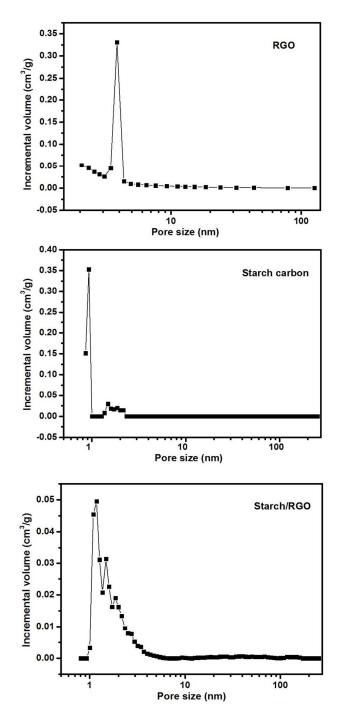
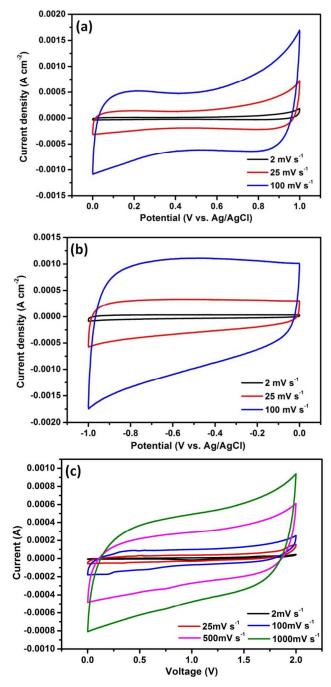
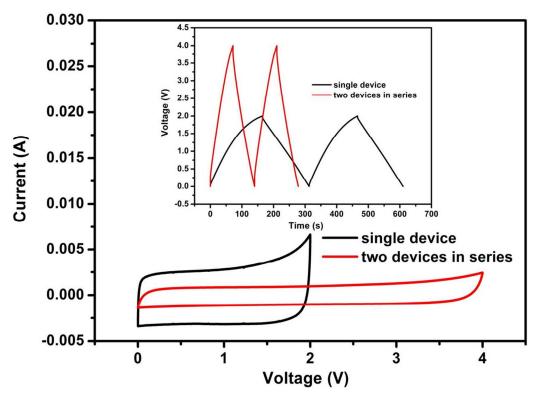
Supporting information

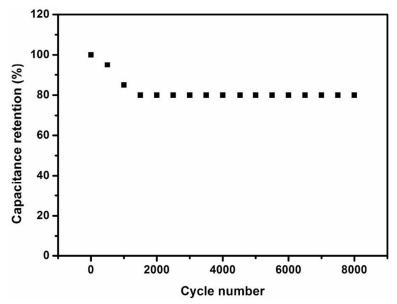

3D porous graphene nanostructure from a simple, fast, scalable process for high performance flexible gel-type supercapacitors

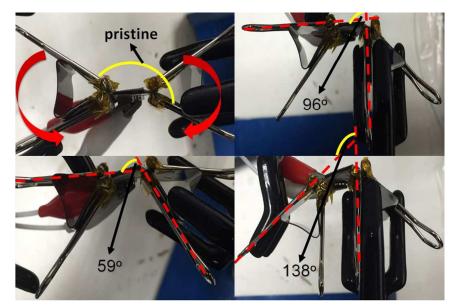
Chun-Chieh Wang, Jiyuan Liang, Yi-Hsiu Liao, and Shih-Yuan Lu*


Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan

*Corresponding authors. E-mail address: <u>sylu@mx.nthu.edu.tw</u>


10 pages, 6 figures, and 3 tables.


Figure S1. Pore size distributions of RGO, starch carbon, and starch/RGO. Pore size distribution of RGO was obtained with Barrett-Joyner-Halenda model, whereas those of starch carbon and starch/RGO were obtained with DFT model.


Figure S2. CVs of RGO electrode at increasing scan rates in LiCl/PVA gel electrolyte recorded in (a) positive and (b) negative potential windows. (c) CVs of RGO//RGO supercapacitor at increasing scan rates in LiCl/PVA gel electrolyte.

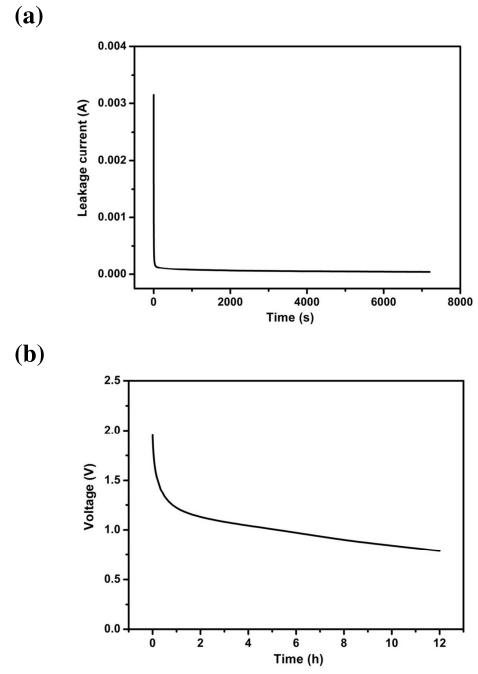

Figure S3. CV of two starch/RGO//starch/RGO capacitors connected in serial at 25 mV s⁻¹. Inset shows corresponding galvanostatic charge/discharge curves at 2 mA.

Figure S4. Cycling stability of starch/RGO//starch/RGO supercapacitor in LiCl/PVA gel electrolyte. The capacitance data were obtained from galvanostatic charge/discharge at 10 A g^{-1} .

Figure S5. Photographs illustrate flexible starch/RGO//starch/RGO supercapacitor under increasing bending angles.

Figure S6. (a) Leakage current of starch/RGO//starch/RGO capacitor charged at 2 mA to 2 V and kept at 2 V for 2 h and (b) self-discharge curve of starch/RGO//starch/RGO capacitor after charging at 2 V for 300 s.

	Specific surface	Total pore volume	Average pore size		
	area (m ² g ⁻¹)	$(\mathbf{cm}^3 \mathbf{g}^{\cdot 1})$	(nm)		
starch carbon	1706	0.76	1.8		
RGO	325	0.38	4.8		
starch/RGO	1519	0.75	2.0		

Table S1. Specific surface areas, pore volumes, and average pore sizes of starch carbon, RGO, and starch/RGO materials.

	Flat	Bending at 59°	Bending at 96°	Bending at 138°	Return to flat
Energy density (Wh kg ⁻¹)	16.7	13.5	15.0	15.0	14.9
Power density (kW kg ⁻¹)	3.0	2.4	2.7	2.7	2.7

Table S2. Energy and power densities of starch/RGO//starch/RGO supercapacitors at increasing bending angles at scan rate of 100 mV s^{-1} .

	-21°C	3°C	24°C	40°C	60°C	80°C	100°C
Energy density (Wh kg ⁻¹)	12.8	14.0	14.9	15.8	16.3	16.9	15.3
Power density (kW kg ⁻¹)	2.3	2.5	2.7	2.9	2.9	3.0	2.8

Table S3. Energy and power densities of starch/RGO//starch/RGO supercapacitors at increasing working temperatures at scan rate of 100 mV s^{-1} .