white solid in $61 \%$ yield ( 2.2 mmol scale, 374.8 mg ). mp 112-113 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.91-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.23$ (s, 4H), 7.16-7.15 (m, 1H), $3.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 171.4,165.6,140.4,135.7,131.2,128.8,128.7,126.5,124.6,40.7,30.2$; FT-IR (neat): $1802,1781,1759,1749,1286,1132,715,699 \mathrm{~cm}^{-1} ;$ HRMS (ES+ $) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+} 280.0974$, found 280.0967 .

General Procedure for the Synthesis of $\boldsymbol{N}$-acylpyrrolidine-2,5-diones. To a flame-dried 25 mL round bottom flask equipped with a Teflon-coated magnetic stir bar, anhydrous $\mathrm{DCM}(8 \mathrm{~mL})$ and anhydrous DMF ( 2.0 mmol ) were added under Ar atmosphere. Then oxalyl chloride ( 2.3 mmol , 291.9 mg ) and anhydrous pyridine $(2.0 \mathrm{mmol})$ were added to the mixture at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred until it appeared as a brown suspension. A solution of desired carboxylic acid
( 2.0 mmol ) in anhydrous $\mathrm{DCM}(8 \mathrm{~mL})$ was added dropwise to the reaction mixture under Ar at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at room temperature under inert atmosphere for 4 h . At the same time a solution of succinimide ( $1.9 \mathrm{mmol}, 188.3 \mathrm{mg}$ ), TEA $(3.8 \mathrm{mmol}, 384.5 \mathrm{mg})$, and DMAP ( $0.5 \mathrm{mmol}, 61.1 \mathrm{mg}$ ) in anhydrous DCM $(10 \mathrm{~mL})$ was prepared in another flame-dried 50 mL round bottom flask equipped with a Teflon-coated magnetic stir bar under Ar atmosphere. The mixture was then cooled to $0^{\circ} \mathrm{C}$. The resulting mixture from the first reaction was collected carefully by a syringe under Ar and transferred dropwise to the second flask at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred overnight. Then it was treated with $1 \mathrm{M} \mathrm{HCl}(15 \mathrm{~mL})$ and transferred to a separatory funnel. The organic layer washed with $\mathrm{H}_{2} \mathrm{O}(5 \times 30 \mathrm{~mL})$, brine solution ( 30 mL ), and dried over anhydrous $\mathrm{MgSO}_{4}$. The resulting solution was concentrated, and the residue was purified by column chromatography on silica gel, with EtOAc/hexanes mixtures as the eluent, to obtain product in pure form.


1-(3-Phenylpropanoyl)pyrrolidine-2,5-dione (2e). ${ }^{6}$ The title compound was obtained as a white solid in $60 \%$ yield ( 2.0 mmol scale, 277.5 mg ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.27-7.23(\mathrm{~m}, 2 \mathrm{H})$, 7.20-7.16(m, 3H), $3.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 177.8,171.8,139.8,128.8,128.6,126.7,42.5,32.4,29.7,17.4$.


1-(Benzo[d][1,3]dioxole-5-carbonyl)pyrrolidine-2,5-dione. The title compound was obtained as a yellow solid in $61 \%$ yield ( 2.0 mmol scale, 301.5 mg ) . mp $148-149{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.42(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.30(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 2 \mathrm{H})$, $2.90(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 175.0,166.6,154.1,148.8,128.2,125.9,110.1$, 108.7, 102.7, 29.3; FT-IR (neat): 1718, 1689, 1256, $617 \mathrm{~cm}^{-1}$; HRMS (ES+) m/z calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$248.0559, found 248.0556.


4-(3-(2,5-Dioxopyrrolidin-1-yl)-3-oxopropyl)benzonitrile. The title compound was obtained as a white solid in $47 \%$ yield ( 2.0 mmol scale, 240.8 mg ). mp $110-112{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.1,171.2,145.6,132.4,129.5$, $118.9,110.5,39.8,29.7,28.5$; FT-IR (neat): $1805,1748,1711,1301,1161,627 \mathrm{~cm}^{-1} ;$ HRMS (CI+) $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}]^{+}$256.0848, found 256.0839.


1-(Hex-5-enoyl)pyrrolidine-2,5-dione. The title compound was obtained as a liquid in $43 \%$ yield ( 2.0 mmol scale, 167.8 mg ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 5.78-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.03-4.97(\mathrm{~m}, 2 \mathrm{H})$, $2.86(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{~s}, 4 \mathrm{H}), 2.13-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.76(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 174.3,172.8,137.5,115.7,38.2,32.7,28.6,22.9$; FT-IR (neat): $1805,1744,1708$,

1302, 1169, 1093, $629 \mathrm{~cm}^{-1}$; HRMS (ES + ) m/z calcd. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$196.0974, found 196.0975.


Benzyl 3-(2,5-dioxopyrrolidine-1-carbonyl)piperidine-1-carboxylate. The title compound was obtained as a liquid in $49 \%$ yield ( 2.0 mmol scale, 337.4 mg ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$ ): $\delta$ 7.41-7.35 (m, 5H), $5.15(\mathrm{~s}, 2 \mathrm{H}), 4.04(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.31(\mathrm{~m}, 2 \mathrm{H})$, $3.18(\mathrm{t}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 4 \mathrm{H}), 2.03-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.51(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}\right): ~ \delta 176.0,175.4,156.2,138.6,129.6,129.0,128.7,68.0,46.3,45.3$, 30.6, 29.7, 27.4, 24.6; FT-IR (neat): 1804, 1744, 1693, 1428, 1234, 1150, $697 \mathrm{~cm}^{-1}$; HRMS (ES+) $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 367.1270$, found 367.1263.

tert-Butyl (6-(2,5-dioxopyrrolidin-1-yl)-6-oxohexyl)carbamate. The title compound was obtained as a white solid in $46 \%$ yield ( 0.5 mmol scale, 287.3 mg ). $\mathrm{mp} 80-81{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( 500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.45(\mathrm{~s}, 1 \mathrm{H}), 3.12-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 4 \mathrm{H}), 1.73-1.67$ $(\mathrm{m}, 2 \mathrm{H}), 1.51-1.37(\mathrm{~m}, 13 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.3,172.9,156.2,79.3,40.8$, 39.0, 30.0, 28.8, 28.7, 26.3, 23.7; FT-IR (neat): 3366, 1745, 1689, 1526, 1174, $627 \mathrm{~cm}^{-1}$; HRMS (ES+) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$335.1583, found 335.1587.


1-(Adamantane-1-carbonyl)pyrrolidine-2,5-dione. The title compound was obtained as a white solid in $55 \%$ yield ( 2.0 mmol scale, 287.4 mg ). mp 107-109 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ $2.76(\mathrm{~s}, 4 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.88(\mathrm{~m}, 6 \mathrm{H}), 1.67(\mathrm{dd}, J=23.5,12.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 182.2,175.5,46.2,37.8,36.3,29.5,27.8 ;$ FT-IR (neat): $1785,1706,1163,651$ $\mathrm{cm}^{-1} ;$ HRMS (ES+ $) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$284.1263, found 284.1276.


1-(Cyclobutanecarbonyl)pyrrolidine-2,5-dione. The title compound was obtained as a white solid in $51 \%$ yield ( 0.5 mmol scale, 184.8 mg ). $\mathrm{mp} 88-89{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 3.88-$ $3.81(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~s}, 4 \mathrm{H}), 2.37-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.85(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 174.7,174.5,41.8,28.8,24.8,17.9 ;$ FT-IR (neat): 1804, 1736, 1700, 1175, $638 \mathrm{~cm}^{-1}$; HRMS (ES+ $) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$182.0817, found 182.0835.


Methyl 4-(2,5-dioxopyrrolidine-1-carbonyl)bicyclo[2.2.2]octane-1-carboxylate. The title compound was obtained as a white solid in $68 \%$ yield ( 2.0 mmol scale, 398.9 mg ). $\mathrm{mp} 104-106^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~s}, 4 \mathrm{H}), 1.90-1.87(\mathrm{~m}, 6 \mathrm{H}), 1.84-1.81(\mathrm{~m}, 6 \mathrm{H}) ;$
${ }^{13} \mathrm{C}^{\text {NMR (125.8 MHz, }} \mathrm{CDCl}_{3}$ ): $\delta 182.0,177.6,175.1,52.2,52.1,44.7,39.0,29.5,27.7,27.2$; FT-

IR (neat): $1732,1715,1702,1329,1254,1071,649 \mathrm{~cm}^{-1} ;$ HRMS (ES+ $) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+}$294.1341, found 294.1368.

## High-Throughput Experiments in design and optimization of the photoredox cross-coupling

 of 2 e with potassium cyclohexyltrifluoroborate as model coupling partners. High Throughput Experimentation (HTE) was performed at the Penn/Merck Center for High Throughput Experimentation at the University of Pennsylvania. The screens were performed on a $10 \mu \mathrm{~mol}$ scale. To reaction vials equipped with a Teflon coated magnetic stir bar in a glovebox was added a solution of Ni source and ligand [1:1] dissolved in THF. The solvent was removed in vacuo under an inert atmosphere. Then solutions of desired additives, potassium cyclohexyltrifluoroborate, 1-(3-phenylpropanoyl)pyrrolidine-2,5-dione, 2e, and photocatalyst $\mathbf{1}$ in a desired solvent, were added to each vial. The vials were sealed and stirred over blue LED lights. After 24 h the reactions were opened to air, $1 \mu \mathrm{~mol}$ of 4,4'-di-tert-butylbiphenyl ( $500 \mu \mathrm{~L}$ of a 0.002 $\mu \mathrm{M}$ solution in MeCN ) was added to each vial as an internal standard, and the reaction mixtures were diluted with MeCN . The reaction mixtures were then analyzed by UPLC. The product-tointernal standard (P/IS) ratios from the UPLC are shown in Figures S1-S6.


## First Screen Variables:



| solvents | ligands | bases | Ni sources |
| :---: | :---: | :---: | :---: |
| THF | L1 | no base | $\mathrm{Ni}(\mathrm{COD})_{2}$ |
|  | L2 |  | $\mathrm{NiCl}_{2}$.dme |
|  | L3 |  |  |
|  | L4 |  |  |
|  | L5 |  |  |
|  | L6 |  |  |
|  | L7 |  |  |
|  | L8 |  |  |
|  | L9 |  |  |
|  | L10 |  |  |
|  | L11 |  |  |
|  | L12 |  |  |



Figure S1. P/IS of the cross-coupling of 2e with potassium cyclohexyltrifluoroborate using the first screen variables.

According to this screen the best results were obtained for the reaction in the presence of $\mathrm{NiCl}_{2} \cdot \mathrm{dme} / \mathbf{L} 1$ and also $\mathrm{NiCl}_{2} \cdot \mathrm{dme} / \mathbf{L 2}$.

## Second Screen Variables:




Figure S2. P/IS of the cross-coupling of 2 e with potassium cyclohexyltrifluoroborate using the second screen variables.

According to the second screen, the highest product to internal standard ratio was obtained for the reaction in the presence of $\mathrm{NiBr}_{2} \cdot \mathrm{dme} / \mathbf{L} 2$.

To investigate the effect of the preformed nickel catalysts, $\mathbf{2 e}$ was reacted with potassium cyclohexyltrifluoroborate in the presence of $6 \mathrm{~mol} \%$ of $\left[\mathrm{Ni}(\mathrm{dtbbpy})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl}_{2}$ and also $\left[\mathrm{Ni}(\right.$ bpy $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl}_{2}$. The $\mathrm{P} / \mathrm{IS}$ of these reactions were compared with the $\mathrm{P} / \mathrm{IS}$ of the corresponding reaction in the presence of $6 \mathrm{~mol} \%$ of $\mathrm{NiBr}_{2} \cdot \mathrm{dme} / \mathbf{L} 2$ (Figure S 3 ).


Figure S3. P/IS of the cross-coupling of 2e with potassium cyclohexyltrifluoroborate using $\left[\mathrm{Ni}(\right.$ bpy $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl}_{2},\left[\mathrm{Ni}(\right.$ dtbbpy $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl}_{2}$, and $\mathrm{NiBr}_{2}$ 。dme/L2.

To improve the yield of the reaction further, screens using a variety of inorganic bases as well as solvents were carried out (Figure S4).

## Third Screen Variables:

| Solvents | bases | Ni sources |
| :---: | :---: | :---: |
| THF | no base | $\left[\mathrm{Ni}(\mathrm{dtbbpy})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl}_{2}$ |
|  | lutidine |  |
|  | $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ |  |
|  | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ |  |
|  | $\mathrm{CsHCO}_{3}$ |  |
|  | KF |  |
|  | $\mathrm{K}_{2} \mathrm{CO}_{3}$ |  |
|  | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ |  |
|  | $\mathrm{NaHCO}_{3}$ |  |
|  | $\mathrm{Li}_{2} \mathrm{CO}_{3}$ |  |
|  | $\mathrm{K}_{2} \mathrm{HPO}_{4}$ |  |
|  | $\mathrm{KHCO}_{3}$ |  |



Figure S4. P/IS of the cross-coupling of 2 e with potassium cyclohexyltrifluoroborate using different bases.

## Fourth Screen Variables:

| Solvents | bases | Ni sources |
| :---: | :---: | :---: |
| THF | no base | $\left[\mathrm{Ni}(\right.$ dtbbpy $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl}_{2}$ |
| 2-MeTHF <br> dioxane |  |  |
| DME |  |  |
| DMF |  |  |
| DMA |  |  |
| EtOAc acetone |  |  |



Figure S5. P/IS of the cross-coupling of 2 e with potassium cyclohexyltrifluoroborate using different solvents.


Figure S6. P/IS of the cross-coupling of 2e with potassium cyclohexyltrifluoroborate in 2-MeTHF using different co-solvents with 5:1 ratio.

Accordingly, the best solvent for this reaction is 2-MeTHF/CPME (5:1) that has the highest P/IS.

## Control experiments for the cross-coupling of $\boldsymbol{N}$-acylpyrrolidine-2,5-dione with potassium alkyltrifluoroborates:

Table S1. Control Experiments.


| entry | Conditions ${ }^{\mathrm{a}}$ | additive | Yield $^{\mathrm{c}}$ |
| :---: | :---: | :---: | :---: |
| 1 | $6 \mathrm{~mol} \%\left[\mathrm{Ni}(\mathrm{dtbbpy})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl}_{2}$ | - | $70 \%$ |
| 2 | no $\operatorname{Ir}$ photocatalyst | - | $<10 \%$ |
| 3 | no $\left[\mathrm{Ni}(\mathrm{dtbbpy})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl}_{2}$ | - | $0 \%$ |
| 4 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{3}$ | - | $59 \%$ |
| 5 | $4 \mathrm{CzIPN} \mathrm{b}^{\mathrm{b}}$ | - | $21 \%$ |
| 5 | $5 \mathrm{~mol} \%\left[\mathrm{Ni}(\mathrm{dtbbpy})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl}_{2}$ | - | $66 \%$ |
| 6 | $4 \mathrm{~mol} \%\left[\mathrm{Ni}(\mathrm{dtbbpy})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl}_{2}$ | - | $61 \%$ |
| 7 | 1.1 equiv of $\mathrm{R}-\mathrm{BF}_{3} \mathrm{~K}$ | - | $68 \%$ |
| 8 | 1.3 equiv of $\mathrm{R}-\mathrm{BF}_{3} \mathrm{~K}$ | - | $73 \%$ |
| 9 | 1.5 equiv of $\mathrm{R}-\mathrm{BF}_{3} \mathrm{~K}$ | - | $78 \%$ |

[^0]General procedure for the photoredox cross-coupling reaction of $N$-acylpyrrolidine-2,5dione with potassium alkyltrifluoroborates:


To a two dram ( 8 mL ) borosilicate glass vial equipped with a Teflon-coated magnetic stir bar was added $\left[\mathrm{Ni}(\right.$ dtbbpy $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl}_{2}(14.1 \mathrm{mg}, 0.3 \mathrm{mmol})$, the corresponding imide $(0.5 \mathrm{mmol})$, $\operatorname{Ir}\left[\mathrm{dFCF}_{3} \mathrm{ppy}\right]_{2}(\mathrm{bpy}) \mathrm{PF}_{6} \mathbf{1}(15.1 \mathrm{mg}, 0.015 \mathrm{mmol})$, and potassium alkyltrifluoroborate ( 0.75 mmol ,
1.5 equiv). The vial was sealed and subsequently purged and evacuated with Ar four times. A mixture of anhydrous and degassed 2-MeTHF and CPME (5:1, 5 mL ) was then added by syringe under Ar. The resulting reaction mixture was stirred for 24 h in the presence of blue LED lamp (Kessil KSH150B Blue LED Grow Light) while a fan was blown across the reaction setup to maintain an ambient temperature of $24{ }^{\circ} \mathrm{C}$. After completion, the crude reaction mixture was filtered through a plug of Celite and rinsed with EtOAc ( 20 mL ). The resulting solution was concentrated, and the residue was purified by column chromatography on silica gel, with $\mathrm{EtOAc} /$ hexanes mixtures as the eluent, to obtain products in pure form.

Gram scale reaction: To a $\sim 125 \mathrm{~mL}$ long, thin-walled vacuum flask equipped with a Tefloncoated magnetic stir bar was added $\left[\mathrm{Ni}(\mathrm{dtbbpy})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl}_{2}(0.135 \mathrm{mmol}, 63.5 \mathrm{mg})$, potassium
 66.6 mg ), and 1-(3-phenylpropanoyl)pyrrolidine-2,5-dione ( $4.5 \mathrm{mmol}, 1.04 \mathrm{~g}$ ). The vial was sealed and subsequently purged and evacuated with Ar four times. A mixture of anhydrous and degassed 2-MeTHF and CPME (5:1, 45 mL ) was then added by syringe under Ar. The resulting mixture was stirred vigorously for 48 h in the presence of blue LEDs while a fan was blown across the reaction setup to maintain an ambient temperature of $24^{\circ} \mathrm{C}$. After completion, the crude reaction mixture was filtered through a plug of Celite and rinsed with EtOAc ( 50 mL ). The resulting solution was concentrated, and the residue was purified by column chromatography on silica gel, with $\mathrm{EtOAc} /$ hexanes mixtures as the eluent, to obtain product in pure form.


1-Cyclohexyl-3-phenylpropan-1-one (3a). ${ }^{\mathbf{8}}$ The title compound was obtained as a liquid in $78 \%$ yield ( 0.5 mmol scale, 84.3 mg ) and in $72 \%$ yield on gram scale ( 4.5 mmol scale, 700.9 mg ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.15(\mathrm{~m}, 3 \mathrm{H}), 2.86(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.73$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.31-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.27(\mathrm{~m}, 5 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 213.2,141.6,128.6,128.5,126.2,51.2,42.4,30.0,28.6,26.1$, 25.9


1-(2-Methylcyclopentyl)-3-phenylpropan-1-one (3b). ${ }^{\mathbf{9}}$ The title compound was obtained as a liquid in $66 \%$ yield ( 0.5 mmol scale, 71.4 mg ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.27-7.23(\mathrm{~m}, 2 \mathrm{H})$, 7.18-7.15 (m, 3H), 2.89 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.76-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.10(\mathrm{~m}$, $1 \mathrm{H}), 1.86-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.21-1.13(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 212.7,141.6,128.7,128.6,126.2,59.9,44.1,37.9,35.1,30.0,29.9,24.9$, 20.3.


4-Methyl-1-phenylhexan-3-one (3c). ${ }^{\mathbf{1 0}}$ The title compound was obtained as a liquid in $70 \%$ yield ( 0.5 mmol scale, 66.6 mg ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 3 \mathrm{H})$,
$2.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.79-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.38(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.31(\mathrm{~m}$, $1 \mathrm{H}), 1.02(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 213.9$, $141.5,128.6,128.5,126.2,48.2,43.0,29.9,26.0,16.0,11.8$.

tert-Butyl 3-(3-Phenylpropanoyl)pyrrolidine-1-carboxylate (3d). ${ }^{9}$ The title compound was obtained as a liquid in $70 \%$ yield ( 0.5 mmol scale, 106.2 mg ). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.26-$ $7.23(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 3 \mathrm{H}), 3.49-3.41(\mathrm{~m}, 3 \mathrm{H}), 3.31-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.07-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.91-$ $2.88(\mathrm{~m}, 2 \mathrm{H}), 2.82-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right)$ : $\delta 208.5,154.5,141.1,128.7,128.5,126.4,79.5,47.3,45.5,43.4,29.9,28.8,28.7,28.0$.

tert-Butyl-2-(3-phenylpropanoyl)pyrrolidine-1-carboxylate (3e). The title compound was obtained as a liquid in $61 \%$ yield ( 0.5 mmol scale, 92.5 mg ). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 7.32-$ $7.29(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=8.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.40(\mathrm{~m}$, $2 \mathrm{H}), 2.95-2.79(\mathrm{~m}, 4 \mathrm{H}), 2.18-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta 210.5,156.1,143.7,130.2,127.7,81.2,67.2,48.7,41.9,31.1,30.8,29.7,25.5$; FT-IR (neat): $1726,1690,1390,1365,1160,749,699 \mathrm{~cm}^{-1} ;$ HRMS (ES+ $) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 326.1732$, found 326.1711.


3-(3-Phenylpropanoyl)cyclohexan-1-one (3f). The title compound was obtained as a liquid in $58 \%$ yield ( 0.5 mmol scale, 66.7 mg ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.24-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.16-$ $7.11(\mathrm{~m}, 3 \mathrm{H}), 2.87-2.67(\mathrm{~m}, 5 \mathrm{H}), 2.43(\mathrm{dd}, J=14.5,11 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.01-1.94(\mathrm{~m}$, 2H), 1.68-1.55 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 210.0,209.9,141.0,128.7,128.5,126.4$, 50.5, 42.8, 42.6, 41.1, 29.8, 27.3, 25.0; FT-IR (neat): $1705,1452,1224,749,699 \mathrm{~cm}^{-1} ;$ HRMS $(\mathrm{ES}+) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$231.1385, found 231.1386.


1-(Cyclopentyloxy)-4-phenylbutan-2-one (3g). The title compound was obtained as a liquid in $83 \%$ yield ( 0.5 mmol scale, 96.4 mg ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.18-$ $7.15(\mathrm{~m}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.88-3.84(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 1.70-1.63 (m, 6H), 1.53-1.48 (m, 2H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 209.1,141.2,128.6$, $128.5,126.3,82.5,74.6,40.8,32.2,29.5,23.6$; FT-IR (neat): 1710, 1453, 1107, 1077, 748, 697 $\mathrm{cm}^{-1} ;$ HRMS (ES + ) $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 255.1361$, found 255.1360.


3-Phenyl-1-(tetrahydro-2H-pyran-4-yl)propan-1-one (3h). ${ }^{\mathbf{9}}$ The title compound was obtained as a liquid in $80 \%$ yield $(0.5 \mathrm{mmol}$ scale, 87.3 mg$) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.27-7.24(\mathrm{~m}$,
$2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 3 \mathrm{H}), 3.97-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{dt}, J=11.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 2.75(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.49-2.46(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 211.1,141.3,128.7,128.5,126.3,67.4,47.9,42.1,29.8,28.2$.


Ethyl 3-methyl-4-oxo-6-phenylhexanoate (3i). ${ }^{\mathbf{1 1}}$ The title compound was obtained as a liquid in $69 \%$ yield ( 0.5 mmol scale, 85.6 mg ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.28-7.25$ (m, 2H), 7.19$7.16(\mathrm{~m}, 3 \mathrm{H}), 4.09(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.00-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.82(\mathrm{~m}, 4 \mathrm{H}), 2.78-2.73(\mathrm{~m}, 1 \mathrm{H})$, 2.30-2.26(m, 1H), $1.22(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 212.0,172.4,141.4,128.6,128.5,126.2,60.7,43.0,42.3,37.2,29.8,16.7,14.4$.


Benzo[d][1,3]dioxol-5-yl(cyclohexyl)methanone (3j). ${ }^{9}$ The title compound was obtained as a white solid in $82 \%$ yield ( 0.5 mmol scale, 95.2 mg ). $\mathrm{mp} 76-77{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ $7.52(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 2 \mathrm{H}), 3.16-$ $3.10(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.71-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.18(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 202.1,151.7,148.4,131.3,124.5,108.4,108.1,102.0,45.7,29.8,26.2,26.1$.


4-(3-Oxo-3-(1-(pyridin-2-yl)piperidin-4-yl)propyl)benzonitrile (3k). The title compound was obtained as a yellow solid in $84 \%$ yield ( 0.5 mmol scale, 134.1 mg ). mp $94-96{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( 500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.16(\mathrm{dd}, J=5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=6.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 1 \mathrm{H})$, 7.29-7.28 (m, 2H), $6.64(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60-6.58(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{td}, J=13.5,3.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.90-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.55-2.49(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.86$ $(\mathrm{m}, 2 \mathrm{H}), 1.68-1.59(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 210.5,159.3,148.1,147.0,137.6$, 132.4, 129.3, 119.0, 113.2, 110.2, 107.4, 49.2, 45.1, 41.3, 29.6, 27.2; FT-IR (neat): 2225, 1705, 1593, 1480, 1436, 976, $772 \mathrm{~cm}^{-1}$; HRMS (ES+ $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 320.1763$, found 320.1750.


1-Cyclohexylhex-5-en-1-one (31). The title compound was obtained as a liquid in $82 \%$ yield ( 0.5 mmol scale, 73.9 mg ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 5.77-5.69(\mathrm{~m}, 1 \mathrm{H}), 4.99-4.92(\mathrm{~m}, 2 \mathrm{H}), 2.40$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.31-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.60(\mathrm{~m}, 3 \mathrm{H})$, 1.31-1.15 (m, 5H); ${ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 214.3,138.4,115.3,51.1,39.9,33.4,28.7$, 26.1, 25.9, 22.9; FT-IR (neat): 2928, 2854, 1705, 1449, 996, $909 \mathrm{~cm}^{-1} ;$ HRMS (ES+) m/z calcd. for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$181.1592, found 181.1590.


Benzyl 3-(1-(pyridin-2-yl)piperidine-4-carbonyl)piperidine-1-carboxylate (3m). The title compound was obtained as a liquid in $78 \%$ yield ( 0.5 mmol scale, 158.9 mg ). ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.15-8.14(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.55-$ $6.53(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=15.5,12.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{t}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.02(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.81(\mathrm{~m}, 4 \mathrm{H}), 2.70-2.64(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.73-1.46(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 212.5,159.5,155.4,148.2,137.5,137.4,137.1,128.7$, $128.2,128.0,113.1,107.4,107.3,67.4,47.9,46.9,46.2,45.1,44.6,27.3,24.6$; FT-IR (neat): 1734, 1693, 1593, 1480, 1433, 1233, 1144, 766, $697 \mathrm{~cm}^{-1} ;$ HRMS (ES+) m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$408.2287, found 408.2282.


Benzyl 3-(cyclohexanecarbonyl)piperidine-1-carboxylate (3n). The title compound was obtained as a liquid in $80 \%$ yield ( 0.5 mmol scale, 131.8 mg ). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.32-$ $7.26(\mathrm{~m}, 5 \mathrm{H}), 5.12(\mathrm{dd}, J=18.5,12.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.15-4.03(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.64$ $(\mathrm{m}, 1 \mathrm{H}), 2.46-2.42(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.63(\mathrm{~m}, 6 \mathrm{H}), 1.55-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.17$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 213.9,155.4,137.1,128.6,128.1,128.0,67.3,49.9$, 47.0, 46.3, 44.6, 28.6, 27.3, 26.0, 25.8, 24.7; FT-IR (neat): 1693, 1427, 1256, 1232, 1148, 732, $696 \mathrm{~cm}^{-1} ;$ HRMS (ES+) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 330.2069$, found 330.2071.


Benzyl 3-(((benzyloxy)carbonyl)glycyl)piperidine-1-carboxylate (30). The title compound was obtained as a liquid in $70 \%$ yield ( 0.5 mmol scale, 143.6 mg ). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.32-$ $7.25(\mathrm{~m}, 10 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 5.11-5.08(\mathrm{~m}, 4 \mathrm{H}), 4.13-4.01(\mathrm{~m}, 3 \mathrm{H}), 3.95-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J$ $=13.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.50(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.67(\mathrm{~m}, 1 \mathrm{H})$, 1.62-1.54 (m, 1H), 1.49-1.41 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 205.8,156.6,155.3$, 137.0, 136.7, 128.7, 128.3, 128.2, 128.1, 67.5, 67.2, 49.6, 46.3, 45.6, 44.5, 27.1, 24.3; FT-IR (neat): $3340,1730,1694,1430,1234,1149,1043,696 \mathrm{~cm}^{-1} ;$ HRMS (ES+ $) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+} 411.1920$, found 411.1929 .


## Benzyl 3-(2-((1-(tert-butoxycarbonyl)piperidin-4-yl)methoxy)acetyl)piperidine-1-

 carboxylate (3p). The title compound was obtained as a liquid in $80 \%$ yield ( 0.5 mmol scale, 189.8 mg ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.33-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.11(\mathrm{dd}, J=18.0,12.5 \mathrm{~Hz}, 2 \mathrm{H})$, 4.08-4.03 (m, 5H), 3.93-3.91 (m, 1H), 2.29 (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.14-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.92(\mathrm{~m}$, $1 \mathrm{H}), 2.76-2.67(\mathrm{~m}, 3 \mathrm{H}), 1.93-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.59(\mathrm{~m}, 5 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 10 \mathrm{H}), 1.19-1.11(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 209.0,155.3,155.0,137.1,128.6,128.2,128.0,79.4,76.7$, $75.6,67.4,45.5,45.0,44.6,43.8,36.7,29.1,28.9,28.8,28.7,26.7,24.4 ;$ FT-IR (neat): 1736, 1688, 1467, 1423, 1233, 1166, 1137, $698 \mathrm{~cm}^{-1}$; HRMS (ES+ $) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ 475.2808, found 475.2820.

Benzyl 3-(1-(tert-butoxycarbonyl)piperidine-4-carbonyl)piperidine-1-carboxylate (3q). The title compound was obtained as a liquid in $75 \%$ yield ( 0.5 mmol scale, 161.4 mg ). ${ }^{1} \mathrm{H}$ NMR ( 500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.32-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.12(\mathrm{dd}, J=18.0,12.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.11-4.00(\mathrm{~m}, 4 \mathrm{H}), 2.97-2.92$ (m, 1H), 2.87-2.81 (m, 1H), $2.75(\mathrm{t}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.69-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.73-$ $1.70(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.41(\mathrm{~m}, 13 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 212.2,155.3,154.7,137.0$, 128.6, 128.1, 128.0, 79.6, 67.3, 47.5, 46.8, 46.1, 44.6, 43.4, 28.7, 28.6, 27.6, 24.5; FT-IR (neat): 1737, 1688, 1422, 1365, 1232, 1150, 976, $763 \mathrm{~cm}^{-1}$; HRMS (ES+) m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+}$431.2546, found 431.2555.

tert-Butyl 4-(6-((tert-butoxycarbonyl)amino)hexanoyl)piperidine-1-carboxylate (3r). The title compound was obtained as a liquid in $78 \%$ yield ( 0.5 mmol scale, 155.4 mg ) ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 6.46(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{dd}, J=13.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.79-2.74(\mathrm{~m}$, $2 \mathrm{H})$, 2.42-2.39 (m, 3H), 1.76-1.73 (m, 2H), 1.58-1.38 (m, 24H), 1.31-1.25 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 211.9,156.3,155.0,79.8,79.3,48.9,43.6,40.6,30.2,28.8,28.7,27.9$, 26.7, 23.6; FT-IR (neat): $1689,1517,1236,1163,1133,769 \mathrm{~cm}^{-1} ;$ HRMS (ES+) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 399.2859$, found 399.2833.

(Adamantan-1-yl)(cyclohexyl)methanone (3s). ${ }^{\mathbf{9}}$ The title compound was obtained as a white solid in $75 \%$ yield ( 0.5 mmol scale, 92.4 mg ). $\mathrm{mp} 80-81{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 2.84-$ $2.78(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.64(\mathrm{~m}, 15 \mathrm{H}), 1.54-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.18(\mathrm{~m}, 5 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 218.4,47.0,44.1,37.9,36.8,29.9,28.1,26.0$.


Cyclobutyl(cyclohexyl)methanone (3t). ${ }^{\mathbf{1 2}}$ The title compound was obtained as a liquid in $79 \%$ yield ( 0.5 mmol scale, 65.6 mg ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 3.39-3.32(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.27(\mathrm{~m}$, $1 \mathrm{H}), 2.23-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.71(\mathrm{~m}, 5 \mathrm{H}), 1.63-1.60(\mathrm{~m}$, 1H), 1.32-1.14 (m, 5H); ${ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 214.9,49.0,43.9,28.7,26.1,25.9,24.7$, 18.0.


Methyl 4-(cyclohexanecarbonyl)bicyclo[2.2.2]octane-1-carboxylate (3u). The title compound was obtained as a white solid in $85 \%$ yield ( 0.5 mmol scale, 118.3 mg ). mp $104-105{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.75-2.69(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.73(\mathrm{~m}, 6 \mathrm{H}), 1.70-1.67(\mathrm{~m}, 8 \mathrm{H}), 1.61-$ $1.60(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.14(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 217.9$, 178.0, 51.9, 51.8, 45.4, 45.1, 39.1, 29.7, 27.9, 26.7, 25.8; FT-IR (neat): 1724, 1686, 1449, 1253,

1236, 1079, 1010, $854 \mathrm{~cm}^{-1}$; HRMS (ES + ) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$279.1960, found 279.1966.

## References:

1) Hie, L.; Baker, E. L.; Anthony, S. M.; Desrosiers, J. N.; Senanayake, C.; Garg N. K. Angew. Chem. Int. Ed. 2016, 55, 15129.
2) Yang, C. C.; Tai, H. M.; Sun, P. J. Synlett 1997, 1997, 812.
3) Katritzky, A. R.; Cai, C.; Singh, S. K. J. Org. Chem., 2006, 71, 3375.
4) Zhang, J.; Hong, S. H. Org. Lett. 2012, 14, 4646.
5) Bonet, A. G.; Tellis, J. C.; Matsui, J. K.; Vara, B. A.; Molander, G. A. ACS Catal. 2016, 6, 8004.
6) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345, 433.
7) Gooodman, C. A.; Janci, E. M.; Onwodi, O.; Simpson, C. C.; Hamaker, C. G.; Hitchcock, S. R. Tetrahedron Letters 2015, 56, 4468.
8) Chen, M.; Wang, J.; Chai, Z.; You, C.; Lei, A. Adv. Synth. Catal. 2012, 354, 341.
9) Amani, J.; Molander, G. A. J. Org. Chem. 2017, 82, 1856.
10) Erbing, E.; Vazquez-Romero, A.; Gjmez, A. B.; Platero-Prats, A. E.; Carson, F.; Zou, X.; Tolstoy, P.; Martin-Matute, B. Chem. Eur. J. 2016, 22, 15659.
11) Fujimura, T.; Aoki, S.; Nakamura, E. J. Org. Chem. 1991, 56, 2809.
12) Krapcho, A. P.; Kashdan, D. S.; Jahngen, E. G. E., Jr.; Lovey, A. J. J. Org. Chem. 1977, 42, 1189.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of 1-(3-phenylpropanoyl)piperidine-2,6-dione (2d)

${ }^{13}$ C NMR (125.8 MHz, $\mathrm{CDCl}_{3}$ ) Spectrum of 1-(3-phenylpropanoyl)piperidine-2,6-dione (2d)

${ }^{1} \mathrm{H}$ NMR (500 MHz, $\mathrm{CDCl}_{3}$ ) Spectrum of 2-(3-phenylpropanoyl)isoindoline-1,3-dione (2f)

${ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\mathrm{CDCl}_{3}$ ) Spectrum of 2-(3-phenylpropanoyl)isoindoline-1,3-dione (2f)

${ }^{1} \mathrm{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$ ) Spectrum of 1-(benzo[d][1,3]dioxole-5-carbonyl)pyrrolidine-2,5-dione

${ }^{13}$ C NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of 1-(benzo[d][1,3]dioxole-5-carbonyl)pyrrolidine-2,5-dione

${ }^{1}$ H NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of 4-(3-(2,5-dioxopyrrolidin-1-yl)-3-oxopropyl)benzonitrile

${ }^{13}$ C NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of 4-(3-(2,5-dioxopyrrolidin-1-yl)-3-oxopropyl)benzonitrile

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of 1-(hex-5-enoyl)pyrrolidine-2,5-dione

${ }^{13}$ C NMR (125.8 MHz, $\mathrm{CDCl}_{3}$ ) Spectrum of 1-(hex-5-enoyl)pyrrolidine-2,5-dione

${ }^{1}$ H NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of benzyl 3-(2,5-dioxopyrrolidine-1-carbonyl)piperidine-1-carboxylate

${ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\mathrm{CDCl}_{3}$ ) Spectrum of benzyl 3-(2,5-dioxopyrrolidine-1-carbonyl)piperidine-1-carboxylate

${ }^{1}$ H NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of tert-butyl (6-(2,5-dioxopyrrolidin-1-yl)-6-oxohexyl)carbamate


${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ Spectrum of 1-(adamantane-1-carbonyl)pyrrolidine-2,5-dione

${ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 2 5 . 8} \mathbf{~ M H z ,} \mathrm{CDCl}_{3}$ ) Spectrum of 1-(adamantane-1-carbonyl)pyrrolidine-2,5-dione

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of 1-(cyclobutanecarbonyl)pyrrolidine-2,5-dione

${ }^{13}$ C NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of 1-(cyclobutanecarbonyl)pyrrolidine-2,5-dione

${ }^{1}$ H NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) Spectrum of methyl 4-(2,5-dioxopyrrolidine-1-carbonyl)bicyclo[2.2.2]octane-1-carboxylate

${ }^{13}$ C NMR ( $\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) Spectrum of methyl 4-(2,5-dioxopyrrolidine-1-carbonyl)bicyclo[2.2.2]octane-1-carboxylate

再


${ }^{1}$ H NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of 1-cyclohexyl-3-phenylpropan-1-one (3a)

${ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\mathrm{CDCl}_{3}$ ) Spectrum of 1-cyclohexyl-3-phenylpropan-1-one (3a)

${ }^{1} \mathrm{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) Spectrum of 1-(2-methylcyclopentyl)-3-phenylpropan-1-one (3b)

${ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) Spectrum of 1-(2-methylcyclopentyl)-3-phenylpropan-1-one (3b)

${ }^{1}$ H NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of 4-methyl-1-phenylhexan-3-one (3c)

${ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\mathrm{CDCl}_{3}$ ) Spectrum of 4-methyl-1-phenylhexan-3-one (3c)


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of tert-butyl 3-(3-Phenylpropanoyl)pyrrolidine-1-carboxylate (3d)

${ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\mathrm{CDCl}_{3}$ ) Spectrum of tert-butyl 3-(3-Phenylpropanoyl)pyrrolidine-1-carboxylate (3d)

${ }^{1} \mathbf{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) Spectrum of tert-butyl-2-(3-phenylpropanoyl)pyrrolidine-1-carboxylate (3e)

${ }^{13}$ C NMR ( $\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) Spectrum of tert-butyl-2-(3-phenylpropanoyl)pyrrolidine-1-carboxylate (3e)

${ }^{1}$ H NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of 3-(3-phenylpropanoyl)cyclohexan-1-one (3f)

${ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\mathrm{CDCl}_{3}$ ) Spectrum of 3-(3-phenylpropanoyl)cyclohexan-1-one (3f)

${ }^{1}$ H NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of 1-(cyclopentyloxy)-4-phenylbutan-2-one (3g)


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of 3-phenyl-1-(tetrahydro-2H-pyran-4-yl)propan-1-one (3h)

${ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\mathrm{CDCl}_{3}$ ) Spectrum of 3-phenyl-1-(tetrahydro-2H-pyran-4-yl)propan-1-one (3h)

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of ethyl 3-methyl-4-oxo-6-phenylhexanoate (3i)

${ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 2 5 . 8} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of ethyl 3-methyl-4-oxo-6-phenylhexanoate (3i)

${ }^{1}$ H NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of benzo[d][1,3]dioxol-5-yl(cyclohexyl)methanone (3j)

${ }^{13}$ C NMR ( $\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) Spectrum of benzo[d][1,3]dioxol-5-yl(cyclohexyl)methanone (3j)



${ }^{1} \mathrm{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) Spectrum of 4-(3-oxo-3-(1-(pyridin-2-yl)piperidin-4-yl)propyl)benzonitrile (3k)


${ }^{1}$ H NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of 1-cyclohexylhex-5-en-1-one (31)

${ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) Spectrum of 1-cyclohexylhex-5-en-1-one (31)

${ }^{1}$ H NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of benzyl 3-(1-(pyridin-2-yl)piperidine-4-carbonyl)piperidine-1-carboxylate (3m)

${ }^{13}$ C NMR (125.8 MHz, CDCl $_{3}$ ) Spectrum of benzyl 3-(1-(pyridin-2-yl)piperidine-4-carbonyl)piperidine-1-carboxylate (3m)

${ }^{1}$ H NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of benzyl 3-(cyclohexanecarbonyl)piperidine-1-carboxylate (3n)


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of benzyl 3-(((benzyloxy)carbonyl)glycyl)piperidine-1-carboxylate (30)

${ }^{13}$ C NMR (125.8 MHz, $\mathrm{CDCl}_{3}$ ) Spectrum of benzyl 3-(((benzyloxy)carbonyl)glycyl)piperidine-1-carboxylate (30)




${ }^{1}$ H NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of benzyl 3-(2-((1-(tert-butoxycarbonyl)piperidin-4-yl)methoxy)acetyl)piperidine-1-carboxylate (3p)

${ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\mathrm{CDCl}_{3}$ ) Spectrum of benzyl 3-(2-((1-(tert-butoxycarbonyl)piperidin-4-yl)methoxy)acetyl)piperidine-1-carboxylate (3p)




${ }^{1}$ H NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of benzyl 3-(1-(tert-butoxycarbonyl)piperidine-4-carbonyl)piperidine-1-carboxylate (3q)

${ }^{13}$ C NMR ( $125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of benzyl 3-(1-(tert-butoxycarbonyl)piperidine-4-carbonyl)piperidine-1-carboxylate (3q)


${ }^{1}$ H NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) Spectrum of tert-butyl 4-(6-((tert-butoxycarbonyl)amino)hexanoyl)piperidine-1-carboxylate (3r)


${ }^{1}$ H NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of (adamantan-1-yl)(cyclohexyl)methanone (3s)

${ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\mathrm{CDCl}_{3}$ ) Spectrum of (adamantan-1-yl)(cyclohexyl)methanone (3s)

${ }^{1}$ H NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of cyclobutyl(cyclohexyl)methanone (3t)

${ }^{13}$ C NMR ( $\mathbf{1 2 5 . 8} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) Spectrum of cyclobutyl(cyclohexyl)methanone (3t)

${ }^{1}$ H NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) Spectrum of methyl 4-(cyclohexanecarbonyl)bicyclo[2.2.2]octane-1-carboxylate (3u)

${ }^{13}$ C NMR ( $\mathbf{1 2 5 . 8} \mathbf{~ M H z}$, CDCl $_{3}$ ) Spectrum of methyl 4-(cyclohexanecarbonyl)bicyclo[2.2.2]octane-1-carboxylate (3u)

[^0]:    ${ }^{a}$ Reactions were carried out using $3 \mathrm{~mol} \%$ of photocatalyst at $0.1 \mathrm{M} . b 2,4,5,6$-tetrakis(carbazol-9-yl)-1,3-dicyanobenzene. ${ }^{c}$ Isolated yields.

