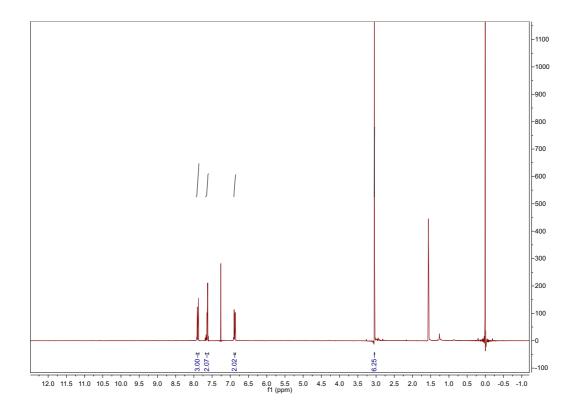
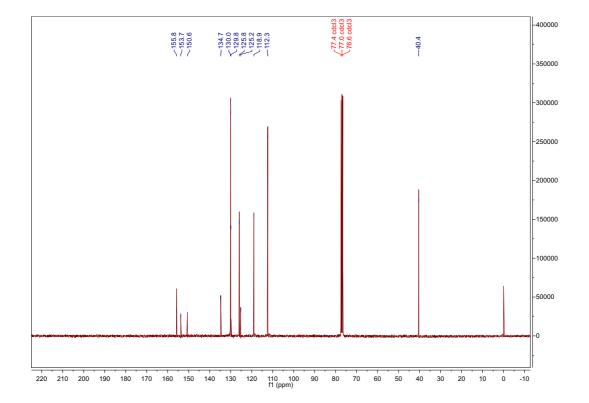
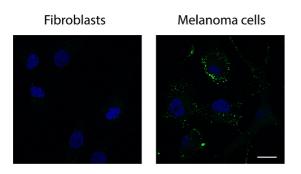
Supporting Information

Specific Imaging of Intracellular Lipid Droplets Using a Benzothiadiazole Derivative with Solvatochromic Properties

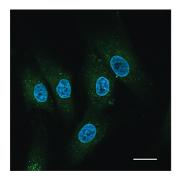
Hanna Appelqvist,¹ Kati Stranius,² Karl Börjesson,² K. Peter. R. Nilsson,¹ and Christine Dyrager^{*,1}

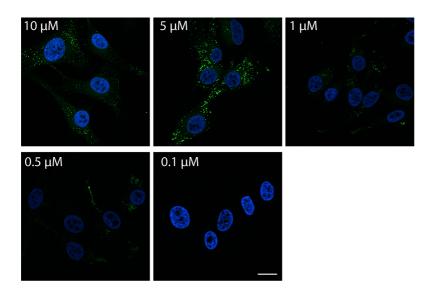

¹Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden ²Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96 Göteborg, Sweden

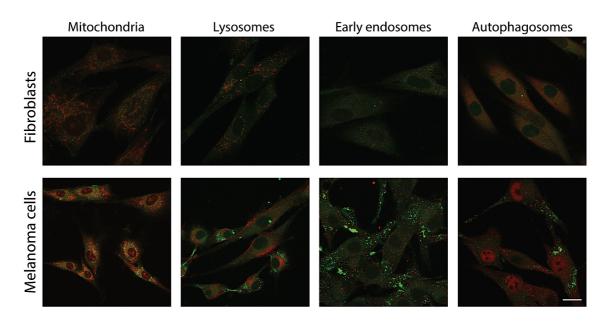

***Corresponding author:** Christine Dyrager, Division of Organic Chemistry, Department of Physics, Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden. Phone: +4613281311, e-mail: christine.dyrager@liu.se

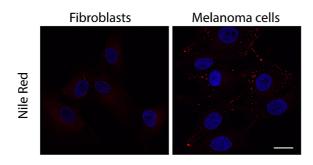

Table of Contents

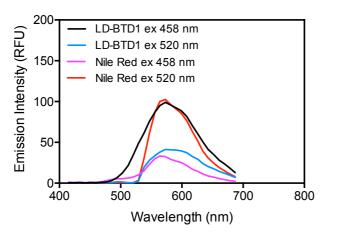
¹ <i>H</i> - and ¹³ <i>C</i> - <i>NMR</i> spectra of LD-BTD1	S2
Figure S1. Fixed cells stained with LD-BTD1	S3
Figure S2. Higher gain image of fibroblasts stained with LD-BTD1	S3
Figure S3. Melanoma cells stained with LD-BTD1 at different concentrations	S3
Figure S4. Co-staining of LD-BTD1 and various cell organelle markers	S4
Figure S5. Fibroblasts and melanoma cells stained with Nile Red	S4
Figure S6. Emission spectra of LD-BTD1 and Nile Red	S5
Figure S7. Isolated adipocytes stained with LD-BTD1	S5
Figure S8. Absorbance spectra of LD-BTD1 in solvents of different polarity	S5
Figure S9. Emission spectra of LD-BTD1 in solvents of different polarity	S6
Figure S10. Lippert Plot of LD-BTD1 in solvents of different polarity	S6
Figure S11. Emission spectra of LD-BTD1 in DMF with increasing conc. of H_2O	S6
<i>Figure S12.</i> Absorbance and emission spectra of LD-BTD1 in DMSO/H ₂ O	S7
Figure S13. Emission spectra of LD-BTD1 at different pH-values	S7


¹H-NMR and ¹³C-NMR spectra of LD-BTD1 in CDCl_{3.}




Figure S1. Human fibroblasts and melanoma cells stained with **LD-BTD1** (seen in green; ex 458 nm, em 465-682 nm) after cell fixation (500 nM, 30 min, RT). Cell nuclei are stained with DAPI (seen in blue; ex 405 nm, em 410-453 nm). Scale bar 10 μ m.


Figure S2. Human fibroblasts stained with **LD-BTD1** (seen in green; ex 458 nm, em 465-682 nm) at 10 μ M for 24 h. Images were taken with higher gain compared to Figure 1A. Cell nuclei are stained with DAPI (seen in blue; ex 405 nm, em 410-453 nm). Scale bar 10 μ m. Living cells were stained with **LD-BTD1**, fixated after 24h, and mounted prior to microscopy analysis.


Figure S3. Melanoma cells stained with **LD-BTD1** (seen in green, ex 458 nm, em 465-682 nm) using different concentrations (0.1, 0.5, 1, 5, and 10 μ M). Cell nuclei are stained with DAPI (seen in blue; ex 405 nm, em 410-453 nm). Scale bar 10 μ m. **LD-BTD1** staining was performed on living cells, which were fixated after 24 h incubation (prior to the microscopy analysis).

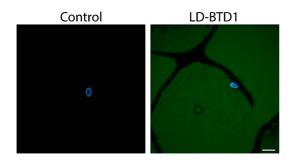

Figure S4. Co-staining of **LD-BTD1** (10 μ M, 24h) seen in green (ex 458 nm, em 484-707)* and markers (seen in red) for mitochondria (Mitotracker Orange CMTMRos; ex 550 nm, em 555-750 nm), lysosomes (LAMP-2), early endosomes (EEA1) and autophagosomes (LC3B). Secondary antibodies for LAMP-2, EEA1 and LC3B were conjugated to Alexa Fluor 594 (ex 595 nm, em 600-734). Scale bar 10 μ m. **LD-BTD1** staining was performed on living cells, which were fixated directly after the incubation (prior to the microscopy analysis). *The emission rage for **LD-BTD1** in the co-localization experiment with mitochondria were: em 466-545 nm.

Figure S5. Fibroblasts and melanoma cells stained with Nile Red ($0.1 \mu g/ml$ in 150 mM NaCl, 10 min) seen in red (ex 458 nm, em 465-682nm). Cell nuclei are stained with DAPI (seen in blue; ex 405 nm, em 410-453 nm). Scalebar 10 μ m. Nile Red staining was performed on fixed cells.

Figure S6. Emission spectra from the confocal microscopy study of melanoma cells stained with **LD-BTD1** or Nile Red using two different excitation wavelengths (458 and 520 nm).

Figure S7. Isolated human adipocytes stained with **LD-BTD1** (seen in green; ex 458 nm, em 465-682 nm) at 10 μ M for 24 h. Cell nuclei are stained with DAPI (seen in blue; ex 405 nm, em 410-453 nm). Scalebar 20 μ m. **LD-BTD1** staining was performed on living cells, which were fixated directly after the incubation (prior to the microscopy analysis).

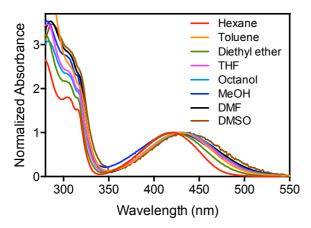


Figure S8. Normalized absorbance spectra of LD-BTD1 in solvents of different polarity.

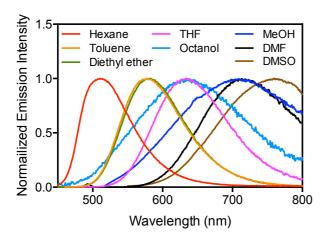
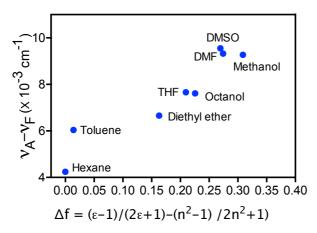
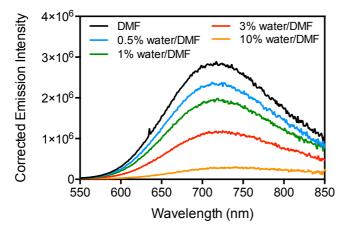
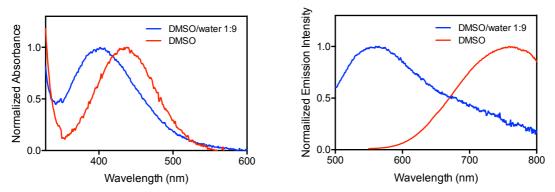


Figure S9. Normalized emission spectra of LD-BTD1 in solvents of different polarity.

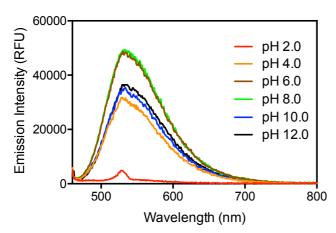

Figure S10. Lippert plot for LD-BTD1 in solvents of different polarity. The orientation polarizability Δf is dependent on the refractive index (n) and the dielectric constant (ϵ) of the solvent.

Figure S11. Emission spectra (corrected by sample absorbance change upon addition of water) of **LD-BTD1** in DMF upon increasing concentration of water in the solution.

Figure S12. Normalized absorbance (left) and emission spectra (right) of **LD-BTD1** in DMSO and DMSO/water 1:9.

Figure S13. Emission spectra of **LD-BTD1** (5% DMSO in buffer) at different pH (2-12). pH 2 and 4: Glycine HCl buffer (50 mM); pH 6 and 8: phosphate buffer (25 mM); and pH 10 and 12: Glycine OH buffer (50 mM).