[Contents]

1. General

2. Synthetic Procedure and Physical Properties

- Synthesis and physical properties of ligand 1a
- Self-assembly of sphere 2a
- Synthesis and physical properties of ligand 1b
- Self-assembly of sphere 2b
- Synthesis and physical properties of compound 3-5

3. Catalysis

- Oxidation reaction catalyzed by sphere 2a
- Asymmetric Diels-Alder reaction catalyzed by sphere 2b
- Oxidation and asymmetric Diels-Alder cascade reaction catalyzed by sphere 2a and 2b

4. References

1. Genaral

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker DRX-500 spectrometer equipped with a 5 mm BBO-Z-gradient probe, a Bruker AV-500 spectrometer equipped with a 5 mm TCI gradient cryo probe. All NMR spectral data were collected at 300 K and the chemical shift values reported here are with respect to an internal TMS standard for CDCl_{3}, and to a residual solvent signal for DMSO- d_{6} and $\mathrm{CD}_{3} \mathrm{NO}_{2}$. Melting points were determined on a Yanaco MP-500V micro melting point apparatus. ESI-TOF-MS and CSI-TOF-MS spectra were measured on a Bruker maXis. The data analysis of mass spectra were processed on a Bruker Data Analysis (Version 4.0 SP 2) software and the simulations were performed on a Bruker IsotopePattern software. IR spectra for organic compounds were recorded with a JASCO FT/IR-6700 spectrometer. Optical rotation was measured with JASCO P-2200. Preparative size-exclusion chromatography (SEC) was carried out using a LC-908 (JAI) equipped with JAIGEL 1H and 2H columns (eluent: chloroform). Reagents and solvents were purchased from TCI, WAKO Pure Chemical Industries, Sigma-Aldrich or Kanto Chemical. $\left[\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}$ was purchased from Strem Chemicals. All the chemicals were of reagent grade and used without any further purification.

2. Synthetic Procedure and Physical Properties

- Synthesis and physical properties of ligand 1a

- Synthesis of Ethyl 2-(2,6-dibromophenoxy)acetate (9):

2,6-dibromophenol $8(5.04 \mathrm{~g}, 20.0 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.15 \mathrm{~g}, 30.0 \mathrm{mmol})$ were dissolved in DMF (60 mL). Ethyl bromoacetate $(2.44 \mathrm{~mL}, 22.0 \mathrm{mmol})$ was added, and the resulting mixture was stirred at room temperature for 16 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$, and extracted with $\mathrm{AcOEt}(200 \mathrm{~mL})$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, filtrated and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel $(\mathrm{AcOEt} / \mathrm{Hexane}=5: 95)$ to give the title compound $9(6.28 \mathrm{~g}, 18.6 \mathrm{mmol})$ as a colorless liquid in 93% yield.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}$, $2 \mathrm{H}), 4.33(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): δ $167.8(\mathrm{C}), 152.3(\mathrm{C}), 132.8(\mathrm{CH}), 127.0(\mathrm{CH}), 118.1(\mathrm{C}), 69.1\left(\mathrm{CH}_{2}\right), 61.4\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right)$; IR (ATR, cm^{-1}): 2936, 1762, 1734, 1448, 1431, 1296, 1199, 1076, 1051, 764, 719, 710, 499, 456, 429; HR-ESI-TOF-MS: $m / z=360.8876$ (calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{3} \mathrm{Na}: 360.8869$ $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)$.

[^0]4-ethynyl pyridine hydrochloride ($8.02 \mathrm{~g}, 57.5 \mathrm{mmol}$) was added to a mixture of compound 9 $(7.77 \mathrm{~g}, 23.0 \mathrm{mmol}), \mathrm{P}(t-\mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}(1.06 \mathrm{~g}, 3.68 \mathrm{mmol}), \mathrm{CuI}(350 \mathrm{mg}, 1.84 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2}(705 \mathrm{mg}, 1.84 \mathrm{mmol})$, diisopropylamine $(24.5 \mathrm{~mL}, 175 \mathrm{mmol})$ in degassed 1,4-dioxane (130 mL), and the resulting mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 16 h under Ar atmosphere. The reaction mixture was diluted with $\mathrm{CHCl}_{3}(100 \mathrm{~mL})$ and filtrated through celite pad. After washed with ethylenediamine aq., the water layer was extracted with $\mathrm{CHCl}_{3}(2 \times 100$ $\mathrm{mL})$. The combined organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then evaporated under reduced pressure. The residue was purified by column chromatography on silica gel $\left(\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}=0: 10 \rightarrow 1: 9\right)$ to give the title compound $\mathbf{1 0}$ as a brown solid $(8.13 \mathrm{~g}$, 21.3 mmol) in 92% yield.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 8.63(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41$ $(\mathrm{d}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{q}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=$ $3.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 168.4$ (C), $160.3(\mathrm{C}), 149.9(\mathrm{CH}), 134.7$ $(\mathrm{CH}), 131.0(\mathrm{C}), 125.5(\mathrm{CH}), 124.2(\mathrm{CH}), 116.3(\mathrm{C}), 91.9(\mathrm{C}), 89.0(\mathrm{C}), 70.2\left(\mathrm{CH}_{2}\right), 61.4\left(\mathrm{CH}_{2}\right)$, $14.2\left(\mathrm{CH}_{3}\right)$; IR (ATR, $\left.\mathrm{cm}^{-1}\right): 2925,2210,1765,1592,1444,1376,1187,1084,1057,827,791$, 751, 545, 516; m.p.: 89.5-92.4 ${ }^{\circ} \mathrm{C}$; HR-ESI-TOF-MS: $m / z=383.1399$ (calculated for $\left.\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}: 383.1390[\mathrm{M}+\mathrm{H}]^{+}\right)$.

- Synthesis of 2-(2,6-bis(pyridin-4-ylethynyl)phenoxy)acetic acid (11):

To a solution of compound $10(4.00 \mathrm{~g}, 10.5 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added a solution of $\mathrm{LiOH}\left(\mathrm{H}_{2} \mathrm{O}\right)(878 \mathrm{mg}, 21.0 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(21 \mathrm{~mL})$ and the resulting mixture was stirred at room temperature for 7 h . After the removal of THF under reduced pressure, the solution was neutralized with 4 N HCl aq. (5.25 mL). The resulting mixture was filtrated, and the residue was dried in vacuo to give a title compound $11(3.25 \mathrm{~g}, 9.17 \mathrm{mmol})$ as a white solid in 87%.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}, 300 \mathrm{~K}$): $\delta 8.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.64(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.53(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.19(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}, $300 \mathrm{~K}): \delta 169.8(\mathrm{C}), 160.6(\mathrm{C}), 149.9(\mathrm{CH}), 135.0(\mathrm{CH}), 131.0(\mathrm{C}), 125.3(\mathrm{CH}), 123.6(\mathrm{CH})$, $114.8(\mathrm{C}), 91.3(\mathrm{C}), 89.5(\mathrm{C}), 70.9\left(\mathrm{CH}_{2}\right)$; IR (ATR, $\left.\mathrm{cm}^{-1}\right): 3364,3055,2215,1603,1500,1449$, 1410, 1016, 822, 538; m.p.: >255 ${ }^{\circ} \mathrm{C}$ (decomposed); HR-ESI-TOF-MS: $m / z=355.1074$ (calculated for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}: 355.1077[\mathrm{M}+\mathrm{H}]^{+}$).

- Synthesis of 4-(2-(2,6-bis(pyridin-4-ylethynyl)phenoxy)acetoxy)-2,2,6,6-tetramethyl-piperidin-1-yloxyl (1a):

Compound $11(1.00 \mathrm{~g}, 2.82 \mathrm{mmol})$ was dissolved in DMF (100 mL). N, N-diisopropylethylamine (492 $\mu \mathrm{L}, \quad 2.82 \mathrm{mmol}$), O-(Benzotriazol-1-yl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyluronium Hexafluorophosphate ($2.14 \mathrm{~g}, 5.64 \mathrm{mmol}$) and 4-hydroxy-TEMPO ($972 \mathrm{mg}, 5.64 \mathrm{mmol}$) were added, and then the resulting mixture was stirred at room temperature for 23 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$, and extracted with $\mathrm{AcOEt}(2 \times 100 \mathrm{~mL})$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, filtrated and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel $\left(\mathrm{MeOH} / \mathrm{CHCl}_{3}=5: 95\right)$ and GPC (Gel Permeation Chromatography) to give the title compound $\mathbf{1 a}(1.07 \mathrm{~g}, 2.10 \mathrm{mmol})$ as a brown solid in 74% yield.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 8.64$ (br, 4H), 7.57 (br, 2H), 7.43 (br, 4H), 7.25 (br, 1H), 4.97 (br, 2H); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}, 300 \mathrm{~K}$): $\delta 8.63$ (br, 4 H), 7.68 (br, 2 H), 7.51 (br, $4 \mathrm{H}), 7.28(\mathrm{br}, 1 \mathrm{H}), 5.10(\mathrm{br}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 160.2$ (C), $150.1(\mathrm{CH})$, $134.9(\mathrm{CH}), 131.0(\mathrm{C}), 125.6(\mathrm{CH}), 124.3(\mathrm{CH}), 116.2(\mathrm{C}), 91.9(\mathrm{C}), 89.0(\mathrm{C})$. (The signals of proton and carbon in the vicinity of nitroxyl radical were not detected by ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR.); IR (ATR, cm^{-1}): 2973, 1732, 1593, 1432, 1293, 1226, 1179, 1084, 1044, 992, 833, 820, 795, $752,549,536$; m.p.: $129.5-132.0^{\circ} \mathrm{C}$; HR-ESI-TOF-MS: $m / z=509.2312$ (calculated for $\left.\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{4}: 509.2309[\mathrm{M}+\mathrm{H}]^{+}\right)$.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of ligand $\mathbf{1 a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

1a

a

- Self-assembly of sphere 2a

To a solution of compound $\mathbf{1 a}(2.54 \mathrm{mg}, 5.00 \mu \mathrm{~mol})$ in $\mathrm{CD}_{3} \mathrm{NO}_{2}(250 \mu \mathrm{~L})$ was added a solution of $\left[\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}(1.11 \mathrm{mg}, 2.50 \mu \mathrm{~mol})$ in $\mathrm{CD}_{3} \mathrm{NO}_{2}(250 \mu \mathrm{~L})$ and the resulting mixture was stirred at room temperature for 30 min . The quantitative formation of sphere $\mathbf{2 a}$ was confirmed by ${ }^{1} \mathrm{H}$ NMR and CSI-TOF-MS.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}, 300 \mathrm{~K}$): no significant signal of 2 a was detected due to the paramagnetic shifts derived from the nitroxyl radical. CSI-TOF-MS $\left(\mathrm{BF}_{4}^{-}\right.$salt, $\left.\mathrm{CH}_{3} \mathrm{CN}\right): m / z=$ 1327.2044 (calculated for $\left[\mathrm{M}-11\left(\mathrm{BF}_{4}^{-}\right)\right]^{11+} 1327.2037$), $m / z=1209.3511$ (calculated for $[\mathrm{M}-$ $\left.\left.12\left(\mathrm{BF}_{4}^{-}\right)\right]^{12+} 1209.3531\right), m / z=1109.6377$ (calculated for $\left.\left[\mathrm{M}-13\left(\mathrm{BF}_{4}^{-}\right)\right]^{13+} 1109.6334\right), m / z=$ 1024.1604 (calculated for $\left[\mathrm{M}-14\left(\mathrm{BF}_{4}^{-}\right)\right]^{14+} 1024.1593$), $m / z=950.0862$ (calculated for $[\mathrm{M}-$ $\left.\left.15\left(\mathrm{BF}_{4}^{-}\right)\right]^{15+} 950.0818\right)$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra of ligand 1a and sphere $\mathbf{1 b}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}, 300 \mathrm{~K}\right)$.

Generic Display Report

Analysis Info		Acquisition Date	5/11/2016 12:28:42 AM
Analysis Name	D:IDatalito\HI-302ITEMPO sphereli40-q2.0-c2.5-T sphere_1-F,1_01_474.d		
Method	Operator	BDAL@DE	
Sample Name	i40-q2.0-c2.5.m	Instrument	maXis
Comment			

Figure S4. CSI-TOF-MS spectrum of sphere 2a(BF_{4}^{-}salt, $\left.\mathrm{CH}_{3} \mathrm{CN}\right)$.

Figure S5. Isotopepattern of 13^{+}ion peak (observed and simulated pattern) of CSI-TOF-MS spectrum of sphere 2a.

- Synthesis and physical properties of ligand 1b

15

- Synthesis of tert-butyl (2-(2,6-dibromophenoxy)ethyl)carbamate (13):

Compound $12(5.00 \mathrm{~g}, 31.0 \mathrm{mmol})$ and 2,6-dibromophenol $(7.81 \mathrm{~g}, 31.0 \mathrm{mmol})$ were dissolved in THF (30 mL) and cooled to $0^{\circ} \mathrm{C}$. A solution of DEAD ($40 \mathrm{wt} \%$ solution in toluene; 21.1 mL , 46.5 mmol) and triphenylphosphine ($12.2 \mathrm{~g}, 46.5 \mathrm{mmol}$) in THF (50 mL), cooled to $0^{\circ} \mathrm{C}$, was added slowly. The resulting mixture was stirred at room temperature for 24 h , and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel $(\mathrm{AcOEt} / \mathrm{Hexane}=1: 9)$ to give the title compound $\mathbf{1 3}(12.1 \mathrm{~g}, 30.6 \mathrm{mmol})$ as a white solid in 99\% yield.
${ }^{1}{ }^{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26$ (br, 1H), 4.10 (br, 2H), 3.58 (br, 2H), 1.47 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 156.0$ (C), $152.8(\mathrm{C}), 132.8(\mathrm{CH}), 126.5(\mathrm{CH}), 118.3(\mathrm{C}), 79.4(\mathrm{C}), 72.3\left(\mathrm{CH}_{2}\right), 40.9\left(\mathrm{CH}_{2}\right), 28.5$ $\left(\mathrm{CH}_{3}\right)$; IR (ATR, $\left.\mathrm{cm}^{-1}\right): 3319,2978,2213,1675,1528,1438,1365,1281,1243,1152,1030,998$, 890, 722, 615; m.p.: 71.1-73.0 ${ }^{\circ} \mathrm{C}$; HR-ESI-TOF-MS: $m / z=417.9432$ (calculated for $\left.\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{NO}_{3} \mathrm{Na}: 417.9448[\mathrm{M}+\mathrm{Na}]^{+}\right)$.

- Synthesis of tert-butyl (S)-(1-((2-(2,6-dibromophenoxy)ethyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate (14):

Compound $13(17.1 \mathrm{~g}, 43.3 \mathrm{mmol})$ was dissolved in $\mathrm{AcOEt}(10 \mathrm{~mL})$. To the solution, 4 N HCl in AcOEt ($108 \mathrm{~mL}, 433 \mathrm{mmol}$) was slowly added. After the mixture was stirred for 1 h at room temperature, the solvents were blown off under the stream of air and the resulting white solid was dried in vacuo. Quantitative removal of boc group was confirmed by ${ }^{1} \mathrm{H}$ NMR measurement. The obtained 2-(2,6-dibromophenoxy)ethan-1-amine hydrochloride (14.3 g, 43.3 $\mathrm{mmol})$ and DIEA $(18.8 \mathrm{~mL}, 108 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(160 \mathrm{~mL})$. To the solution, N-(tert-Butoxycarbonyl) -L-phenylalanine ($13.7 \mathrm{~g}, 51.8 \mathrm{mmol}$), $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(7.93 \mathrm{~g}, 51.8 \mathrm{mmol})$, $\mathrm{EDCI} \cdot \mathrm{HCl}(9.93 \mathrm{~g}, 51.8 \mathrm{mmol})$ were added. After the mixture was stirred for 10 h at room temperature, the solution was washed with sat. NaHCO_{3} aq. $(2 \times 100 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, and then the organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude product was purified by column chromatography on silica gel $\left(\mathrm{MeOH} / \mathrm{CHCl}_{3}=1: 99\right)$ to give the title compound $14(21.9 \mathrm{~g}, 40.5 \mathrm{mmol})$ as a white solid in 94% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ $(\mathrm{m}, 3 \mathrm{H}), 6.88(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{br}, 1 \mathrm{H}), 4.96(\mathrm{br}, 1 \mathrm{H}), 4.43(\mathrm{br}, 1 \mathrm{H}), 4.07 \sim 4.03(\mathrm{~m}, 2 \mathrm{H})$, 3.75-3.60 (m, 2H), 3.15-3.06 (m, 2H), $1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): δ 171.3 (C), 155.3 (C), $152.4(\mathrm{C}), 136.7(\mathrm{C}), 132.8(\mathrm{CH}), 129.3(\mathrm{CH}), 128.7(\mathrm{CH}), 127.0(\mathrm{CH})$, $126.7(\mathrm{CH}), 118.2(\mathrm{C}), 80.2(\mathrm{C}), 71.6\left(\mathrm{CH}_{2}\right), 55.9(\mathrm{CH}), 39.6\left(\mathrm{CH}_{2}\right), 38.8\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{3}\right)$; IR (ATR, cm^{-1}): 3311, 2920, 1690, 1650, 1550, 1525, 1434, 1232, 1166, 1022, 766, 711, 678, 514; m.p.: $123.0-124.1{ }^{\circ} \mathrm{C}$; HR-ESI-TOF-MS: $m / z=565.0121$ (calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$: $\left.565.0133[\mathrm{M}+\mathrm{Na}]^{+}\right)$.

- Synthesis of (S)-2-amino- \boldsymbol{N}-(2-(2,6-dibromophenoxy)ethyl)-3-phenylpropanamide (15):

Compound $14(25.9 \mathrm{~g}, 47.8 \mathrm{mmol})$ was dissolved in 1,4-dioxane (50 mL). To the solution, 4 N HCl in 1,4-dioxane ($120 \mathrm{~mL}, 478 \mathrm{mmol}$) was slowly added. After the mixture was stirred for 3 h at room temperature, the solvents were blown off under the stream of air and the resulting white solid was dried in vacuo. The resulting white solid was dissolved in sat. NaHCO_{3} aq. (100 mL) and extracted with $\mathrm{CHCl}_{3}(2 \times 100 \mathrm{~mL})$, and then the organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude product was purified by column chromatography on silica gel $(\mathrm{AcOEt} /$ Hexane $=8: 2)$ to give the title compound $\mathbf{1 5}(15.5 \mathrm{~g}, 35.1 \mathrm{mmol})$ as a yellow oil in 73% yield.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 7.98$ (br, 1 H), $7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{dd}, J=4.0$, $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=4.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=10.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 174.4$ (C), 152.6 (C), 138.0 (C), 132.8 (CH), 129.3 (CH), 128.7 (CH), $126.8(\mathrm{CH}), 126.6(\mathrm{CH}), 118.3(\mathrm{C}), 71.9\left(\mathrm{CH}_{2}\right), 56.7(\mathrm{CH}), 41.1\left(\mathrm{CH}_{2}\right), 39.3\left(\mathrm{CH}_{2}\right)$; IR (ATR, $\left.\mathrm{cm}^{-1}\right): 3339,2952,1673,1438,1243,1068,1032,754,720,701 ;$ HR-ESI-TOF-MS: $m / z=$ 442.9787 (calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}: 442.9788[\mathrm{M}+\mathrm{H}]^{+}$).

- Synthesis of (2S,5S)-5-benzyl-2-(tert-butyl)-3-(2-(2,6-dibromophenoxy)ethyl)imidazo-

ledin-4-one (16):

$\mathrm{Yb}(\mathrm{OTf})_{3}(48.7 \mathrm{mg}, 78.5 \mu \mathrm{~mol})$ was added to a mixture of compound $15(3.47 \mathrm{~g}, 7.85 \mathrm{mmol})$ and pivalaldehyde ($1.70 \mathrm{~mL}, 15.7 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(80 \mathrm{~mL})$, and then refluxed for 29 h . The resulting mixture was flitrated and evaporated under reduced pressure. The disasteroisomers were separated by column chromatography on silica gel $(\mathrm{AcOEt} / \mathrm{Hexane}=2: 8)$ to give the title compound 16 ($552 \mathrm{mg}, 1.08 \mathrm{mmol}$) as a white solid in 14% yield.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$) $\delta 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.20$ $(\mathrm{m}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{dt}, J=4.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dt}, J=4.5$, $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dt}, J=4.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=4.0,8.0 \mathrm{~Hz} 1 \mathrm{H}), 3.69(\mathrm{ddd}, J=4.5,9.0$, $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=4.0,14.0 \mathrm{~Hz} 1 \mathrm{H}), 2.95(\mathrm{dd}, J=4.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{br}, 1 \mathrm{H}), 0.92$ ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 175.9$ (C), 152.6 (C), 138.1 (C), $132.8(\mathrm{CH})$, $129.7(\mathrm{CH}), 128.6(\mathrm{CH}), 126.6(\mathrm{CH}), 126.6(\mathrm{CH}), 118.4(\mathrm{C}), 80.1(\mathrm{CH}), 70.3\left(\mathrm{CH}_{2}\right), 59.4(\mathrm{CH})$, $42.4\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2}\right), 35.4(\mathrm{C}), 25.9\left(\mathrm{CH}_{3}\right)$; IR (ATR, $\left.\mathrm{cm}^{-1}\right): 3339,2952,1673,1438,1243$, 1068, 1032, 754, 720, 701; m.p.: 44.1-45.9 ${ }^{\circ} \mathrm{C}$; HR-ESI-TOF-MS: $m / z=511.0422$ (calculated for $\left.\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}: 511.0415[\mathrm{M}+\mathrm{H}]^{+}\right)$.

- Synthesis of (2S,5S)-5-benzyl-2-(tert-butyl)-3-(2-(2,6-bis(pyridin-4-ylethynyl)phenoxy)

 ethyl)imidazolidin-4-one (1b):4-ethynyl pyridine hydrochloride ($410 \mathrm{mg}, 2.94 \mathrm{mmol}$) was added to a mixture of compound $\mathbf{1 6}$ $(500 \mathrm{mg}, 0.980 \mathrm{mmol}), \mathrm{P}(t-\mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}(56.9 \mathrm{mg}, 0.196 \mathrm{mmol}), \mathrm{CuI}(14.9 \mathrm{mg}, 78.4 \mu \mathrm{~mol})$ $\mathrm{Pd}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2}(37.6 \mathrm{mg}, 98.0 \mu \mathrm{~mol})$, and diisopropylamine ($1.05 \mathrm{~mL}, 7.45 \mathrm{mmol}$) in degassed 1,4-dioxane (25 mL), and the resulting mixture was stirred at $45{ }^{\circ} \mathrm{C}$ for 26 h under Ar atmosphere. The reaction mixture was diluted with $\operatorname{AcOEt}(100 \mathrm{~mL})$ and filtrated through celite pad. After washed with ethylenediamine aq., the water layer was extracted with AcOEt (2×50 $\mathrm{mL})$. The combined organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then evaporated under reduced pressure. The residue was purified by column chromatography
on silica gel $(\mathrm{MeOH} / \mathrm{AcOEt}=3: 97)$ and GPC (Gel Permeation Chromatography) to give the title compound $\mathbf{1 b}$ as a brown oil ($253 \mathrm{mg}, 0.456 \mathrm{mmol}$) in 47% yield.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 8.62(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43$ $(\mathrm{d}, \mathrm{J}=5.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.29-7.12(\mathrm{~m}, 6 \mathrm{H}), 4.56(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{dt}, J=$ $6.2,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dt}, J=6.2,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{br}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=3.7,13.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.82(\mathrm{dd}, J=8.2,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}, 300 \mathrm{~K}\right): \delta 8.61(\mathrm{~d}, J$ $=5.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.67(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 6 \mathrm{H}), 4.62-4.57$ $(\mathrm{m}, 1 \mathrm{H}), 4.55-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 4.30-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{br}, 1 \mathrm{H})$, $3.04(\mathrm{dd}, J=3.3,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=8.4,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 175.9(\mathrm{C}), 160.5$ (C), 149.9 (CH), 137.9 (C), 134.8 (CH), $131.0(\mathrm{C})$, $129.4(\mathrm{CH}), 128.6(\mathrm{CH}), 126.6(\mathrm{CH}), 125.5(\mathrm{CH}), 124.2(\mathrm{CH}), 116.9(\mathrm{C}), 91.3(\mathrm{C}), 89.3(\mathrm{C})$, $80.5(\mathrm{CH}), 70.6\left(\mathrm{CH}_{2}\right), 59.2(\mathrm{CH}), 42.7\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2}\right), 35.4(\mathrm{C}), 25.6\left(\mathrm{CH}_{3}\right)$; IR (ATR, cm^{-} ${ }^{1}$): 2974, 2213, 1685, 1592, 1538, 1492, 1438, 1405, 1232, 1076, 989, 818, 747, 700, 612, 548, 428; HR-ESI-TOF-MS: $m / z=555.2763$ (calculated for $\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{2}: 555.2755[\mathrm{M}+\mathrm{H}]^{+}$).

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum of ligand $\mathbf{1 b}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

Figure S7. ${ }^{13} \mathrm{C}$ NMR spectrum of ligand $\mathbf{1 b}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$.

- Self-assembly of sphere 2b

To a solution of compound $\mathbf{1 b}(2.77 \mathrm{mg}, 5.00 \mu \mathrm{~mol})$ in $\mathrm{CD}_{3} \mathrm{NO}_{2}(250 \mu \mathrm{~L})$ was added a solution of $\left[\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}(1.11 \mathrm{mg}, 2.50 \mu \mathrm{~mol})$ in $\mathrm{CD}_{3} \mathrm{NO}_{2}(250 \mu \mathrm{~L})$ and the resulting mixture was stirred at room temperature for 30 min . The quantitative formation of sphere $\mathbf{2 b}$ was confirmed by ${ }^{1} \mathrm{H}$ NMR and CSI-TOF-MS.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}, 300 \mathrm{~K}$): $\delta 9.10$ (br, 96H), 7.82 (br, 144H), 7.24 (br, 144H), 4.32 (br, 96H), 3.68 (br, 48H), 2.88 (br, 48 H), 0.76 (br, 216H); Diffusion coefficient ($\mathrm{CD}_{3} \mathrm{NO}_{2}, 300 \mathrm{~K}$, $\mathrm{BF}_{4}{ }^{-}$salt $): D=6.3 \times 10^{-11} \mathrm{~m}^{2} \mathrm{~s}^{-1}$; CSI-TOF-MS $\left(\mathrm{BF}_{4}^{-}\right.$salt, $\left.\mathrm{CH}_{3} \mathrm{CN}\right): m / z=1427.6672$ (calculated for $\left.\left[\mathrm{M}-11\left(\mathrm{BF}_{4}^{-}\right)\right]^{11+} 1427.6645\right), m / z=1301.4406$ (calculated for $\left[\mathrm{M}-12\left(\mathrm{BF}_{4}^{-}\right)\right]^{12+}$ 1301.4422), $m / z=1194.6378$ (calculated for $\left[\mathrm{M}-13\left(\mathrm{BF}_{4}^{-}\right)\right]^{13+} 1194.6387$), $m / z=1103.0927$ (calculated for $\left.\left[\mathrm{M}-14\left(\mathrm{BF}_{4}^{-}\right)\right]^{14+} 1103.0928\right), m / z=1023.7463\left(\right.$ calculated for $\left[\mathrm{M}-15\left(\mathrm{BF}_{4}^{-}\right)\right]^{15+}$ 1023.7531), $m / z=954.3288\left(\right.$ calculated for $\left.\left[\mathrm{M}-16\left(\mathrm{BF}_{4}^{-}\right)\right]^{16+} 954.3308\right)$.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectra of ligand 2a and sphere 2b ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}, 300 \mathrm{~K}$).

Figure S9. ${ }^{1} \mathrm{H}$ DOSY spectrum of sphere $\mathbf{2 b}\left(\mathrm{BF}_{4}^{-}\right.$salt, $\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}, 300 \mathrm{~K}\right)$.

Figure S10. CSI-TOF-MS spectrum of sphere $\mathbf{2 b}\left(\mathrm{BF}_{4}^{-}\right.$salt, $\left.\mathrm{CH}_{3} \mathrm{CN}\right)$.

Figure S11. Isotopepattern of 14^{+}ion peak (observed and simulated pattern) of CSI-TOF-MS spectrum of sphere $\mathbf{2 b}$.

- Synthesis and physical properties of compound 3-5

- Synthesis of ethyl (\boldsymbol{E})-7-oxohept-2-enoate (18):

To a solution of aqueous glutaraldehyde ($25 \mathrm{w} \%, 11.5 \mathrm{~g}, 115 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{ml})$ was added a solution of (carbethoxymethylene)triphenylphosphorane ($5.00 \mathrm{~g}, 14.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$(35 \mathrm{~mL})$ and the resulting mixture was stirred at room temperature for 11 h . The reaction mixture was diluted with AcOEt $(400 \mathrm{~mL})$, washed with water $(2 \times 100 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then evaporated under reduced pressure. The residue was purified by column chromatography on silica gel $(\mathrm{AcOEt} / \mathrm{Hexane}=1: 9)$ to give the title compound $\mathbf{1 8}(1.80 \mathrm{~g}, 10.5 \mathrm{mmol})$ as a colorless oil in 73% yield.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 6.92$ (dt, $\left.J=7.0,15.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.84(\mathrm{~d}, J=$ $15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{dt}, J=7.0,7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 1.81 (quint, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): δ $201.4(\mathrm{CH}), 166.5(\mathrm{C}), 147.5(\mathrm{CH}), 122.4(\mathrm{CH}), 60.2\left(\mathrm{CH}_{2}\right), 42.9\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}\right), 20.3\left(\mathrm{CH}_{2}\right)$, $14.2\left(\mathrm{CH}_{3}\right)$; IR (ATR, cm^{-1}): 2948, 2870, 2824, 2725, 1718, 1438, 1363, 1195, 1150, 1091, 1010, 882, 849, 761, 679; HR-ESI-TOF-MS: $m / z=193.0845$ (calculated for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NaO}_{3}: 193.0841$ $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)$.

- Synthesis of Ethyl-10-phenyldeca-2,7,9-trienoate (19):

Cinnamyltriphenylphosphonium chloride $(3.22 \mathrm{~g}, 7.76 \mathrm{mmol})$ was added to t - $\mathrm{BuOK}(870 \mathrm{mg}$, $7.76 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$, and the resulting mixture was stirred at room temperature for 30 min . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and a solution of compound $\mathbf{1 8}(1.20 \mathrm{~g}, 7.05$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.5 \mathrm{~mL})$ was added. The solution was warmed to room temperature and stirred for 6 h . The solution was poured into $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 70 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then evaporated under reduced pressure. The residue was purified by column chromatography on silica gel $(\mathrm{AcOEt} / \mathrm{Hexane}=$ 8:92) to afford the trienyl ester as a $1: 1$ mixture of geometric isomers $(2 E, 7 E, 9 E$ and $2 E, 7 Z, 9 E)$. The mixture was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and $\mathrm{I}_{2}(125 \mathrm{mg}, 0.98 \mathrm{mmol})$ was added. After the mixture was stirred for 30 min at room temperature, sat. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ aq. $(20 \mathrm{~mL})$ were added and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$ and the combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and evaporated under reduced pressure to give the title compound $19(1.27 \mathrm{~g}, 4.70 \mathrm{mmol})$ as a colorless oil consisting of a $87: 13$ mixture of $2 E, 7 E, 9 E$ and $2 E, 7 Z, 9 E$ isomers in 67% yield.

Ethyl (2E,7E,9E)-10-phenyldeca-2,7,9-trienoate ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 7.37$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.4,2 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dt}, J=6.9,15.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.73 (dd, $J=10.4,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=10.4,14.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.83(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{dt}, J=7.0,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{dt}, J=$ $6.9,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{dt}, J=7.0,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$

NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 166.7$ (C), 148.8 (CH), 137.6 (C), 134.5 (CH), $131.3(\mathrm{CH})$, $130.5(\mathrm{CH}), 129.1(\mathrm{CH}), 128.6(\mathrm{CH}), 127.2(\mathrm{CH}), 126.2(\mathrm{CH}), 121.7(\mathrm{CH}), 60.2\left(\mathrm{CH}_{2}\right), 32.2$ $\left(\mathrm{CH}_{2}\right), 31.6\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right)$.
Ethyl (2E,7Z,9E)-10-phenyldeca-2,7,9-trienoate ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 7.40$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.4,2 \mathrm{H}), 7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=10.4,15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.96(\mathrm{dt}, J=6.9,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=10.4,14.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.83(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dt}, J=7.0,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{dt}, J=$ $7.0,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{dt}, J=6.9,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 166.7$ (C), 148.7 (CH), 137.5 (C), 132.6 (CH), $131.8(\mathrm{CH})$, $129.5(\mathrm{CH}), 128.6(\mathrm{CH}), 127.5(\mathrm{CH}), 126.4(\mathrm{CH}), 124.2(\mathrm{CH}), 121.8(\mathrm{CH}), 60.2\left(\mathrm{CH}_{2}\right), 31.6$ $\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right)$.
Analysis of mixture IR (ATR, cm^{-1}): 3341, 2930, 1714, 1653, 1441, 1265, 1183, 1040, 986, 756, 691, 508; HR-ESI-TOF-MS: $m / z=293.1512$ (calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NaO}_{2}$: 293.1512 $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)$.

- Synthesis of 10-phenyldeca-2,7,9-trien-1-ol (3):

Compound $19(1.20 \mathrm{~g}, 444 \mathrm{mmol})$ consisting of a $87: 13$ mixture of $2 E, 7 E, 9 E$ and $2 E, 7 Z, 9 E$ isomers was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(24 \mathrm{~mL})$. The solution was cooled to $-78^{\circ} \mathrm{C}$ and a solution of DIBAL-H (1 M solution in hexane; $9.76 \mathrm{~mL}, 9.76 \mathrm{mmol}$) was added. After one hour, the reaction solution was warmed to $0^{\circ} \mathrm{C}$ and $\mathrm{MeOH}(10 \mathrm{~mL})$ was added to quench the remaining DIBAL-H. The slurry was then warmed to room temperature and treated with sat. Rochelle's salt aq. (30 mL). After stirring for 16 h , the layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine (40 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel ($\mathrm{AcOEt} /$ Hexane $=3: 7$) to give the title compound $\mathbf{3}(870 \mathrm{mg}, 3.81 \mathrm{mmol})$ as a colorless oil consisting of a $87: 13$ mixture of $2 E, 7 E, 9 E$ and $2 E, 7 Z, 9 E$ isomers in 86% yield.
(2E,7E,9E)-10-phenyldeca-2,7,9-trien-1-ol ${ }^{1}{ }^{1}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 7.37$ (d, $J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.4,2 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=10.4,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.44$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=10.4,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{dt}, J=7.0,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.70-5.65$ (m, 2H), 4.1-4.08 (m, 2H), 2.16 (dt, $J=7.0,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.09$ (dt, $J=6.9,7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.53 (quint, $J=7.4,2 \mathrm{H}$), 1.27 (br, 1H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 137.6$ (C), 135.2 (CH), 132.9 (CH), 130.9 (CH), 130.2 (CH), 129.3 (CH), 129.3 (CH), 128.6 (CH), 127.1 (CH),
$126.1(\mathrm{CH}), 63.8\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right)$.
(2E,7Z,9E)-10-phenyldeca-2,7,9-trien-1-ol ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 7.40$ (d, $J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.4,2 \mathrm{H}), 7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=10.4,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.53$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=10.4,18.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.74-5.71(\mathrm{~m}, 1 \mathrm{H} 5.61(\mathrm{~m}, 1 \mathrm{H}), 5.50(\mathrm{dt}$, $J=7.2,18.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.08(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{dt}, J=7.0,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{dt}, J=6.9,7.4 \mathrm{~Hz}$, 2 H), 1.53 (quint, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.27 (br, 1H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 137.6$ (C), $132.8(\mathrm{CH}), 132.6(\mathrm{CH}), 132.2(\mathrm{CH}), 129.5(\mathrm{CH}), 129.1(\mathrm{CH}), 128.6(\mathrm{CH}), 127.4(\mathrm{CH})$, $126.3(\mathrm{CH}), 124.4(\mathrm{CH}), 63.8\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right)$.
Analysis of mixture IR (ATR, cm^{-1}): 3286, 2925, 2216, 1685, 1593, 1438, 1406, 1233, 990, 820, 747, 700, 546; HR-ESI-TOF-MS: $m / z=251.1411$ (calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NaO}: 251.1406$ $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)$.

- Synthesis of 10-phenyldeca-2,7,9-trienal (4):

2,2,6,6-tetramethylpiperidine 1-oxyl ($27.4 \mathrm{mg}, 0.175 \mathrm{mmol}$) and $\mathrm{PhI}(\mathrm{OAc})_{2}(677 \mathrm{mg}, 2.10$ mmol) were added to compound $3(400 \mathrm{mg}, 1.75 \mathrm{mmol})$ consisting of a $87: 13$ mixture of $2 E, 7 E, 9 E$ and $2 E, 7 Z, 9 E$ isomers in $\mathrm{CHCl}_{3}(7 \mathrm{~mL})$, and the resulting mixture was stirred at room temperature for 13 h . The solution was washed with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq. ($2 \times 50 \mathrm{~mL}$), sat. NaHCO_{3} aq. $(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, and then the organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude product was purified by column chromatography on silica gel $(\mathrm{AcOEt} /$ Hexane $=1: 9)$ to give the title compound $\mathbf{4}(295 \mathrm{mg}, 1.30 \mathrm{mmol})$ as a colorless oil consisting of a $87: 13$ mixture of $2 E, 7 E, 9 E$ and $2 E, 7 Z, 9 E$ isomers in 74% yield.
(2E,7E,9E)-10-phenyldeca-2,7,9-trienal ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 9.52$ (d, $J=7.9$ Hz) 7.37 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dt}, J=6.8$, $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=10.4,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=10.4,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=$ $10.4,14.1 \mathrm{~Hz}, 1 \mathrm{H}$), $6.14(\mathrm{dd}, J=7.9,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{dt}, J=7.1,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.33$ (m, 2H), 2.21 (dt, $J=7.1,7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.66 (quint, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 194.0(\mathrm{CH}), 158.3(\mathrm{CH}), 137.5(\mathrm{C}), 134.0(\mathrm{CH}), 133.2(\mathrm{CH}), 131.6(\mathrm{CH})$, $130.7(\mathrm{CH}), 129.0(\mathrm{CH}), 128.6(\mathrm{CH}), 127.3(\mathrm{CH}), 126.2(\mathrm{CH}), 32.2\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{2}\right), 27.4$ $\left(\mathrm{CH}_{2}\right)$.
(2E,7Z,9E)-10-phenyldeca-2,7,9-trienal ${ }^{1}{ }^{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 9.52$ (d, $J=7.9$ Hz) $7.40(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.4,2 \mathrm{H}), 7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=10.4$, $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dt}, J=6.8,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{dd}, J=10.4,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=$ $10.4,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=7.9,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{dt}, J=7.1,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.33$
(m, 4H), 1.67 (quint, $J=7.4,2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 194.0(\mathrm{CH}), 158.3$ $(\mathrm{CH}), 137.4(\mathrm{C}), 133.2(\mathrm{CH}), 132.8(\mathrm{CH}), 131.4(\mathrm{CH}), 129.8(\mathrm{CH}), 128.6(\mathrm{CH}), 127.6(\mathrm{CH})$, $126.4(\mathrm{CH}), 123.9(\mathrm{CH}), 32.1\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right)$.
Analysis of mixture IR (ATR, cm^{-1}): 3352, 3021, 2928, 1638, 1447, 987, 746, 691, 507; HR-ESI-TOF-MS: $m / z=249.1248$ (calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NaO}: 249.1250[\mathrm{M}+\mathrm{Na}]^{+}$).

- Synthesis of (1S,2R,3S,6R)-3-phenylbicyclo[4.3.0]non-4-ene-2-carbaldehyde (5):

Compound 4 (mixture of E, E-diene geometry $90.5 \mathrm{mg}, 400 \mu \mathrm{~mol}$ and Z, E-diene geometry 13.5 $\mathrm{mg}, 59.8 \mu \mathrm{~mol})^{1}$ was dissolved in $\mathrm{CD}_{3} \mathrm{NO}_{2} / \mathrm{D}_{2} \mathrm{O}=98: 2(2 \mathrm{~mL})$. The solution was cooled to $10{ }^{\circ} \mathrm{C}$, and a solution of ($2 S, 5 S$)-5-benzyl-2-(tert-butyl)-3-methylimidazolidin-4-one $(10.4 \mathrm{mg}$, $40.0 \mu \mathrm{~mol}), \mathrm{CF}_{3} \mathrm{COOH}(3.06 \mu \mathrm{~L}, 40.0 \mu \mathrm{~mol})$ and $\mathrm{AcOH}(229 \mu \mathrm{~L}, 4.00 \mathrm{mmol})$ in $\mathrm{CD}_{3} \mathrm{NO}_{2} / \mathrm{D}_{2} \mathrm{O}$ $=98: 2(2 \mathrm{~mL})$ was added. After stirring for 22 h at $-10^{\circ} \mathrm{C}$, the reaction mixture was warmed to room temperature. The crude reaction mixture was directly purified by column chromatography on silica gel $(\mathrm{AcOEt} / \mathrm{Hexane}=5: 95)$ to give the title compound $5(74.2 \mathrm{mg}, 0.328 \mathrm{mmol})$ as a white solid as an $>20: 1$ mixture of endo:exo product in 82% yield. HPLC analysis of 5 showed that it was formed in 93% ee (DAICEL CHIRALPAK IB column, IPA/Hexane $=1: 99$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 9.07(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}) 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}$, $J=7.5,1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.14(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.63-5.57(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{br}, 1 \mathrm{H})$, 2.73-2.64 (m, 1H), 2.01-1.74 (m, 6H), 1.39-1.23(m, 1H), 1.15-1.04 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 204.9(\mathrm{CH}), 139.6(\mathrm{C}), 130.9(\mathrm{CH}), 129.7(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5$ $(\mathrm{CH}), 127.2(\mathrm{CH}), 56.8(\mathrm{CH}), 44.5(\mathrm{CH}), 43.9(\mathrm{CH}), 38.7(\mathrm{CH}), 28.6\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 22.4$ $\left(\mathrm{CH}_{2}\right)$; IR (ATR, $\left.\mathrm{cm}^{-1}\right): 3015,2967,2869,2721,1714,1453,1271,807,762,701,665,626$, 571; m.p.: 68.3-70.6 ${ }^{\circ} \mathrm{C}$; HR-ESI-TOF-MS: $m / z=249.1240$ (calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NaO}$: $\left.249.1250[\mathrm{M}+\mathrm{Na}]^{+}\right)$.
${ }^{1} Z, E$-dienes of compound $\mathbf{4}$ were uniformly inert to this catalytic asymmetric Diels-Alder reaction.

3. Catalysis

- Oxidation reaction catalyzed by sphere 2 a

Table S1. Oxidation reaction profile catalyzed by sphere 2a and TEMPO ${ }^{[a]}$.

entry	oxidation catalyst	yield of $\mathbf{7}^{[\mathrm{b}]}$	TOF $_{\text {ini }}{ }^{[\mathrm{c}]}$
1	sphere $\mathbf{2 a}(10 / 24 \mathrm{~mol} \%)$	96%	23.6
2	TEMPO $(10 \mathrm{~mol} \%)$	91%	11.2

[a] Reaction conditions: each reagent and reactant was separately dissolved in $\mathrm{CD}_{3} \mathrm{NO}_{2}$ and certain volumes of each solution were taken and mixed into a test tube directly (with total volume $=500 u L)$, compound $6(6.81 \mathrm{mg}, 50.0 \mu \mathrm{~mol})$ in $\mathrm{CD}_{3} \mathrm{NO}_{2}(133 \mu \mathrm{~L}), \mathrm{PhI}(\mathrm{OAc})_{2}(19.3$ $\mathrm{mg}, 60.0 \mu \mathrm{~mol})$ in $\mathrm{CD}_{3} \mathrm{NO}_{2}(250 \mu \mathrm{~L})$, sphere $\mathbf{2 a}$ was prepared in advance with ligand 1a (2.54 $\mathrm{mg}, 5.00 \mu \mathrm{~mol})$ and $\left[\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}(1.11 \mathrm{mg}, 2.50 \mu \mathrm{~mol})$ in $\mathrm{CD}_{3} \mathrm{NO}_{2}(167 \mu \mathrm{~L})$, TEMPO ($0.78 \mathrm{mg}, 5.00 \mu \mathrm{~mol}$) in $\mathrm{CD}_{3} \mathrm{NO}_{2}(167 \mu \mathrm{~L})$. [b] The reactions were subsequently monitored by ${ }^{1} \mathrm{H}$ NMR and the yields of the product 7 were calculated based on the integration by using tetramethylsilane in CDCl_{3} as an external standard. [c] The $\mathrm{TOF}_{\text {ini }}$ was calculated at conversion of 15 min reaction time.

Figure S12. Oxidation reaction profile catalyzed by sphere 2a and TEMPO.

- Asymmetric Diels-Alder reaction catalyzed by sphere 2b

Table S2. Asymmetric Diels-Alder reaction catalyzed by sphere 2b and MacMillan's cat. ${ }^{[a]}$.
entry
[a] Reaction conditions: each reagent and reactant was separately dissolved in $\mathrm{CD}_{3} \mathrm{NO}_{2} / \mathrm{D}_{2} \mathrm{O}=$ 98:2 and certain volumes of each solution were taken and mixed into a test tube directly (with total volume $=800 \mu \mathrm{~L}$), compound 4 (mixture of E, E-diene geometry $18.1 \mathrm{mg}, 80.0 \mu \mathrm{~mol}$ and Z, E-diene geometry $2.7 \mathrm{mg}, 12.0 \mu \mathrm{~mol})^{1}$ in $\mathrm{CD}_{3} \mathrm{NO}_{2} / \mathrm{D}_{2} \mathrm{O}=98: 2(400 \mu \mathrm{~L})$, sphere $\mathbf{2 b}$ was prepared in advance with ligand $\mathbf{1 b}(4.44 \mathrm{mg}, 8.00 \mu \mathrm{~mol})$ and $\left[\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}(1.78 \mathrm{mg}$, $4.00 \mu \mathrm{~mol})$ in $\mathrm{CD}_{3} \mathrm{NO}_{2} / \mathrm{D}_{2} \mathrm{O}=98: 2(400 \mu \mathrm{~L})$, TFA $(0.612 \mu \mathrm{~L}, 8.00 \mu \mathrm{~mol})$ and $\mathrm{AcOH}(45.8$ $\mu \mathrm{L}, 8.00 \mu \mathrm{~mol}$) were added to sphere $\mathbf{2 b}$ solution. [b] The reactions were subsequently monitored by ${ }^{1} \mathrm{H}$ NMR and the yields of the product 5 were calculated based on the integration by using tetramethylsilane in CDCl_{3} as an external standard. Yield was based on the conversion of the E, E-diene substrate to product 5 . [c] The ee values were determined by HPLC with a DAICEL CHIRALPAK IB column (IPA/Hexane $=1: 99$). Absolute structure was determined by comparison of reported optical rotation ${ }^{\mathrm{S} 1}$ and observed optical rotation value.
${ }^{1} Z, E$-dienes of compound 4 were uniformly inert to this catalytic asymmetric Diels-Alder reaction, and equivalents of reagents were based on E, E-diene geometry of compound 4.

- Oxidation and asymmetric Diels-Alder cascade reaction catalyzed by sphere 2a and 2b

Table S3. Effects of site-isolation of catalysts in $\mathrm{M}_{12} \mathrm{~L}_{24}$ spherical complexes ${ }^{[a]}$.

entry	oxidation cat. $($ mol\% $)$	Diels-Alder cat. $($ mol\% $)$	additive $($ mol\%)	yield of 4 ${ }^{[b]}$	yield of 5[b]
1	sphere 2a (20/24)	sphere 2b (10/24)	-	4%	$56 \%[$ c]
2	TEMPO (20)	sphere 2b (10/24)	-	79%	4%
3	sphere 2a (20/24)	MacMillan's cat. (10)	-	76%	3%
4	TEMPO (20)	MacMillan's cat. (10)	-	90%	$<1 \%$
5	TEMPO (20)	MacMillan's cat. (10)	sphere 2c (30/24)	64%	$<1 \%$
6	-	sphere 2b (10/24)	-	$<1 \%$	$<1 \%$
7	sphere 2a (20/24)	-	-	61%	$<1 \%$
8	-	sphere 2b (10/24)	sphere 2c (20/24)	69%	$<1 \%$
9	sphere 2a (20/24)	-	sphere 2c (10/24)	54%	4%
10	TEMPO (20)	sphere 2b (10/24)	sphere 2c (20/24)	58%	1%
11	sphere 2a (20/24)	MacMillan's cat. (10)	sphere 2c (10/24)	64%	$<1 \%$

[a] Compound 3, $\mathrm{CF}_{3} \mathrm{COOH}$, MacMillan's cat., sphere 2b and sphere $\mathbf{2 c}$ were dissolved in $\mathrm{CD}_{3} \mathrm{NO}_{2} / \mathrm{D}_{2} \mathrm{O}=98: 2(267 \mu \mathrm{~L})$ as 'solution A '. $\mathrm{PhI}(\mathrm{OAc})_{2}$, TEMPO, sphere 2a and sphere 2c were dissolved in $\mathrm{CD}_{3} \mathrm{NO}_{2} / \mathrm{D}_{2} \mathrm{O}=98: 2(533 \mu \mathrm{~L})$ as 'solution B'. Sphere 2a-c were synthesized with 1.0 eq of ligand $\mathbf{1 a - c}$ and 0.50 eq of $\left[\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}$ in $\mathrm{CD}_{3} \mathrm{NO}_{2} / \mathrm{D}_{2} \mathrm{O}=98: 2$. Ligand 1c was synthesized according to the reported procedure. ${ }^{\mathrm{S} 2}$ The equivalent of reactants/reagents is shown in Table $S 4$. Certain volumes of each solution were taken and mixed into a test tube directly (with total volume $=800 \mu \mathrm{~L}$). [b] The reactions were subsequently monitored by ${ }^{1} \mathrm{H}$ NMR and the yields of the products were calculated based on the integration by using tetramethylsilane in CDCl_{3} as an external standard. [c] Product was formed in endo/exo $=>20: 1$ and 93% ee. The ee values were determined by HPLC with a DAICEL CHIRALPAK IB column $($ IPA/Hexane $=1: 99)$.

Table S4. Solution A and Solution B preparation for each entry in Table S3.

entry	solution A: $\mathrm{CD}_{3} \mathrm{NO}_{2} / \mathrm{D}_{2} \mathrm{O}=98: 2(267 \mu \mathrm{~L})$					solution $\mathrm{B}: \mathrm{CD}_{3} \mathrm{NO}_{2} / \mathrm{D}_{2} \mathrm{O}=98: 2(533 \mu \mathrm{~L})$			
	substrate 3^{1} ($\mu \mathrm{mol}$)	$\underset{(\mu \mathrm{mol})}{\mathrm{CH}_{3} \mathrm{COOH}}$	MacMillan's cat ($\mu \mathrm{mol}$)	sphere 2b ($\mu \mathrm{mol}$)	Sphere 2c ($\mu \mathrm{mol}$)	$\underset{(\mu \mathrm{mol})}{\mathrm{Phl}(\mathrm{OAC})_{2}}$	TEMPO ($\mu \mathrm{mol}$)	sphere 2a ($\mu \mathrm{mol}$)	sphere 2c ($\mu \mathrm{mol}$)
1	80.0	8.00	-	8.00/24	-	92.0	-	16.0/24	-
2	80.0	8.00	-	8.00/24	-	92.0	16.0	-	-
3	80.0	8.00	8.00	-	-	92.0	-	16.0/24	-
4	80.0	8.00	8.00	-	-	92.0	16.0	-	-
5	80.0	8.00	8.00	-	8.0/24	92.0	16.0	-	16.0/24
6	80.0	8.00	-	8.00/24	-	92.0	-	-	-
7	80.0	8.00	-	-	-	92.0	-	16.0/24	-
8	80.0	8.00	-	8.00/24	-	92.0	-	-	16.0/24
9	80.0	8.00	-	-	8.0/24	92.0	-	16.0/24	-
10	80.0	8.00	-	8.00/24	-	92.0	16.0	-	16.0/24
11	80.0	8.00	8.00	-	8.0/24	92.0	-	16.0/24	-

${ }^{1}$ Amount of substance of E, E-diene of compound 3 (contaminated with Z, E-diene geometry $12.0 \mu \mathrm{~mol}$). Equivalents of reagents were based on E, E-diene geometry of compound 3 .

4. References

(S1) Wilson, R. M.; Jen, W. S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 11616.
(S2) Fujita, D.; Takahashi, A.; Sato, S.; Fujita, M. J. Am. Chem. Soc. 2011, 133, 13317.

[^0]: - Synthesis of Ethyl 2-(2,6-bis(pyridin-4-ylethynyl)phenoxy)acetate (10):

