-Supporting Information -

Ruthenium(II)-Catalyzed *ortho*-C–H Chalcogenation of Benzoic Acids *via* Weak *O*-Coordination: Synthesis of Chalcogenoxanthones

Anup Mandal, Suman Dana, Harekrishna Sahoo, Gowri Sankar Grandhi,

and Mahiuddin Baidya*

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India E-mail: <u>mbaidya@iitm.ac.in</u>

Table of Contents

	Page
General information	S03
Screening of the reaction conditions	S03
General procedure : Ru(II)-catalyzed direct C–H selenylation of aromatic carboxylic acids	S05
General procedure : Ru(II)-catalyzed direct C–H sulfenylation of aromatic carboxylic acids	S06
General procedure : Sequential synthesis of chalcogenoxanthones	S07
Control experiments	S07
Crystallographic experimental section	S11
Spectroscopic data	S14
NMR spectra	S22

General information

All non-aqueous reactions were carried out under an air atmosphere in flame-dried glassware and were stirred using a magnetic stir plate. All reactions were carried out using anhydrous solvent unless otherwise noted. DMSO and DMF were purchased from Acros Organic Company. Dry toluene, xylene, tetrahydrofuran and 1,4-dioxane were prepared by distilling over sodium ketyl. $[Ru(p-cymene)Cl_2]_2$ was purchased from Alfa-Aesar Company.

All reactions were monitored by thin layer chromatography (TLC) on WhatmanPartisil® K6F TLC plates (silica gel 60 Å, 0.25 mm thickness) and visualized using a UV lamp (366 or 254 nm) or by use of one of the following visualization reagents: PMA: 10 g phosphomolybdic acid/ 100 mL ethanol, KMnO₄: 0.75 g potassium permanganate, 5 g K₂CO₃ / 100mL water. Products were isolated by column chromatography (Merck silica gel 100-200µm). Yields refer to chromatographically and spectroscopically homogenous materials unless noted otherwise. ¹³C and ¹H NMR spectra were recorded on a Bruker 400 or Bruker 500 MHz spectrometers. Chemical shift values (δ) are reported in ppm and calibrated to the residual solvent peak CDCl₃ δ = 7.260 ppm for ¹H, δ = 77.160 ppm for ¹³C, DMSO-d₆ δ = 2.500 ppm for ¹H, δ = 39.500 ppm for ¹³C or calibrated to tetramethylsilane (δ = 0.00). All NMR spectra were recorded at ambient temperature (290 K) unless otherwise noted. ¹H NMR spectra are reported as follows: chemical shift (multiplicity, coupling constant, integration). The following abbreviations are used to indicate multiplicities: s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; sext, sextet; sept, septet; m, multiplet; dd, doublet of quartet; br, broad; app, apparent.

Mass spectra were recorded by electron spry ionization (ESI) method on a Q-TOF Micro with lock spray source. The crystal data were collected and integrated using a BrukerAxs kappa apex2 CCD diffractometer, with graphite monochromated Mo-K α radiation.

SePh

Screening of the reaction conditions:

CO ₂ H +	PhSe-SePh (2 equiv) $[Ru(p-cymene)Cl_2]_2 (4 \text{ mol }\%) \\ PCy_3 (8 \text{ mol }\%) \\ K_2CO_3 (1 \text{ equiv}) \\ solvent, 100 ^{\circ}\text{C}, 48 \text{ h} \\ (undegassed conditions)$	SePh CO ₂ H SePh
entry	solvent	yield (%)
1	DMF	40
2	DMSO	-
3	Xylene	trace
4	Toluene	trace
5	1,4-Dioxane	$14(27)^a$
6	CH ₃ OH	-

Table S1: Solvent optimization

7	THF	-	
8	DCE	-	
9	DME	-	
10	CH ₃ CN	-	
11	DMAc	-	
12	Trifluorotoluene	$12(20)^a$	
13	1,3-Bis(trifluoromethyl)benzene	8	

^{*a*}NaHCO₃ was used instead of K₂CO₃ and yields are given in parenthesis.

Table S2: Optimization of bases

CO ₂ H + Ph <mark>Se-Se</mark> Ph (2 equiv)	[Ru(<i>p</i> -cymene)Cl ₂] ₂ (4 mol %) PCy ₃ (8 mol %) base (1 equiv) DMF, 100 °C, 48 h (<i>undegassed conditions</i>)	SePh CO ₂ H SePh
--	--	-----------------------------------

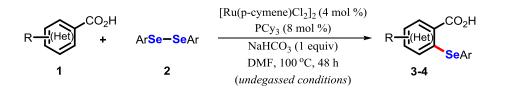
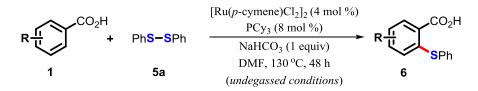

Entry	base	yield (%)
1	Na ₂ CO ₃	90
2	Guanidine carbonate	-
3	Li ₂ CO ₃	trace
4	Mn_2CO_3	trace
5	Cupric carbonate	-
6	Ag_2CO_3	trace
7	KHCO ₃	56
8	NaHCO ₃	96
9	NH ₄ HCO ₃	-
10	K_3PO_4	80
11	Na ₂ HPO ₄	trace
12	K_2HPO_4	51
13	LiO ^t Bu	45

Table S3:	Optimization	of other	parameters
-----------	--------------	-----------------	------------

	CO ₂ H + Ph <mark>Se-Se</mark> Ph (2 equiv)	cat (x phosphine ligg NaHCO DMF, ten	mol %) and (2x mol %)	Ph CO ₂ H SePh	
entry	[Ru]	NaHCO ₃	ligands	temp	yield
	(mol %)	(equiv)	(mol %)	°C	(%)
1	$[\operatorname{Ru}(p\text{-cymene})\operatorname{Cl}_2]_2 (4 \mod \%)$	1.0	$P(o-tolyl)_3 (8 mol \%)$	100	81
2	u	"	PPh ₃ (8 mol %)		72
3	u	"	-		83
4	$[\operatorname{Ru}(p\text{-cymene})\operatorname{Cl}_2]_2 (4 \mod \%)$	"	PCy ₃ (8 mol %)	"	48^a
5	u	0.5	"	"	65
6	u	-	"	100	-
7	'n	1.0		120	75
8	п	"	"	80	55
9	-	"	-	100	-
10	$[Ru(p-cymene)Cl_2]_2 (2 mol \%)$		PCy ₃ (4 mol %)	"	63
11	$[Ru(p-cymene)Cl_2]_2 (4 \mod \%)$	"	PCy ₃ (8 mol %)		71 ^{<i>b</i>}
12	$(p-cymene)RuCl_2PPh_3 (4 mol\%)$	"	-		45
13	$[Ru(p-cymene)Cl_2]_2 (4 mol \%)$	"	$Cy_3PO(8 mol \%)$	"	94

^{*a*}under N₂ atmosphere, ^{*b*}PhSeSePh (1.5 equiv)

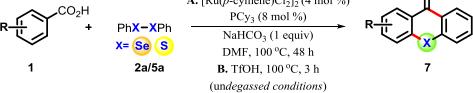
General procedure: Ru(II)-catalyzed direct C–H selenylation of aromatic carboxylic acids



The benzoic acids **1** (0.2 mmol), diselenide derivatives **2** (2 equiv), and $[Ru(p-cymene)Cl_2]_2$ (4 mol%), PCy₃ (8 mol%), and sodium bicarbonate (1 equiv) were taken in a dried screw cap reaction tube with a magnetic stir bar under open air. Then, dry DMF (1.5mL) was added with a syringe, the tube was capped,

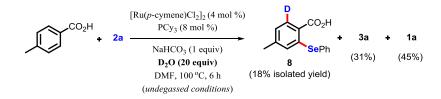
and the resulting mixture was heated at 100 °C for 48 h. After completion of the reaction, it was allowed to cool to room temperature, quenched with AcOH and diluted with brine solution and ethyl acetate. The mixture was extracted with ethyl acetate (10 mL, three times). The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane : ethyl acetate : acetic acid = 90 : 10 :1) to provide pure selenylation products **3-4**.

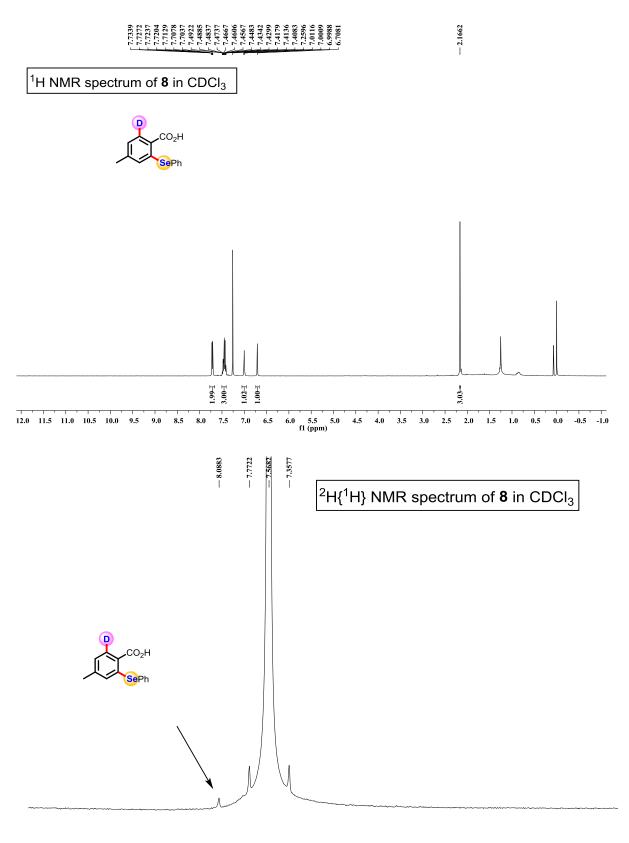
Ru(II)-catalyzed selenylation reaction of **1a** was also performed in 1.1 mmol scale. The benzoic acids **1a** (1.1 mmol, 150 mg, 1 equiv), diphenyl diselenide **2a** (2 equiv), and $[Ru(p-cymene)Cl_2]_2$ (4 mol%), PCy₃ (8 mol%), and sodium bicarbonate (1 equiv) were taken in a dried screw cap reaction tube with a magnetic stir bar under open air. Then, dry DMF (1.5mL) was added with a syringe, the tube was capped, and the resulting mixture was heated at 100 °C for 48 h. After completion of the reaction, it was allowed to cool to room temperature, quenched with AcOH and diluted with brine solution and ethyl acetate. The mixture was extracted with ethyl acetate (10 mL, three times). The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane : ethyl acetate : acetic acid = 90 : 10 :1) to provide pure selenylation product **3a** as white solid (452 mg, 92% yield).


General procedure: Ru(II)-catalyzed direct C–H sulfenylation of aromatic carboxylic acids

The benzoic acids 1 (0.2 mmol), diphenyl disulfide **5a** (2 equiv), and $[\text{Ru}(p\text{-cymene})\text{Cl}_2]_2$ (4 mol%), PCy₃ (8 mol%), and sodium bicarbonate (1 equiv) were taken in a dried screw cap reaction tube with a magnetic stir bar under open air. Then, DMF (1.5mL) was added with a syringe, the tube was capped, and the resulting mixture was heated at 130 °C for 48 h. After completion of the reaction, it was cooled to room temperature, quenched with AcOH and diluted with brine solution and ethyl acetate. The mixture was extracted with ethyl acetate (10 mL, three times). The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane : ethyl acetate : acetic acid = 90 : 10 : 1) to provide pure sulfenylation products **6**.

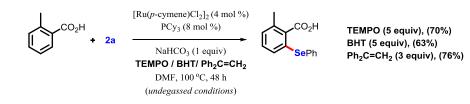
A. $[\operatorname{Ru}(p\operatorname{-cymene})\operatorname{Cl}_2]_2$ (4 mol %)


General procedure: Sequential synthesis of chalcogenoxanthones

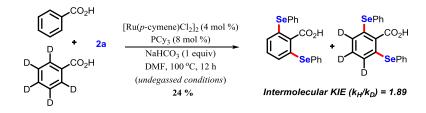


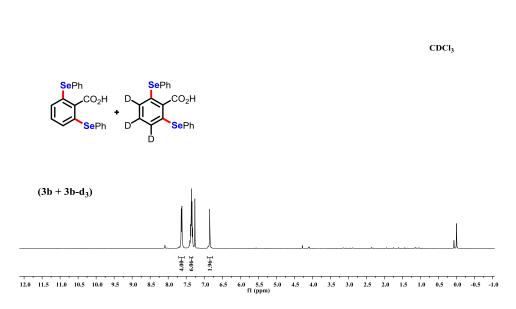
The benzoic acids **1** (0.2 mmol), diphenyl diselenide (**2a**) or disulfide (**5a**) (2 equiv), and $[\operatorname{Ru}(p\text{-cymene})\operatorname{Cl}_2]_2$ (4 mol%), PCy₃ (8 mol%), and sodium bicarbonate (1 equiv), were taken in a dried screw cap reaction tube with a magnetic stir bar under open air. Then, DMF (1.5mL) was added with a syringe, the tube was capped, and the resulting mixture was heated at 100 °C for 48 h (at 130 °C for **5a**). After completion of the reaction, it was cooled to room temperature, quenched with AcOH and diluted with brine solution and ethyl acetate. The mixture was extracted with ethyl acetate (10 mL, three times). The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting residue was treated with triflic acid at 100 °C for 3 h. After that, it was allowed to cool to room temperature and quenched with water. The mixture was extracted with dichloromethane (DCM) and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane : ethyl acetate = 95 : 5) to provide pure chalcogenoxanthones **7**.

Control experiments:


1) Deuterium exchange experiments

^{9.8 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0} fl (ppm)

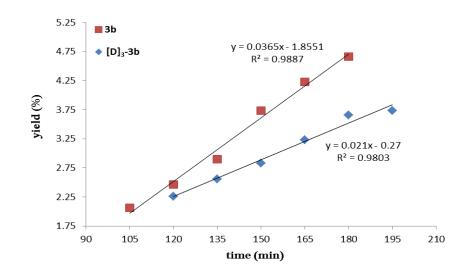

2) Radical scavenging experiment:


3) Kinetic Isotope Effect:

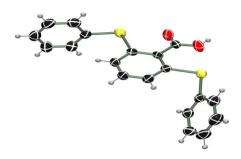
a) Intermolecular Kinetic Isotopic Experiment:

To demonstrate the intermolecular kinetic isotope effect (KIE), a 1:1 mixture of benzoic acid (**1b**) and the d_5 -benzoic acid (**1b-d**₅) was subjected to the standard reaction condition for 12 h and the products were isolated by column chromatography. From the ¹H NMR, analysis of the H/D ratio of the benzene ring revealed an intermolecular KIE of $k_{\rm H}/k_{\rm D} = 1.89$. This result indicates that *ortho* C–H bond breaking may be involved in the rate determining step.

¹H NMR spectrum of products of the intermolecular KIE experiment:


b) Kinetic Isotope Effect by independent experiments:

Two independent reactions with **1b** and **[D]**₅-**1b** under the standard conditions were performed: Following the general procedure of selenylation, **1b** (0.3 mmol) or **[D]**₅-**1b** (0.3 mmol), diphenyldiselenide **2a** (2 equiv), $[\text{Ru}(p\text{-cymene})\text{Cl}_2]_2$ (4 mol%), PCy₃ (8 mol%), and sodium bicarbonate (1 equiv), were stirred at 100 °C in 3 ml DMF solvent under open atmosphere. After the reaction times indicated below, aliquots of 0.3 mL were taken out of the reaction mixture. The aliquots were acidified, worked up with brine/ethyl acetate mixture. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Yields of products were determined by ¹H NMR spectroscopy using dibromomethane as an internal standard.


Independent KIE (k_H/k_D) = 1.74

t (min)	105	120	135	150	165	180	195
3b (%)	2.06	2.46	2.90	3.73	4.23	4.66	-
[D] ₅ -3b (%)	-	2.26	2.56	2.83	3.23	3.66	3.73

Crystallographic experimental section:

Crystal structure of compound 3b: CCDC1534856 (Ellipsoid probability 50%)

(The crystal structure contained two molecules of 3b)

Identification code	993
Empirical formula	C38 H28 O4 Se4
Formula weight	864.44
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	$a = 10.1260(3) A$ $\alpha = 77.9530(10)^{\circ}$
	$b = 12.9083(3) \text{ A} \beta = 80.0760(10)^{\circ}$
	$c = 13.2893(4) A$ $\gamma = 82.4580(10)^{\circ}$
Volume	1665.16(8) A^3
Z, Calculated density	2, 1.724 Mg/m^3
Absorption coefficient	4.447 mm^-1
F(000)	848
Crystal size	0.250 x 0.220 x 0.100 mm
Theta range for data collection	1.585 to 24.998°
Limiting indices	-12<=h<=11, -15<=k<=11, -15<=l<=15

Reflections collected / unique	21799 / 5855 [R(int) = 0.0260]
Completeness to theta $= 24.998$	99.8 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5855 / 0 / 424
Goodness-of-fit on F^2	1.029
Final R indices [I>2sigma(I)]	R1 = 0.0270, wR2 = 0.0550
R indices (all data)	R1 = 0.0425, wR2 = 0.0592
Extinction coefficient	0.00130(14)
Largest diff. peak and hole	0.391 and -0.466 e.A^-3

Crystal structure of compound 3k: CCDC1534855 (Ellipsoid probability 25%)

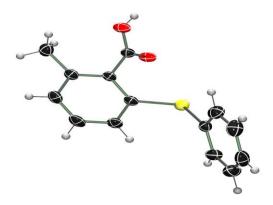


Table 2. Crystal data and structure refinement for **3k** (CCDC 1534855).

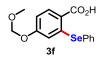
Identification code	914
Empirical formula	C14 H12 O2 Se
Formula weight	291.20
Temperature	296(2) K
Wavelength	0.71073 Å

Crystal system, space group	Monoclinic, P2(1)/c
Unit cell dimensions	$a = 7.4743(6) \text{ Å} \qquad \alpha = 90^{\circ}$
	$b = 17.3909(14) \text{ Å} \beta = 107.933(3)^{\circ}$
	$c = 10.0665(6) \text{ Å} \qquad \gamma = 90^{\circ}$
Volume	1244.92(16) A^3
Z, Calculated density	4, 1.554 Mg/m^3
Absorption coefficient	3.002 mm^-1
F(000)	584
Crystal size	0.220 x 0.120 x 0.100 mm
Theta range for data collection	2.342 to 24.750 deg.
Limiting indices	-8<=h<=8, -20<=k<=20, -11<=l<=11
Reflections collected / unique	14211 / 2126 [R(int) = 0.0470]
Completeness to theta $= 24.750$	99.6 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	2126 / 0 / 159
Goodness-of-fit on F^2	1.101
Final R indices [I>2sigma(I)]	R1 = 0.0339, wR2 = 0.0798
R indices (all data)	R1 = 0.0608, wR2 = 0.0891
Extinction coefficient	n/a
Largest diff. peak and hole	0.253 and -0.293 e.A^-3

Spectroscopic data:

3a: White solid, **Yield**: 96% (86 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 9.99 (s, 1H), 7.79 –7.52 (m, 4H), 7.50 – 7.31 (m, 6H), 6.70 (s, 2H), 1.96 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 172.68, 142.37, 138.79, 136.42, 130.25, 129.76, 129.69, 128.90, 126.82, 21.50; **HRMS** (TOF MS ES⁺) C₂₀H₁₆O₂Se₂Na⁺ m/z (%) = 470.9361 ([M+Na]⁺, 100%).

3b: White solid, **Yield**: 82% (71 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 7.68 –7.61 (m, 4H), 7.46 –7.31 (m, 6H), 6.90 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 172.41, 138.73, 136.49, 131.68, 130.11, 129.83, 128.98, 128.93; **HRMS** (TOF MS ES⁺) C₁₉H₁₄O₂Se₂Na⁺ m/z (%) = 456.9248 ([M+Na]⁺, 100%).


3c: White solid, **Yield**: 86% (79 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 7.72 – 7.65 (m, 4H), 7.49 – 7.34 (m, 6H), 6.23 (s, 2H), 3.26 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 165.57, 161.39, 142.73, 137.11, 130.07, 129.76, 129.14, 119.99, 113.68, 54.84; **HRMS** (TOF MS ES⁺) C₂₀H₁₆O₃Se₂H⁺ m/z (%) = 464.9539 ([M+H]⁺, 100%).

3d: White solid, **Yield**: 61% (57 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 7.81 – 7.56 (m, 4H), 7.50 – 7.31 (m, 6H), 6.74 (s, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 171.82, 142.08, 138.91, 136.92, 130.14, 129.63, 129.25, 127.62, 126.02; **HRMS** (TOF MS ES⁺) C₁₉H₁₃O₂ClSe₂Na⁺ m/z (%) = 490.8818 ([M+Na]⁺, 100%).

3e: White solid, **Yield**: 55% (50 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 7.70 – 7.64 (m, 4H), 7.55 – 7.34 (m, 6H), 6.42 (d, J = 9.2 Hz, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 171.61, 164.21 (d, J = 257.9 Hz), 144.80 (d, J = 8.1 Hz), 137.33, 130.18, 129.76, 129.29, 114.52 (d, J = 25.2 Hz); **HRMS** (TOF MS ES⁺) C₁₉H₁₃O₂FSe₂Na⁺ m/z (%) = 474.9154 ([M+Na]⁺, 100%).

3f: White solid, **Yield**: 70% (47 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (d, J = 8.8 Hz, 1H), 7.75 – 7.70 (m, 2H), 7.57 – 7.33 (m, 3H), 6.85 (dd, J = 8.7, 2.4 Hz, 1H), 6.53 (d, J = 2.4 Hz, 1H), 4.97 (s, 2H), 3.33 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 171.52, 161.32, 144.07, 137.82, 134.38, 129.96, 129.50, 128.85, 119.87, 116.60, 112.60, 94.16, 56.27; **HRMS** (TOF MS ES⁺) C₁₅H₁₄O₄SeNa⁺ m/z (%) = 360.9936 ([M+Na]⁺, 100%).

3g: White solid, **Yield**: 93% (54 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (d, J = 1.4 Hz, 1H), 7.76 – 7.66 (m, 2H), 7.50 – 7.37 (m, 3H), 7.08 (dd, J = 8.3, 1.6 Hz, 1H), 6.83 (d, J = 8.2 Hz, 1H), 2.32 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 172.46, 137.80, 137.65, 134.88, 134.68, 132.94, 129.87, 129.25, 129.05, 126.18, 20.63; **HRMS** (TOF MS ES⁺) C₁₄H₁₂O₂SeNa⁺ m/z (%) = 314.9929 ([M+Na]⁺, 100%).

3h: White solid, **Yield**: 75% (46 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 7.70 (dd, J = 9.0, 2.5 Hz, 3H), 7.49 – 7.35 (m, 3H), 6.93 – 6.77 (m, 2H), 3.81 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 171.72, 157.47, 137.50, 131.39, 130.52, 129.86, 129.22, 129.19, 127.28, 121.19, 116.19, 55.69; **HRMS** (TOF MS ES⁺) C₁₄H₁₂O₃SeNa⁺ m/z (%) = 330.9820 ([M+Na]⁺, 100%).

3i: White solid, **Yield**: 82% (50 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.77 – 7.67 (m, 2H), 7.52 – 7.37 (m, 3H), 6.67 (s, 1H), 2.23 (s, 3H), 2.08 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 172.38, 143.49, 138.05, 137.62, 133.79, 133.38, 130.24, 129.81, 129.19, 129.15, 123.93, 20.30, 19.13; **HRMS** (TOF MS ES⁺) C₁₅H₁₄O₂SeNa⁺ m/z (%) = 329.0065 ([M+Na]⁺, 100%).

3j: White solid, **Yield**: 74% (51 mg); ¹**H NMR** (500 MHz, CDCl₃) δ 8.43 (d, J = 1.4 Hz, 1H), 7.77 – 7.67 (m, 2H), 7.58 – 7.40 (m, 4H), 7.05 (d, J = 8.5 Hz, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 170.81, 147.40, 137.69, 130.31, 129.98, 129.85, 129.51 (q, J = 3.4 Hz), 129.33 (q, J = 3.7 Hz), 128.04, 127.61 (q, J = 33.5 Hz), 126.36, 123.81 (q, J = 271.8 Hz); **HRMS** (TOF MS ES⁺) C₁₄H₉O₂F₃SeK⁺ m/z (%) = 384.9346 ([M+K]⁺, 100%).

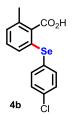
3k: White solid, **Yield**: 90% (52 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 9.84 (s, 1H), 7.73 – 7.50 (m, 2H), 7.44 – 7.23 (m, 3H), 7.21 – 6.97 (m, 3H), 2.55 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 174.27, 138.45, 135.30, 133.95, 132.90, 131.04, 130.75, 130.21, 129.62, 129.32, 128.37, 21.35; **HRMS** (TOF MS ES⁺) C₁₄H₁₂O₂SeNa⁺ m/z (%) = 314.9900 ([M+Na]⁺, 100%).

31: White solid, **Yield**: 83% (59 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 7.65 – 7.54 (m, 2H), 7.47 – 7.29 (m, 8H), 7.26 – 7.18 (m, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 173.62, 141.87, 140.38, 135.31, 133.25, 132.80, 131.41, 130.65, 130.27, 129.68, 128.77, 128.57, 128.48, 128.43, 127.89; **HRMS** (TOF MS ES⁺) C₁₉H₁₄O₂SeK⁺ m/z (%) = 392.9771 ([M+K]⁺, 100%).

3m: White solid, **Yield**: 75% (44 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 7.73 – 7.62 (m, 2H), 7.49 – 7.32 (m, 3H), 7.18 (td, J = 8.2, 5.4 Hz, 1H), 6.94 (m, 1H), 6.83 – 6.75 (m, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 169.82, 162.77 (d, J = 260.9 Hz), 141.61, 137.03, 133.37 (d, J = 9.6 Hz), 129.99, 129.39, 129.23, 126.01 (d, J = 3.3 Hz), 117.69, 113.58 (d, J = 23.1 Hz); **HRMS** (TOF MS ES⁺) C₁₃H₉O₂FSeNa⁺ m/z (%) = 318.9657 ([M+Na]⁺, 100%).

3n: White solid, **Yield**: 66% (43 mg); ¹**H NMR** (400 MHz, DMSO-d₆) δ 8.67 (s, 1H), 8.06 – 8.00 (m, 1H), 7.75 – 7.69 (m, 2H), 7.58 – 7.41 (m, 6H), 7.21 (s, 1H); ¹³**C NMR** (125 MHz, DMSO-d₆) δ 168.18, 137.06, 134.72, 133.83, 132.30, 130.21, 130.11, 129.44, 129.15, 129.08, 129.03, 127.04, 126.70, 126.40, 126.24; **HRMS** (TOF MS ES⁺) C₁₇H₁₂O₂SeNa⁺ m/z (%) = 350.9906 ([M+Na]⁺, 100%).


30: White solid, **Yield**: 78% (51 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 8.33 (d, J = 8.5 Hz, 1H), 7.77 (d, J = 8.1 Hz, 1H), 7.69 – 7.59 (m, 3H), 7.56 (t, J = 7.6 Hz, 1H), 7.48 (t, J = 7.4 Hz, 1H), 7.39 – 7.20 (m, 4H); ¹³**C NMR** (100 MHz, CDCl₃) δ 172.42, 135.35, 133.06, 132.08, 131.10, 130.65, 129.64, 129.02, 128.44, 128.32, 127.83, 126.30, 125.42; **HRMS** (TOF MS ES⁺) C₁₇H₁₂O₂SeNa⁺ m/z (%) = 350.9912 ([M+Na]⁺, 100%).


3p: White solid, **Yield**: 88% (50 mg); ¹**H NMR** (400 MHz, DMSO-d₆) δ 7.95 – 7.60 (m, 3H), 7.60 – 7.19 (m, 3H), 6.24 (d, J = 5.2 Hz, 1H); ¹³**C NMR** (100 MHz, DMSO-d₆) δ 163.34, 138.57, 136.43, 132.37, 129.88, 129.40, 128.58, 127.93, 123.27; **HRMS** (TOF MS ES⁺) C₁₁H₈O₂SSeNa⁺ m/z (%) = 306.9330 ([M+Na]⁺, 100%).

3q: White solid, **Yield**: 69% (61 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (d, J = 7.1 Hz, 2H), 7.69 (d, J = 6.2 Hz, 2H), 7.53 – 7.31 (m, 6H), 6.14 (s, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 168.21, 150.70, 137.35, 136.73, 131.52, 130.28, 130.00, 129.84, 129.14, 128.57, 127.92, 125.55, 120.08; **HRMS** (TOF MS ES⁺) C₁₇H₁₂O₂SSe₂Na⁺ m/z (%) = 462.8777 ([M+Na]⁺, 100%).

4a: White solid, **Yield**: 72% (45 mg); ¹**H NMR** (500 MHz, CDCl₃) δ 7.65 – 7.55 (m, 2H), 7.18 – 7.08 (m, 2H), 7.07 – 6.97 (m, 3H), 2.54 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 173.42, 163.22 (d, *J* = 7.7 Hz), 138.84, 137.86, 137.80, 134.67, 132.19, 131.20, 129.49 (d, *J* = 29.2 Hz), 125.25 (d, *J* = 3.5 Hz), 116.93 (d, *J* = 21.5 Hz), 21.51; **HRMS** (TOF MS ES⁺) C₁₄H₁₁O₂FSeNa⁺ m/z (%) = 332.9819 ([M+Na]⁺, 100%).

4b: White solid, **Yield**: 70% (46 mg); ¹**H NMR** (400 MHz, DMSO-d₆) δ 7.45 (dd, *J* = 6.6, 1.6 Hz, 2H), 7.34 (d, *J* = 6.7 Hz, 2H), 7.14 (s, 2H), 7.05 (s, 1H), 2.36 (s, 3H); ¹³**C NMR** (100 MHz, DMSO-d₆) δ 169.49, 136.83, 135.96, 135.44, 133.17, 130.25, 129.98, 129.48, 129.40, 129.30, 20.03; **HRMS** (TOF MS ES⁺) C₁₄H₁₁O₂ClSeNa⁺ m/z (%) = 348.9501 ([M+Na]⁺, 100%).

4c: White solid, **Yield**: 64% (47 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 7.56 (dd, J = 7.7, 1.1 Hz, 1H), 7.31 – 7.26 (m, 1H), 7.25 – 7.19 (m, 2H), 7.20 – 7.06 (m, 3H), 2.51 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 172.63, 137.97, 136.09, 135.32, 133.87, 133.04, 132.69, 131.09, 130.64, 129.67, 128.69, 128.19, 126.22, 20.97; **HRMS** (TOF MS ES⁺) C₁₄H₁₁O₂BrSeNa⁺ m/z (%) = 392.8985 ([M+Na]⁺, 100%).

4d: White solid, **Yield**: 68% (49 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 7.79 (s, 1H), 7.67 (d, J = 7.0 Hz, 1H), 7.54 (d, J = 7.7 Hz, 1H), 7.38 (t, J = 7.4 Hz, 1H), 7.20 – 7.05 (m, 3H), 2.51 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 173.54, 138.43(m), 137.79, 132.49, 131.92, 131.59, 131.12, 130.96 (q, J = 3.61 Hz), 130.88, 130.02, 129.84, 124.8 (q, J = 3.56 Hz), 123.77 (q, J = 271.27 Hz), 21.19; **HRMS** (TOF MS ES⁺) C₁₅H₁₁O₂F₃SeNa⁺ m/z (%) = 382.9787([M+Na]⁺, 100%).

6a: White solid, **Yield**: 72% (35 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.35 (m, 2H), 7.32 – 7.24 (m, 3H), 7.18 (d, *J* = 7.7 Hz, 1H), 7.13 – 7.08 (m, 2H), 2.44 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 172.49, 136.34, 135.82, 133.81, 131.72, 130.16, 130.12, 129.36, 129.31, 127.42, 20.16; **HRMS** (TOF MS ES⁺) C₁₄H₁₂O₂SNa⁺ m/z (%) = 267.0479 ([M+Na]⁺, 100%).

6b

6b: White solid, **Yield**: 75% (39 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (dt, J = 3.3, 2.0 Hz, 2H), 7.32 – 7.20 (m, 3H), 6.94 (s, 2H), 2.42 (s, 3H), 2.22 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 173.19, 140.50, 136.56, 136.01, 133.88, 132.72, 131.60, 130.70, 130.46, 129.27, 127.31, 21.27, 20.26; **HRMS** (TOF MS ES⁺) C₁₅H₁₄O₂SK⁺ m/z (%) = 297.0320 ([M+K]⁺, 100%).

6c: White solid, **Yield**: 64% (39 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.39 (m, 4H), 7.38 – 7.27 (m, 6H), 7.25 – 7.18 (m, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 173.41, 141.02, 139.86, 135.05, 134.91, 132.42, 130.88, 130.32, 129.46, 128.82, 128.62, 128.49, 128.19, 127.99, 127.87; **HRMS** (TOF MS ES⁺) C₁₉H₁₄O₂SNa⁺ m/z (%) = 329.0613 ([M+Na]⁺, 100%).

6d: White solid, **Yield**: 68% (33 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 7.94 (d, J = 1.5 Hz, 1H), 7.58 – 7.53 (m, 2H), 7.47 – 7.37 (m, 3H), 7.11 (dd, J = 8.3, 1.8 Hz, 1H), 6.75 (d, J = 8.3 Hz, 1H), 2.32 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 171.16, 140.58, 135.49, 134.60, 134.30, 132.88, 132.60, 129.86, 129.14, 128.00, 125.72, 20.68; **HRMS** (TOF MS ES⁺) C₁₄H₁₂O₂SNa⁺ m/z (%) = 267.0465 ([M+Na]⁺, 100%).

6e: White solid, **Yield**: 66% (34 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 7.63 (d, J = 1.9 Hz, 1H), 7.55 – 7.46 (m, 2H), 7.43 – 7.33 (m, 3H), 6.96 – 6.77 (m, 2H), 3.81 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 171.08, 157.30, 134.53, 133.71, 130.50, 129.75, 129.16, 128.84, 128.72, 120.62, 115.96, 55.72; **HRMS** (TOF MS ES⁺) C₁₄H₁₂O₃SNa⁺ m/z (%) = 283.0430 ([M+Na]⁺, 100%).

6f: White solid, **Yield**: 60% (42 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.36 (m, 4H), 7.33 – 7.23 (m, 6H), 6.94 (s, 2H), 2.12 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 171.53, 141.00, 135.82, 135.15, 132.14, 131.79, 129.42, 129.32, 127.74, 21.32; **HRMS** (TOF MS ES⁺) C₂₀H₁₆O₂S₂Na⁺ m/z (%) = 375.0500 ([M+Na]⁺, 100%).

6g: White solid, **Yield**: 54% (39 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 7.49 (m, 4H), 7.39 – 7.33 (m, 6H), 6.49 (d, J = 9.0 Hz, 2H); ¹³**C NMR** (125 MHz, CDCl₃) δ 163.30 (d, J = 254.7 Hz), 141.90 (d, J = 7.5 Hz), 134.36, 132.69, 129.91, 129.63, 129.19, 114.35 (d, J = 24.8 Hz); **HRMS** (TOF MS ES⁺) C₁₉H₁₃O₂FS₂Na⁺ m/z (%) = 379.0231 ([M+Na]⁺, 100%).

7a: Yellow solid, **Yield**: 86% (47 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 8.43 – 8.32 (m, 1H), 7.57 (dd, J = 7.7, 1.0 Hz, 1H), 7.51 – 7.45 (m, J = 7.4, 1.7 Hz, 2H), 7.44 – 7.39 (m, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.23 (dd, J = 7.4, 0.5 Hz, 1H), 2.80 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 185.83, 144.21, 135.53, 134.32, 133.25, 131.66, 131.04, 130.99, 130.92, 130.49, 127.71, 126.77, 126.58, 24.44; **HRMS** (TOF MS ES⁺) C₁₄H₁₀OSeNa⁺ m/z (%) = 296.9764 ([M+Na]⁺, 100%).

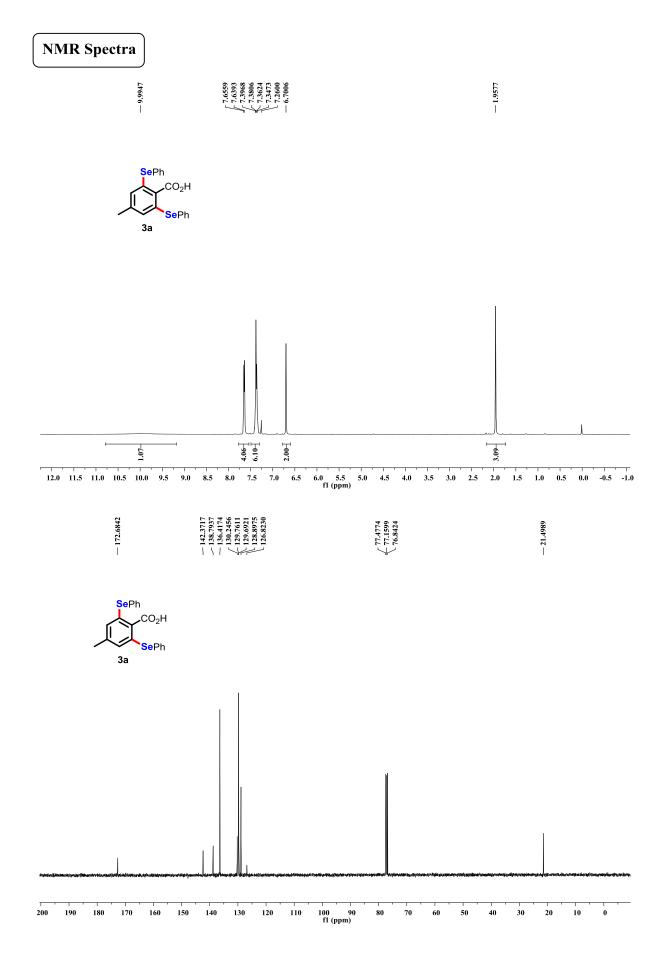
7b: Yellow solid, **Yield**: 60% (35 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 8.41 – 8.30 (m, 1H), 7.59 – 7.51 (m, 1H), 7.49 – 7.40 (m, 2H), 7.40 – 7.36 (m, 1H), 7.19 (dd, *J* = 7.9, 0.9 Hz, 1H), 6.94 (d, *J* = 8.3 Hz, 1H), 3.98 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 184.06, 162.26, 136.72, 134.90, 132.61, 132.52, 131.52, 130.88, 127.49, 126.90, 121.64, 120.55, 110.11, 56.45; **HRMS** (TOF MS ES⁺) C₁₄H₁₀O₂SeH⁺ m/z (%) = 290.9926 ([M+H]⁺, 100%).

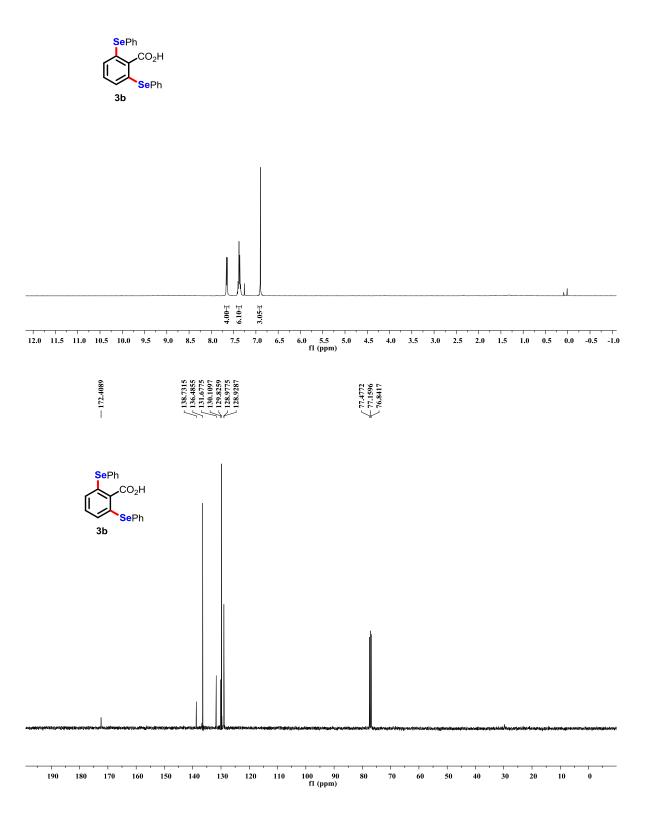
7c: Yellow solid, **Yield**: 65% (44 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 8.32 (dd, J = 7.8, 1.7 Hz, 1H), 7.71 (dd, J = 7.8, 1.2 Hz, 1H), 7.60 – 7.53 (m, 2H), 7.49 (td, J = 7.5, 1.6 Hz, 1H), 7.46 – 7.40 (m, 1H), 7.23 (dd, J = 14.9, 7.1 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 183.86, 136.45, 134.37, 133.68, 132.23, 132.00, 131.46, 130.95, 129.78, 127.96, 127.63, 127.21, 124.45; **HRMS** (TOF MS ES⁺) C₁₃H₇OBrSeNa⁺ m/z (%) = 360.8763 ([M+Na]⁺, 100%).

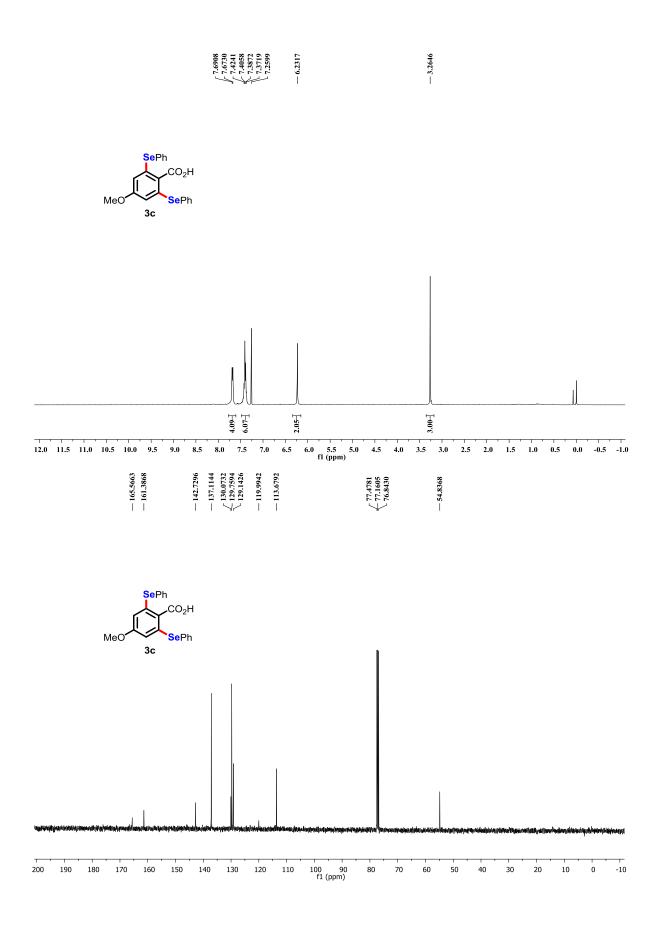
7d: Yellow solid, **Yield**: 67% (39 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 8.71 – 8.55 (m, 2H), 7.67 – 7.58 (m, 1H), 7.58 – 7.51 (m, 2H), 7.50 – 7.41 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 181.04, 134.89, 133.24, 133.17, 132.61, 132.47, 132.06, 131.67, 131.03, 130.52, 129.74, 128.42, 127.16; **HRMS** (TOF MS ES⁺) C₁₃H₇OClSeNa⁺ m/z (%) = 316.9222 ([M+Na]⁺, 100%).

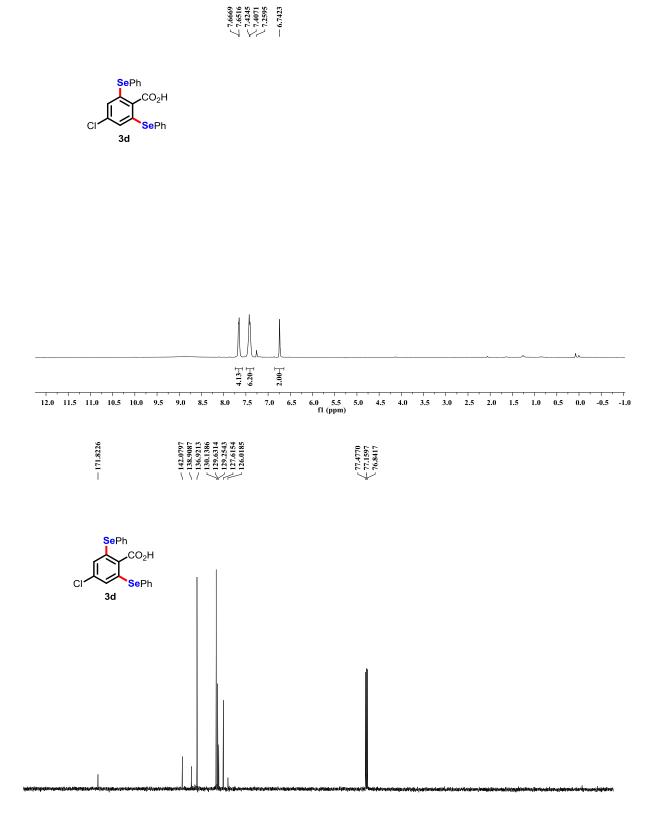
PhO Se Te

7e: Yellow solid, **Yield**: 62% (44 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 8.62 (d, J = 8.1, 1.6 Hz, 1H), 8.26 (d, J = 2.8 Hz, 1H), 7.70 – 7.59 (m, 2H), 7.57 – 7.51 (m, 1H), 7.49 – 7.43 (m, 1H), 7.41 – 7.34 (m, 2H), 7.31 (dd, J = 8.6, 2.9 Hz, 1H), 7.19 – 7.13 (m, 1H), 7.09 – 7.03 (m, 2H); ¹³C **NMR** (100 MHz, CDCl₃) δ 181.63, 156.83, 156.64, 135.23, 132.33, 132.26, 131.64, 130.50, 130.16, 129.89, 128.65, 128.46, 126.94, 124.29, 124.15, 119.89, 119.39; **HRMS** (TOF MS ES⁺) C₁₉H₁₂O₂SeH⁺ m/z (%) = 353.0100 ([M+H]⁺, 100%).

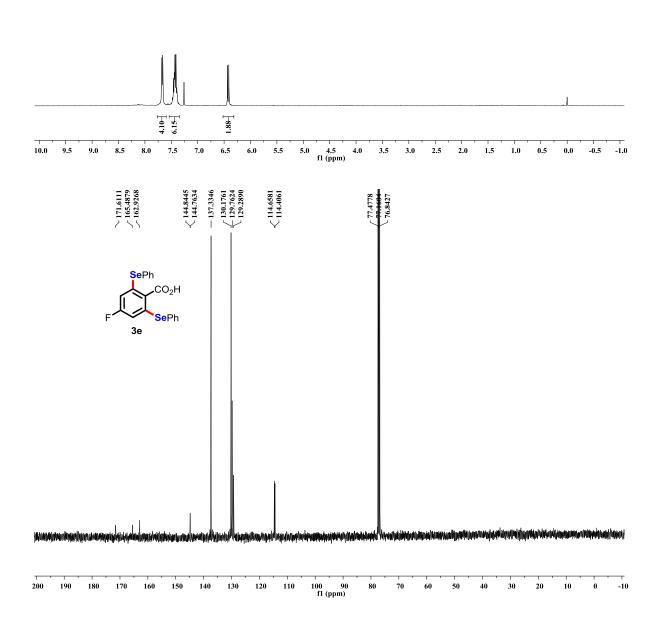

7f: Yellow solid, **Yield**: 58% (38 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 8.91 (d, J = 1.8 Hz, 1H), 8.65 (dd, J = 8.1, 1.7 Hz, 1H), 7.80 – 7.70 (m, 2H), 7.64 (dd, J = 7.9, 1.6 Hz, 1H), 7.61 – 7.55 (m, 1H), 7.54 – 7.46 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 181.19, 139.51, 134.56, 132.92, 131.74, 131.11, 130.64, 129.40 (q, J = 33.8 Hz), 129.30, 128.65 (q, J = 3.9 Hz), 128.42, 128.08 (q, J = 3.3 Hz), 127.52, 123.82 (q, J = 272.0 Hz); **HRMS** (TOF MS ES⁺) C₁₄H₇OF₃SeH⁺ m/z (%) = 328.9662 ([M+H]⁺, 100%).

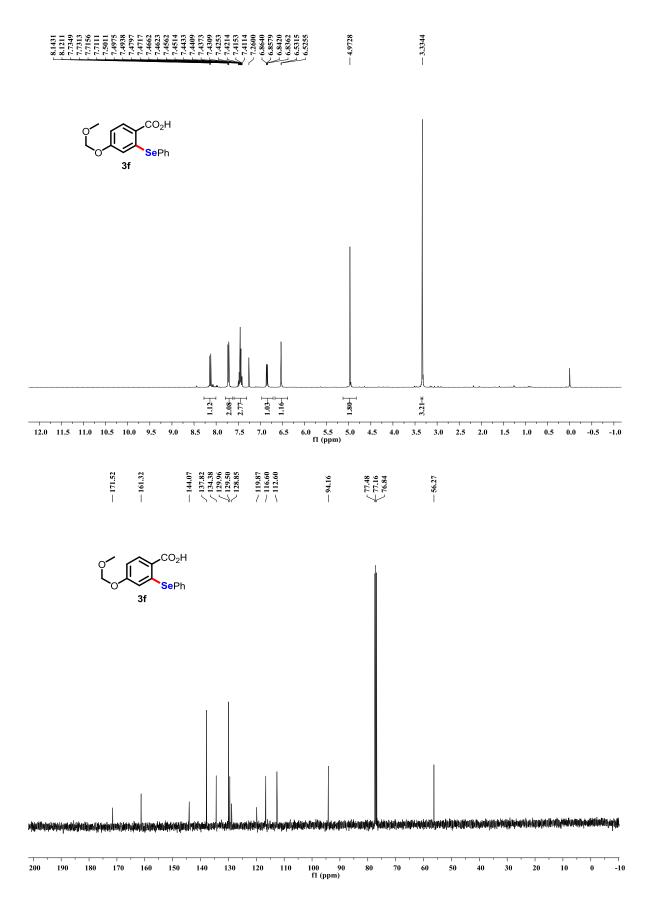

7g: Yellowish solid, **Yield**: 81% (43 mg); ¹**H NMR** (500 MHz, CDCl₃) δ 8.80 – 8.69 (m, 1H), 7.90 (d, J = 5.2 Hz, 1H), 7.73 (dd, J = 7.1, 2.0 Hz, 1H), 7.64 – 7.52 (m, 2H), 7.33 (d, J = 5.2 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 176.58, 135.51, 134.91, 134.47, 134.31, 131.78, 130.72, 130.59, 128.91, 127.38, 127.34; **HRMS** (TOF MS ES⁺) C₁₁H₆OSSeNa⁺ m/z (%) = 288.9219 ([M+Na]⁺, 100%).

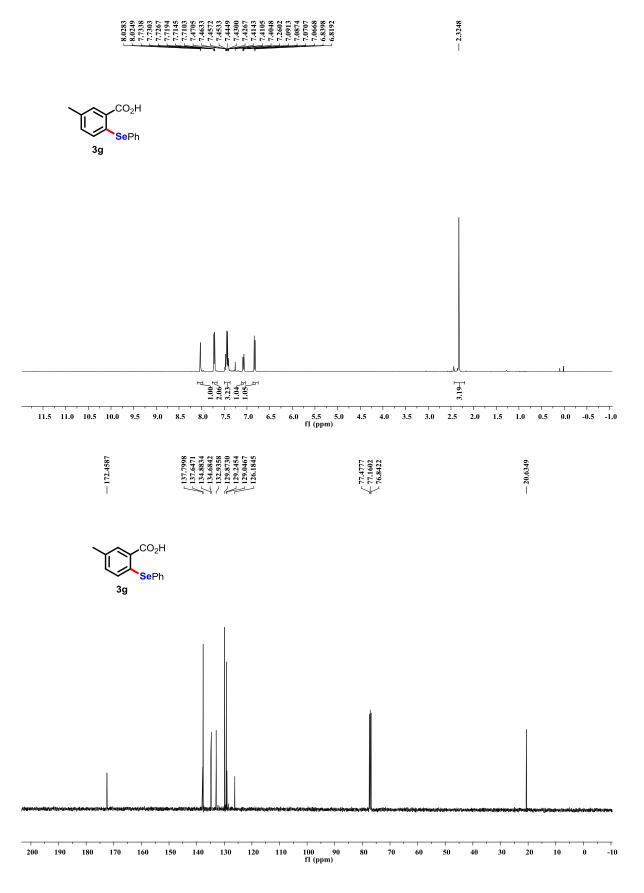


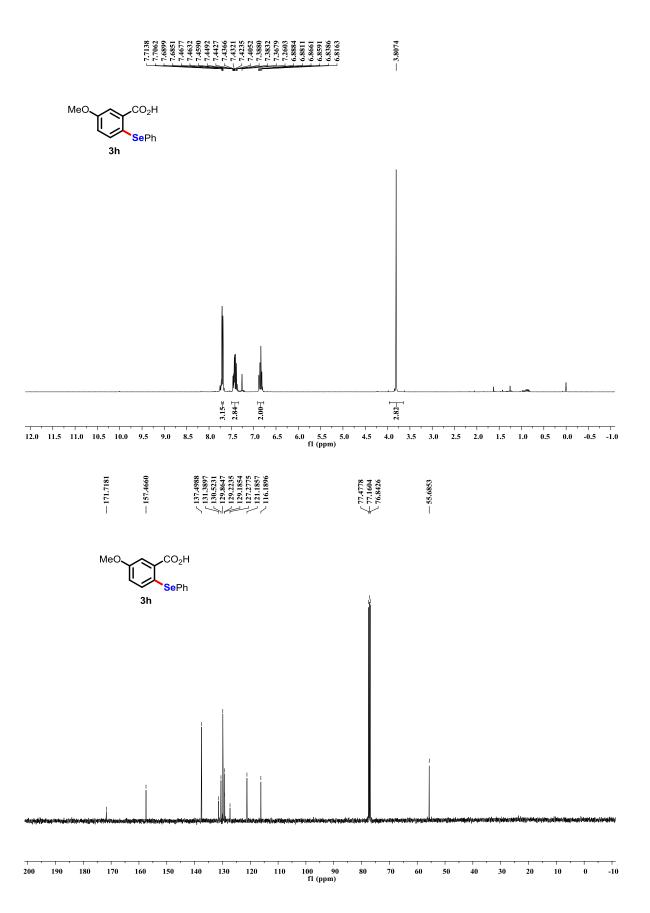

7h: White solid, **Yield**: 70% (31 mg); ¹**H NMR** (400 MHz, CDCl₃) δ 8.68 (dd, J = 8.4, 1.5 Hz, 1H), 7.89 (d, J = 5.3 Hz, 1H), 7.72 – 7.62 (m, 2H), 7.61 – 7.54 (m, 1H), 7.29 (d, J = 5.3 Hz, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 175.25, 138.73, 137.29, 134.77, 133.62, 131.80, 129.14, 127.08, 126.77, 125.53; **HRMS** (TOF MS ES⁺) C₁₁H₆OS₂Na⁺ m/z (%) = 240.9774 ([M+Na]⁺, 100%).

7,5649 7,5610 7,5610 7,5610 7,5610 7,5614 7,5614 7,5614 7,5914 7,3924 7,3739 7,3759 7,

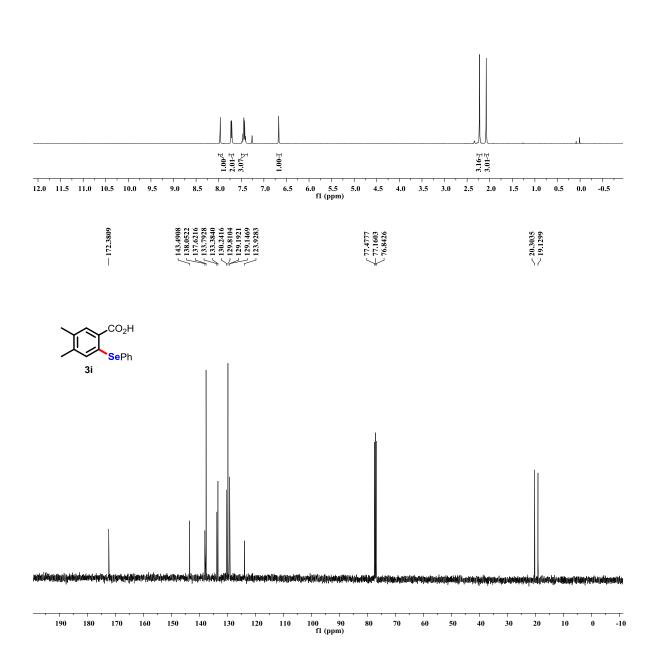




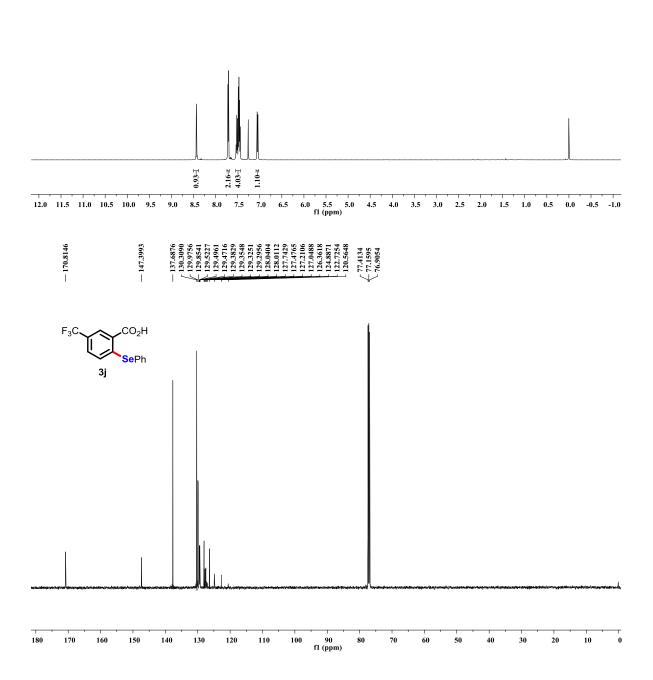

100 90 f1 (ppm) . 190

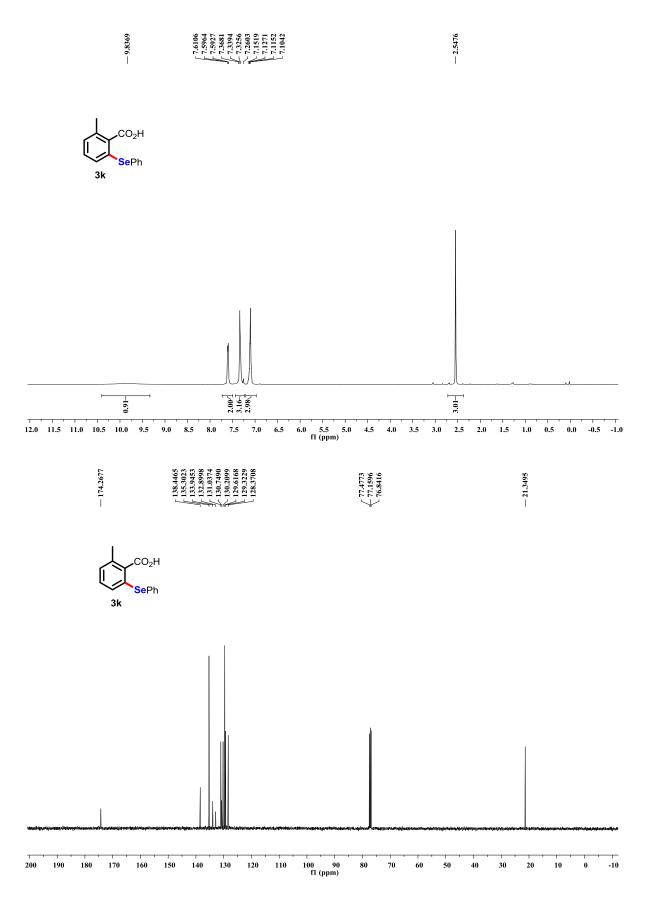




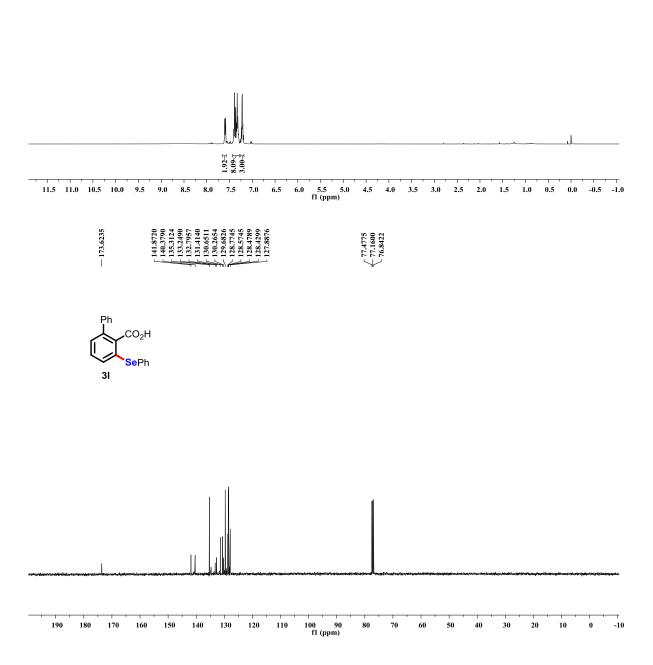


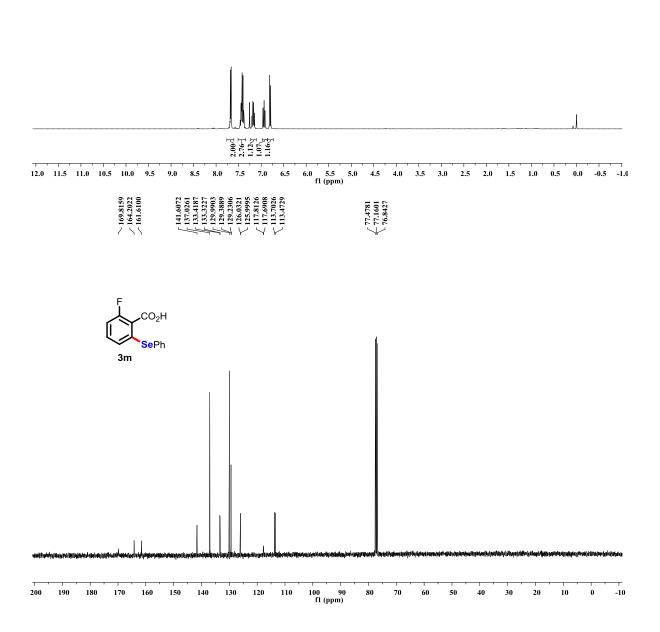
S28

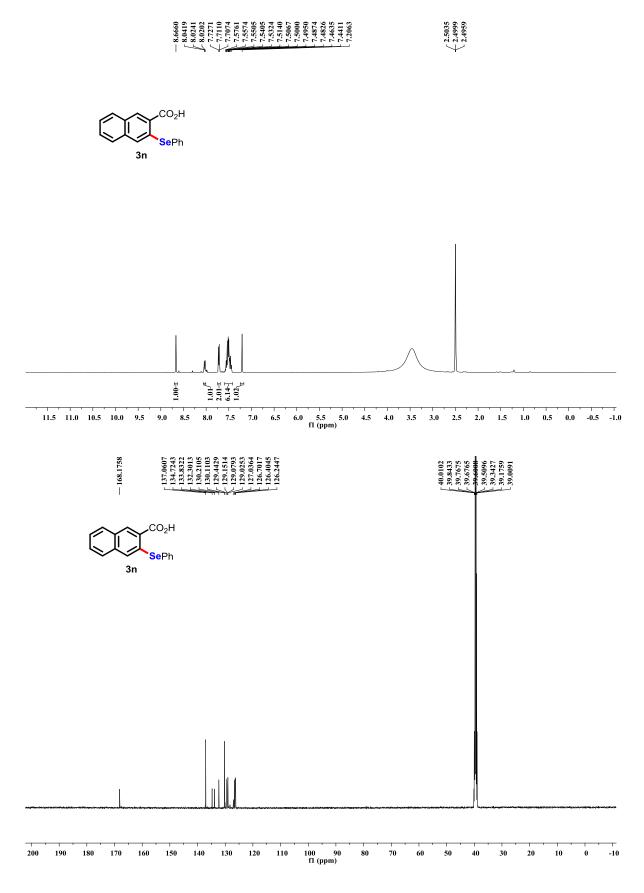

SePh

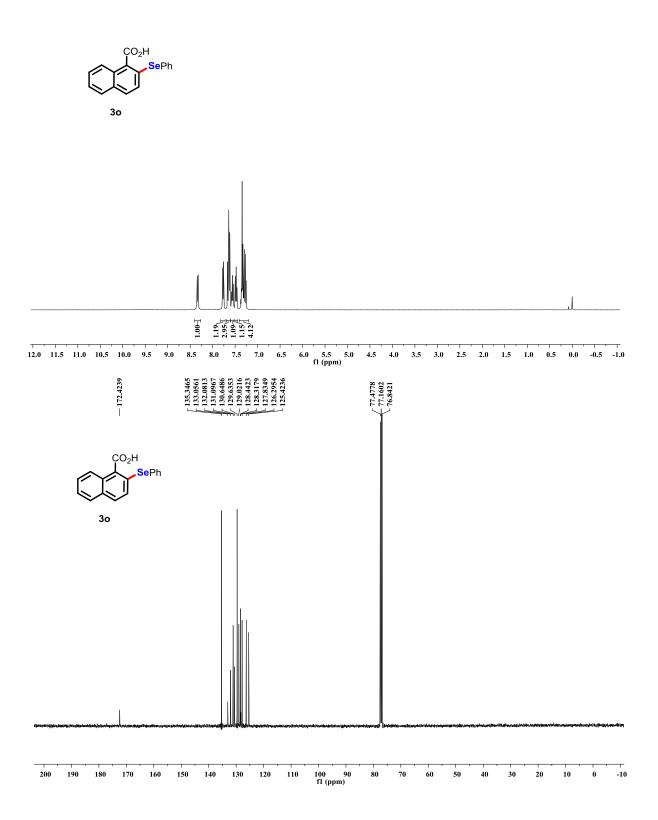


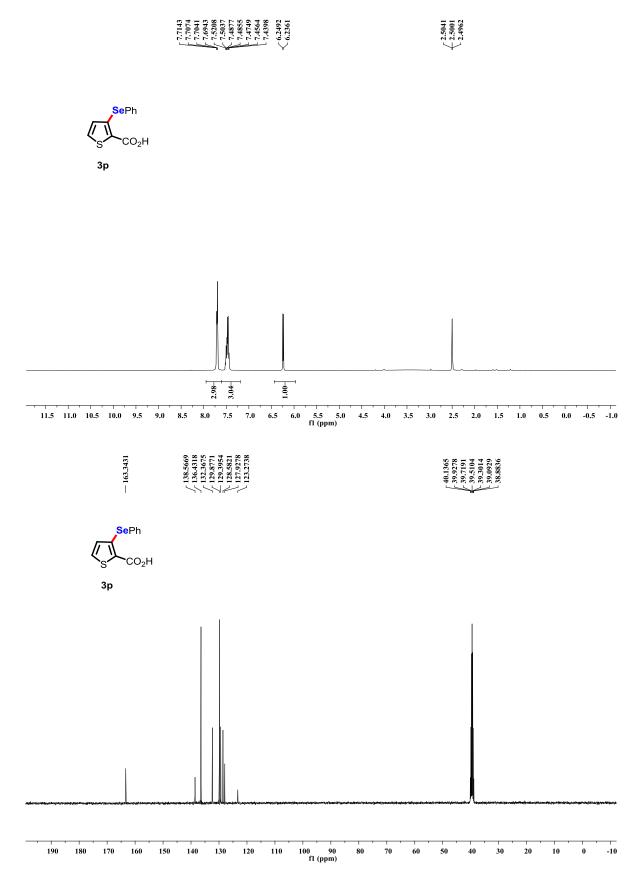
-- 2.2252 -- 2.0769

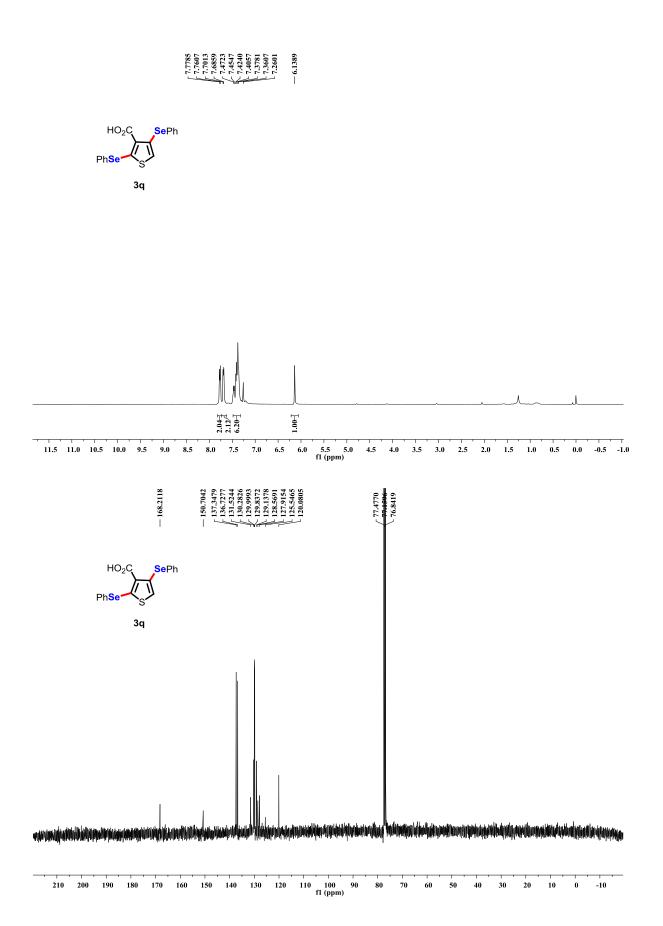

F₃C SePh

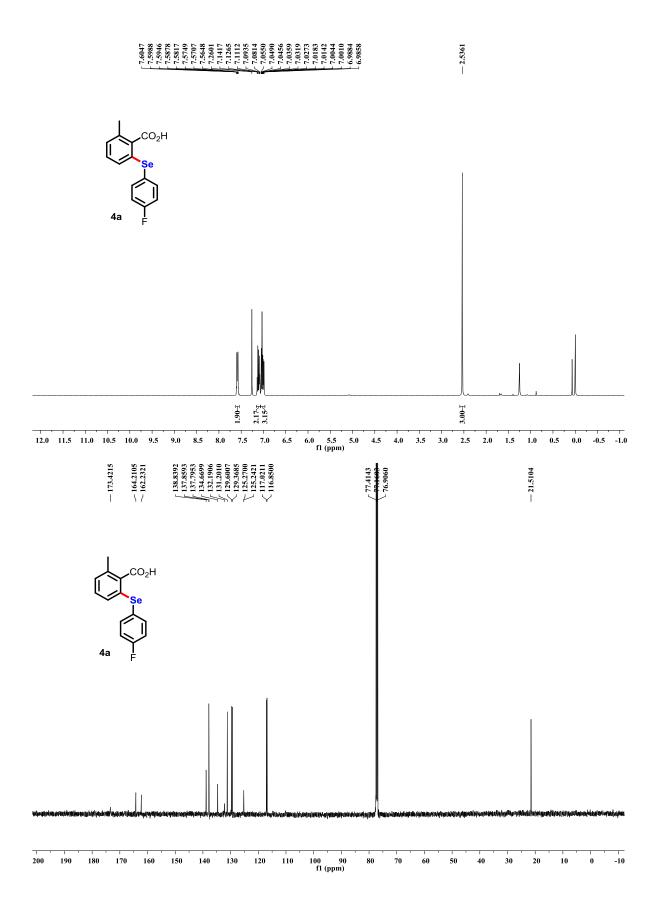

77.61 7.60 7.60 7.60 7.60 7.7.70 7.7.60 7.7.70 7.70 7

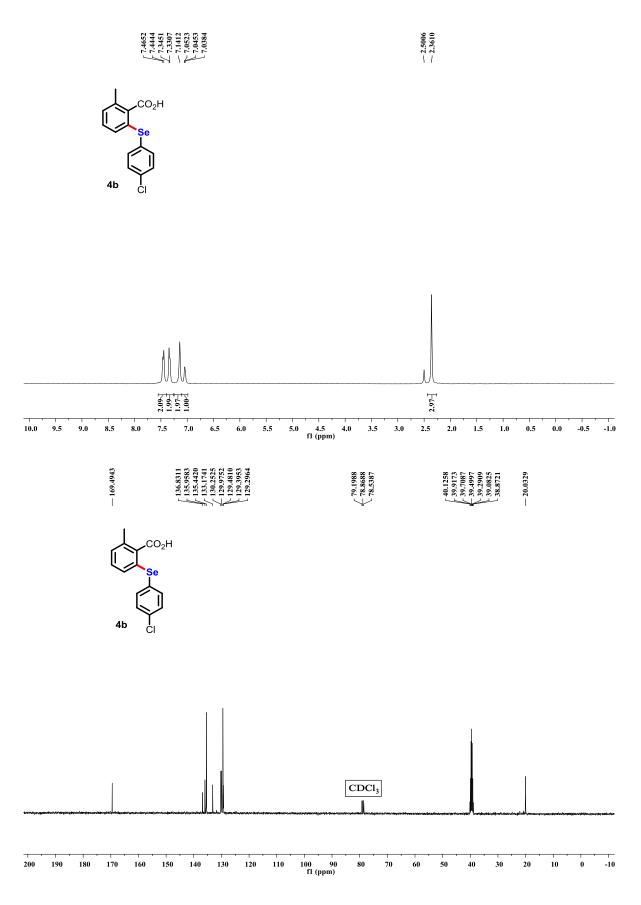


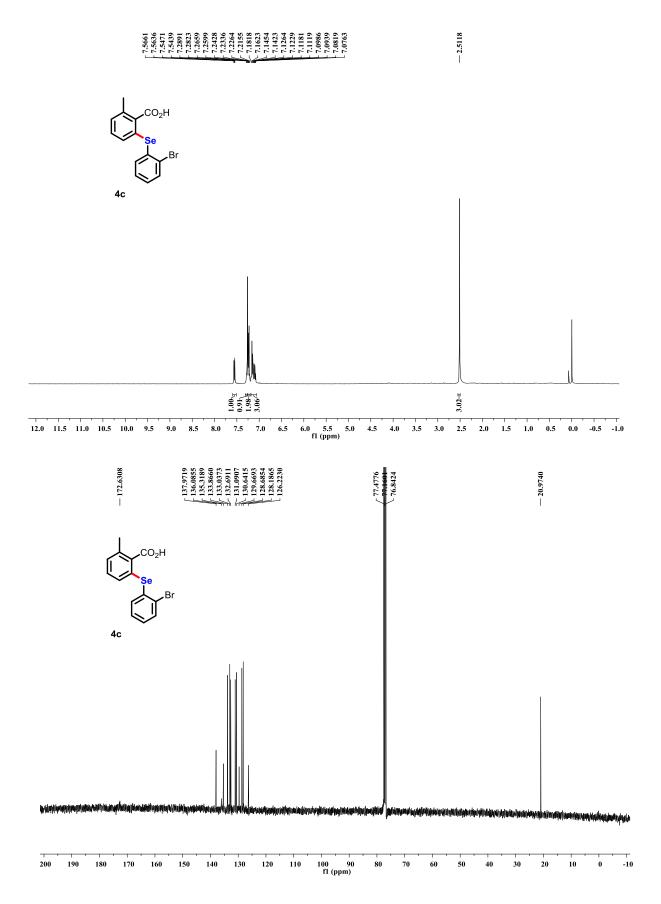

7.6917 7.6810 7.6810 7.6810 7.6810 7.6810 7.6810 7.4615 7.4615 7.4615 7.4615 7.4615 7.4615 7.4615 7.4615 7.4615 7.4615 7.4615 7.4615 7.4615 7.4615 7.4615 7.4166 7.4166 7.4166 7.4166 7.4166 7.4166 7.4116 7.7116 7.

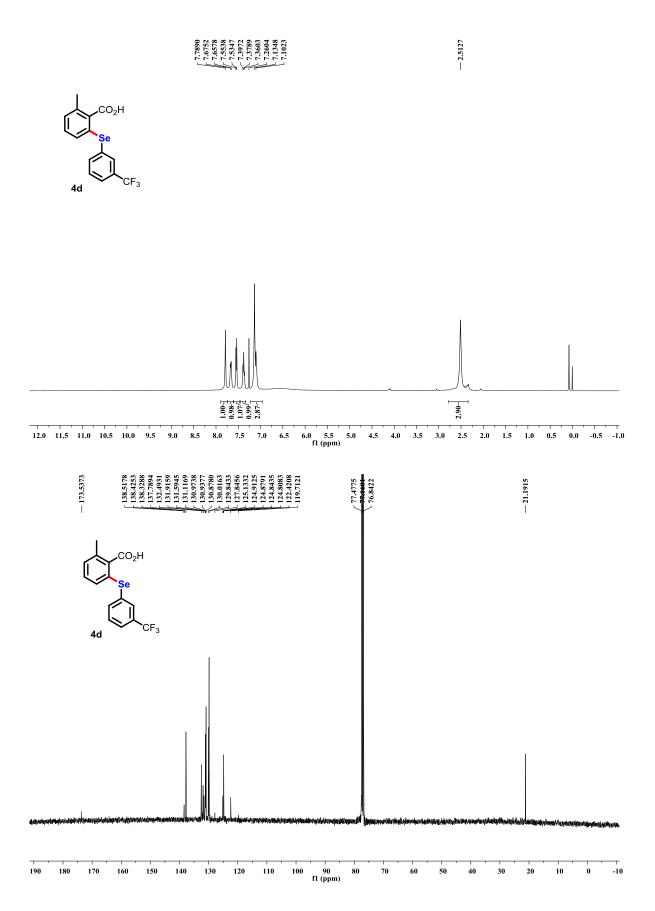


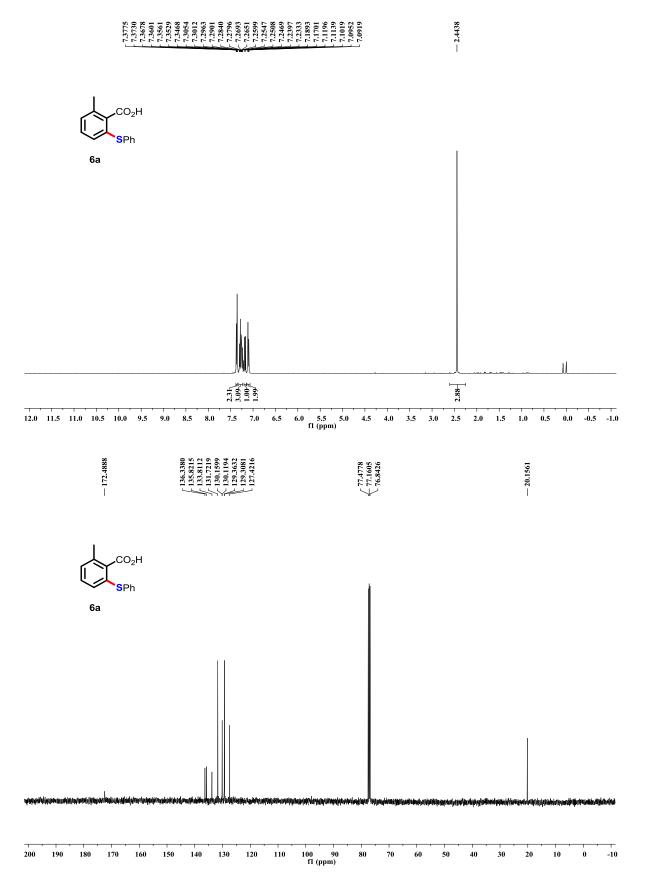


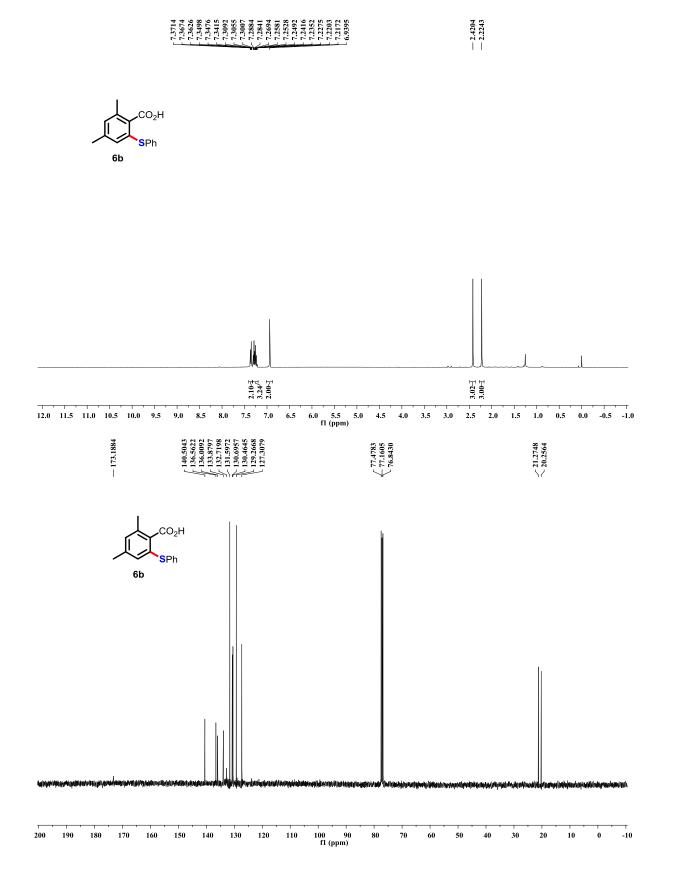


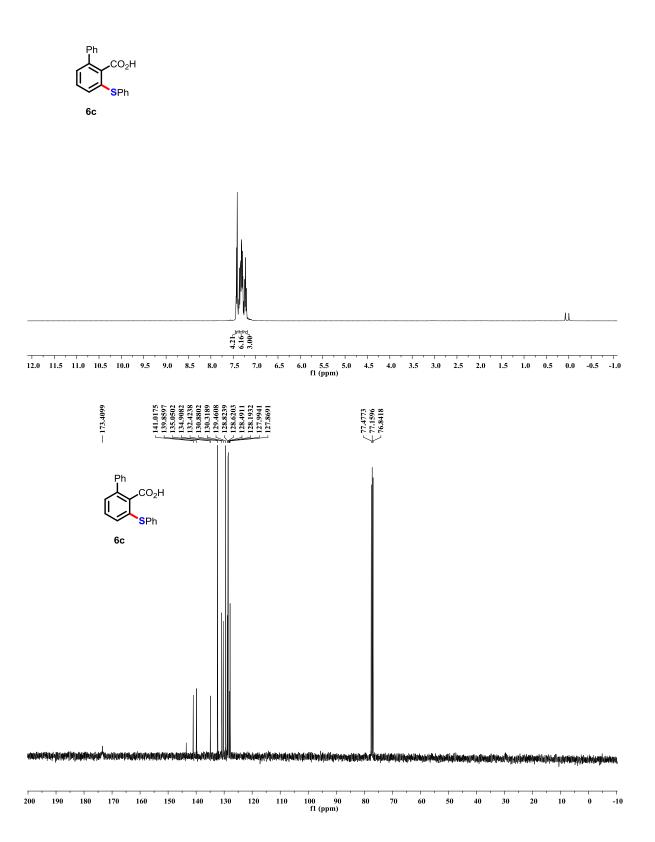


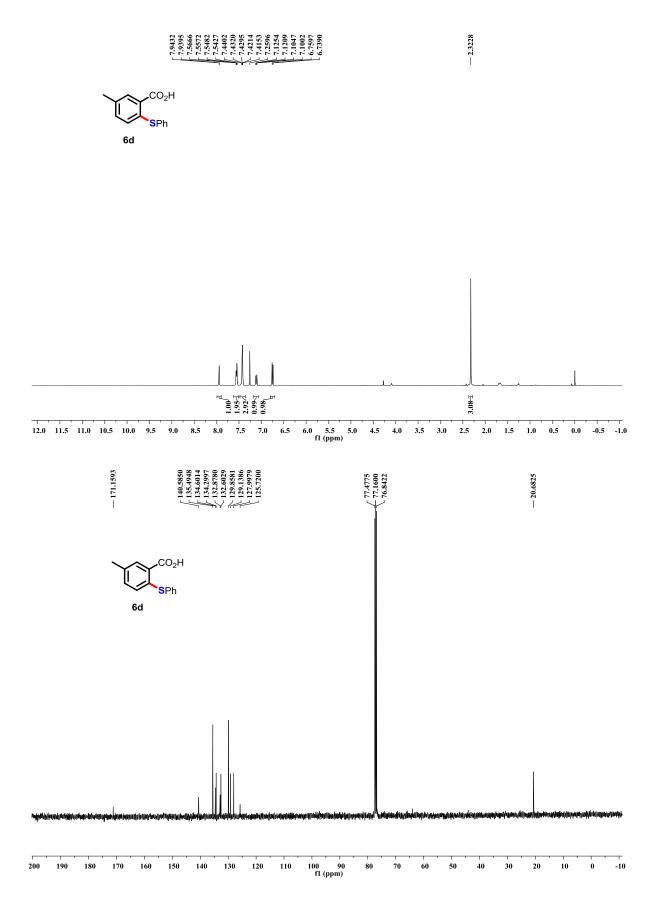


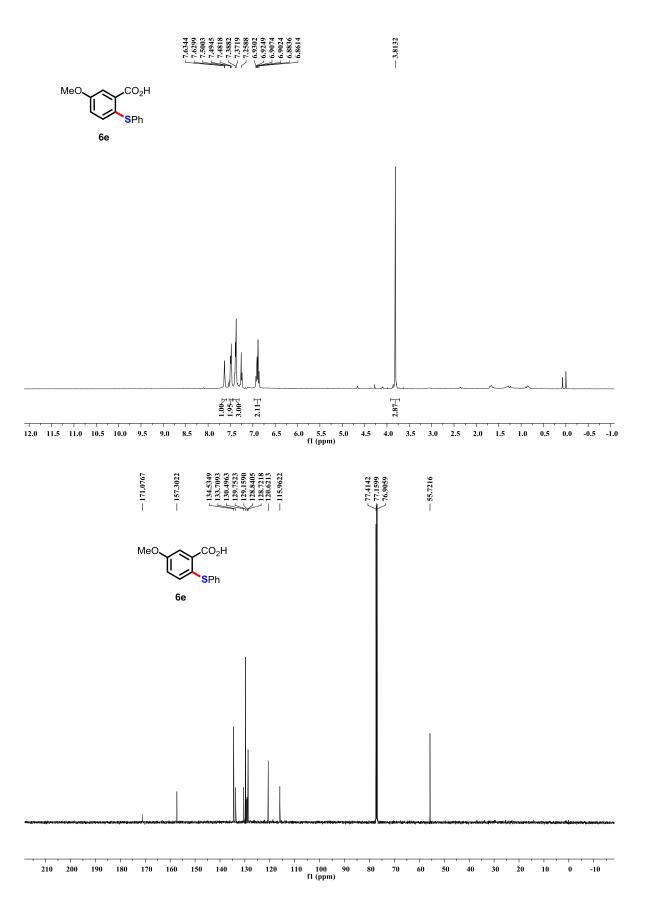


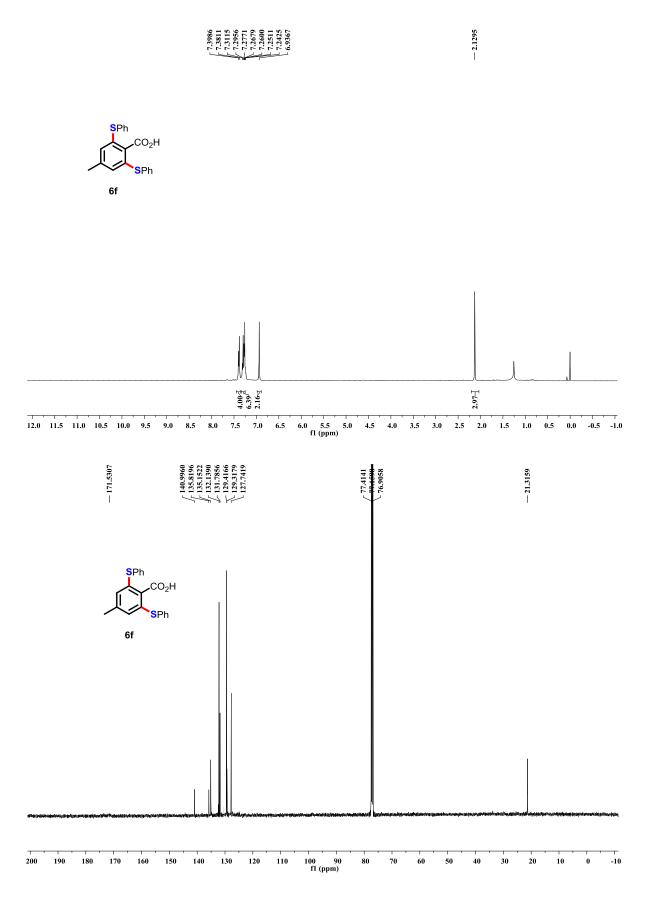


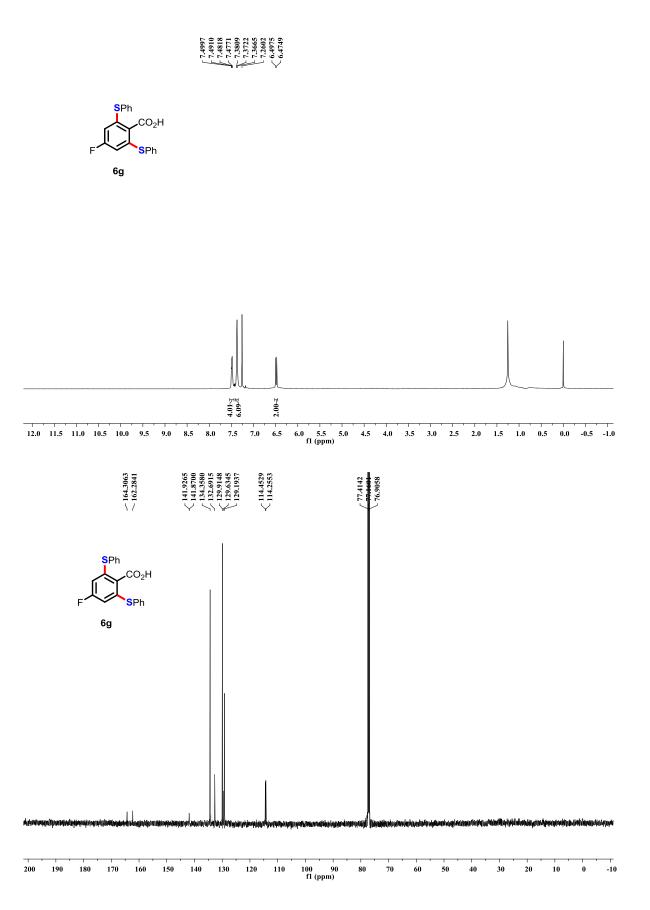


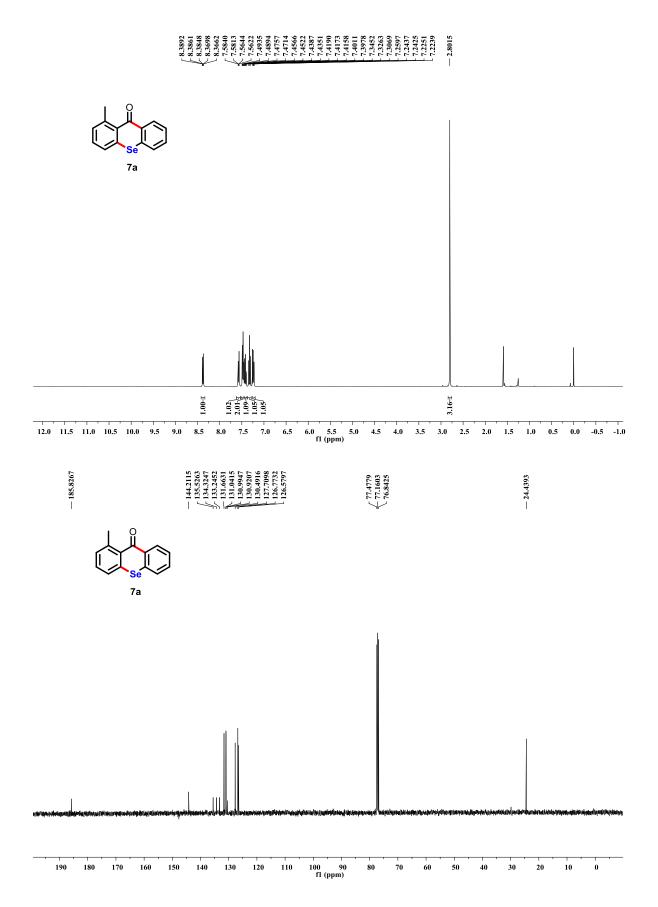


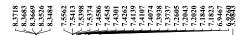


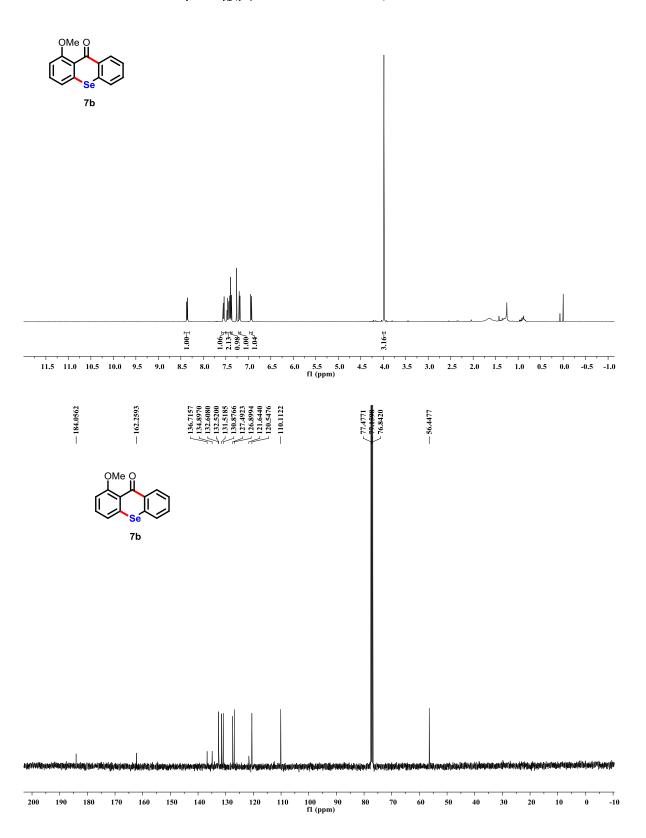


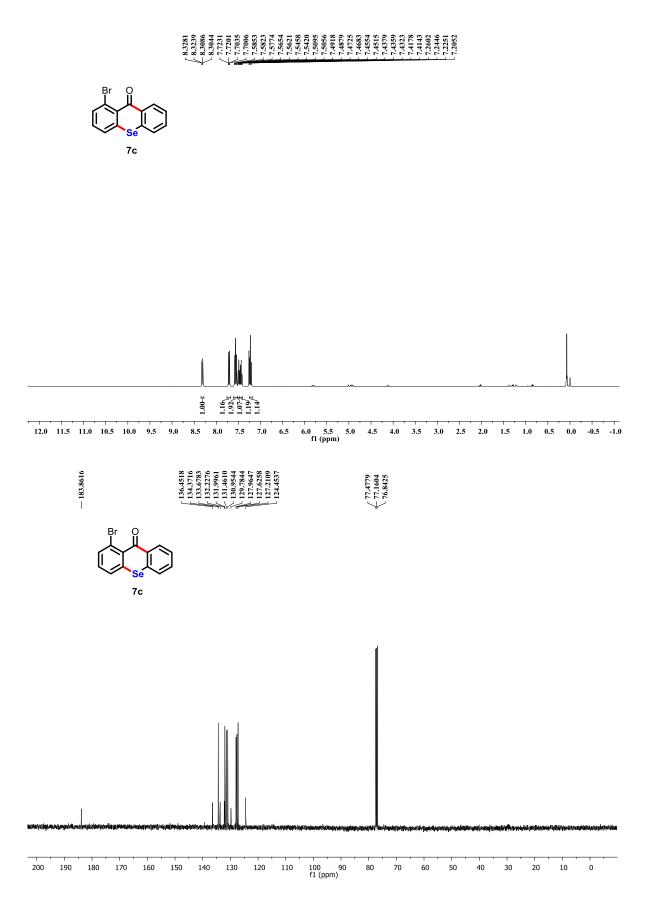


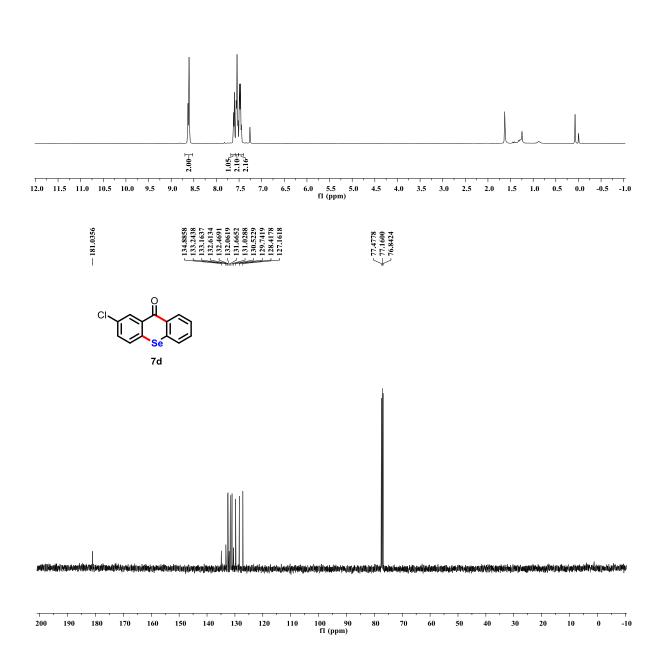

7,4350 7,4298 7,4250 7,4250 7,4213 7,4210 7,4105 7,4105 7,4105 7,4105 7,4105 7,4105 7,4105 7,4105 7,4105 7,4105 7,4105 7,7104 7,72018 7,72018 7,72018 7,72018 7,72018 7,72018 7,72018 7,72018 7,72018 7,72018 7,72018 7,7205 7,720

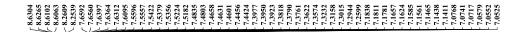


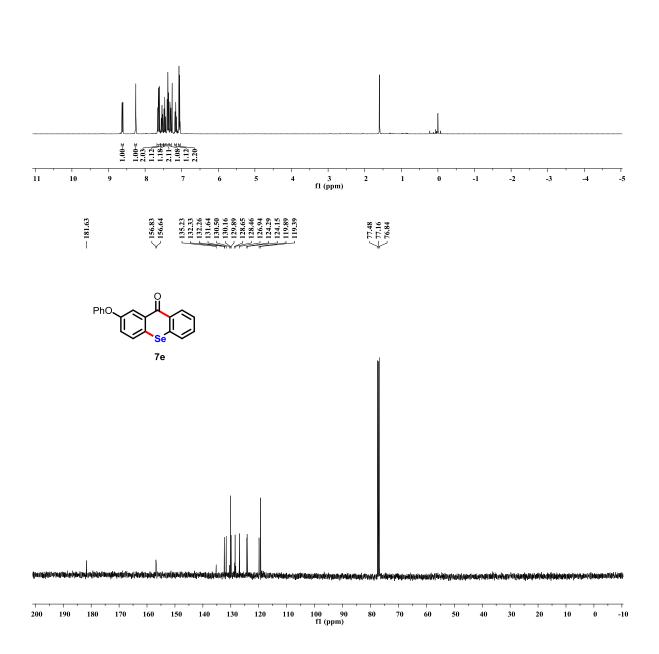


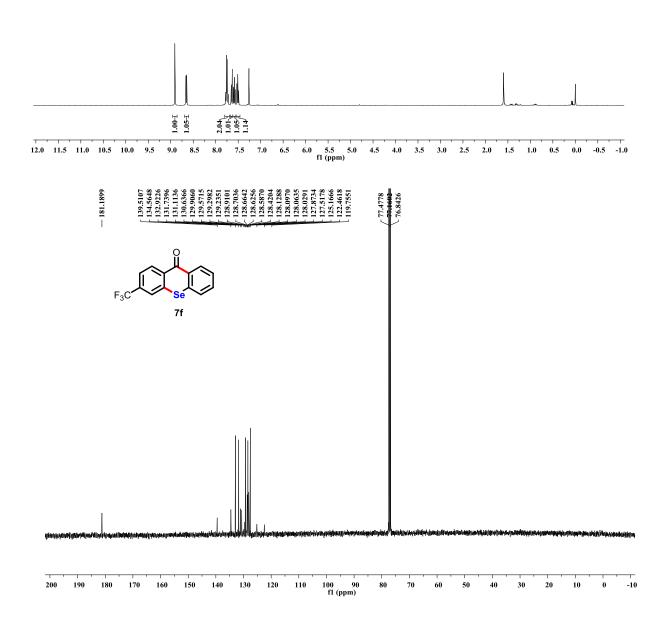


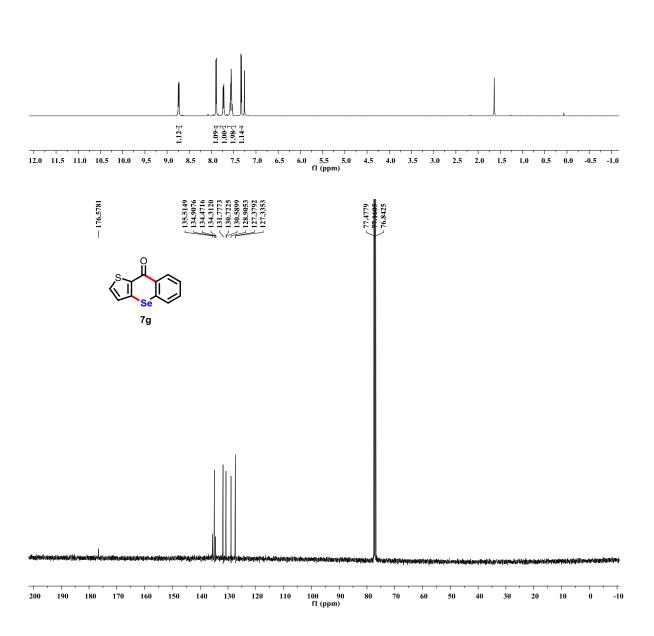


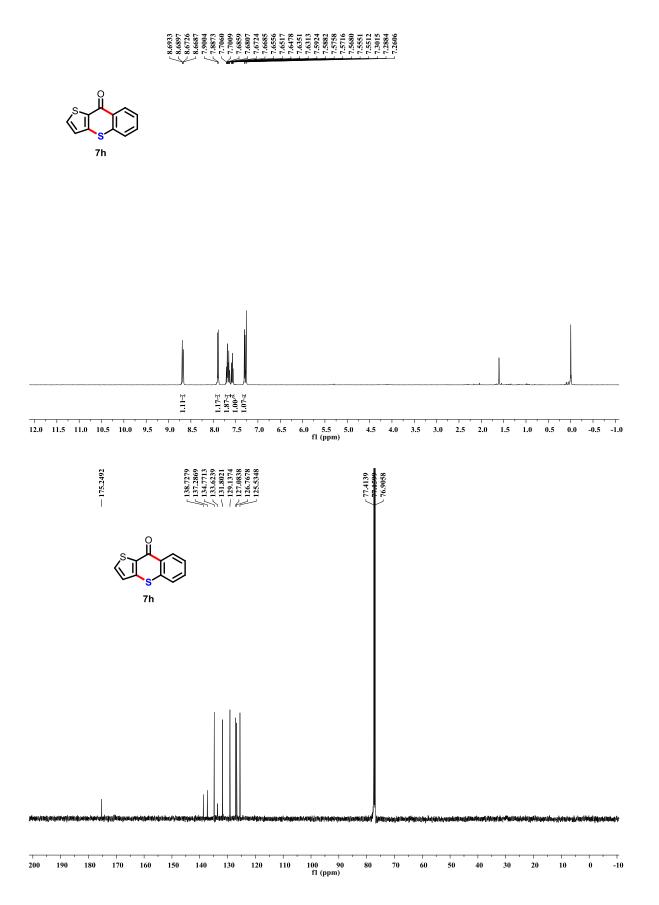












78,7492 87,749 87,749 87,74901 77,9017 77,9017 77,9017 77,8914 77,7376 77,71376 77,71376 77,71336 77,71336 77,71336 77,71336 77,71336 77,71336 77,5337 77,5538 77,55577 77,5557777777777777

