Supporting Information

Enhanced Lattice Oxygen Reactivity Over Ni Modified WO₃-Based Redox Catalysts for Chemical Looping Partial Oxidation of Methane

Sai Chen, Liang Zeng, Hao Tian, Xinyu Li, and Jinlong Gong*

Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China.

* Corresponding author. Fax: +86-22-87401818; Email address: jlgong@tju.edu.cn.

Table of Contents

- 1. XRD derived characteristics of various oxygen carriers.
- 2. Data derived from ICP-OES for the fresh samples
- 3. Data derived from XPS of $Ni_{0.5}W_1O_x/Al_2O_3$ after one and ten cycles
- 4. Molar fractions of CO, CO₂, and H₂ on Ni_{0.5}W₁O_x/Al₂O₃ during 10 redox cycles
- 5. XRD patterns of fresh and reduced $Ni_{0.5}W_1O_x/Al_2O_3$ and NiO/Al_2O_3
- 6. XPS spectra of $Ni_{0.5}W_1O_x/Al_2O_3$ after one and ten cycles, EDS line scan of $Ni_{0.5}W_1O_x/Al_2O_3$ after one cycle.
- Molar fractions of CO, CO₂ and O₂ from oxygen oxidation of WO₃, WO₃/Al₂O₃, Ni_{0.3}W₁O_x/Al₂O₃, Ni_{0.5}W₁O_x/Al₂O₃, Ni₁W₁O_x/Al₂O₃ and NiO/Al₂O₃ at 800 °C in the first cycle.
- 8. UV-vis reflectance spectra of fresh WO_3/Al_2O_3 and $Ni_{0.5}W_1O_x/Al_2O_3$.

ll							
Oxygen Carriers	Crystal Phase/Size	WO ₃	WO ₃ /Al ₂ O ₃	$Ni_{0.3}W_1O_x/Al_2O_3$	$Ni_{0.5}W_1O_x/Al_2O_3$	$Ni_1W_1O_x/Al_2O_3$	NiO/Al ₂ O ₃
	Phase	WO ₃	Al ₂ (WO ₄) ₃ , Al ₂ O ₃	WO_3 , $AI_2(WO_4)_3$, $NiWAIO_x$, AI_2O_3	WO ₃ , Al ₂ O ₃	NiWO ₄	_
Fresh	Size (nm)	>100 ^ª	54 ^b	43 ^a	32ª	60 ^c	_
after reduction	Phase	WO _{2.96} , WO _{2.72} , WO ₂	WO ₂ , Al ₂ O ₃ , WO _{2.72}	WO ₂ , W, WC, Ni, Al ₂ O ₃	WO ₂ , W, Ni, Al ₂ O ₃	WC, Ni, Al ₂ O ₃	Ni, Al ₂ O ₃
	Size (nm)	_	—	12 ^d , 15 ^e	9 ^d , 13 ^e	14 ^d , 20 ^f	16 ^d , —
after 1 st cycle	Phase	WO ₃	$Al_2(WO_4)_3$, Al_2O_3	WO ₃ , NiWO ₄ , Al ₂ O ₃	WO ₃ , NiWO ₄ , Al ₂ O ₃	NiWO ₄ , Al ₂ O ₃	_
	Size (nm)	>100 ^ª	60 ^b	45 ^a	35ª	63 ^c	_
th	Phase	_	_	_	WO ₃ , NiWO ₄ , Al ₂ O ₃	_	_
after 10 th cycle	Size (nm)	_	_	—	40 ^a	_	_

Table S1 XRD derived characteristics of various oxygen carriers.

^a Determined by the Scherrer equation from the (001) plane of WO₃, ^b Determined by the Scherrer equation from the (031) plane of

Al₂(WO₄)₃ and ^c Determined by the Scherrer equation from the (-111) plane of NiWO₄ in XRD patterns.

^d Determined by the Scherrer equation from the (111) plane of Ni, ^e Determined by the Scherrer equation from the (210) plane of W and ^f

Determined by the Scherrer equation from the (100) plane of WC in XRD patterns.

Samples	WO_3/Al_2O_3	$Ni_{0.3}W_1O_x/Al_2O_3$	$Ni_{0.5}W_1O_x/Al_2O_3$	$Ni_1W_1O_x/Al_2O_3$
Ni/W	0	0.29	0.52	1.1

 Table S2 Data derived from ICP-OES for the fresh samples.

Oxygen Carriers	OI/(OII+OIII)	W^{6+}/W^{5+}	Ni/W
1 st cycle	2.2	5.8	0.26
10 th cycle	4.2	2.9	0.18

Table S3 Data derived from XPS of $Ni_{0.5}W_1O_x/Al_2O_3$ after one and ten cycles.

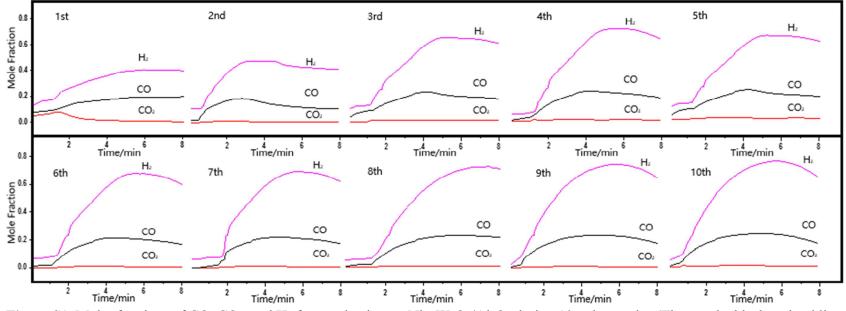


Figure S1. Molar fractions of CO, CO₂, and H₂ from reduction on $Ni_{0.5}W_1O_x/Al_2O_3$ during 10 redox cycles (The purple, black and red lines respectively represent H₂, CO and CO₂).

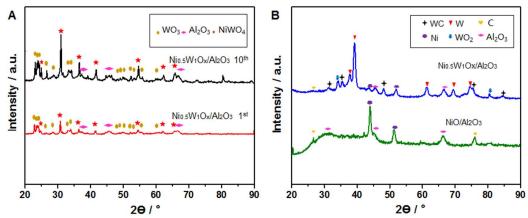


Figure S2. XRD patterns of (A) $Ni_{0.5}W_1O_x/Al_2O_3$ after the first and tenth cycle, (B)

 $Ni_{0.5}W_1O_x\!/Al_2O_3$ and $NiO\!/Al_2O_3$ after reduction in the first cycle.

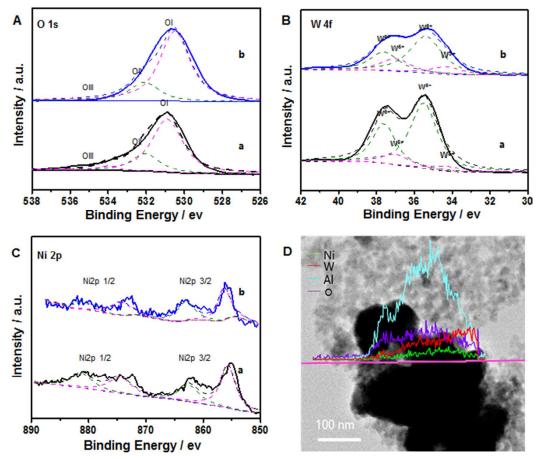


Figure S3. (A) O 1s, (B) W 4f and (C) Ni 2p XPS spectra of Ni_{0.5}W₁O_x/Al₂O₃ after (a)

one and (b) ten cycles, (D) EDS line scan of $Ni_{0.5}W_1O_x/Al_2O_3$ after one cycle.

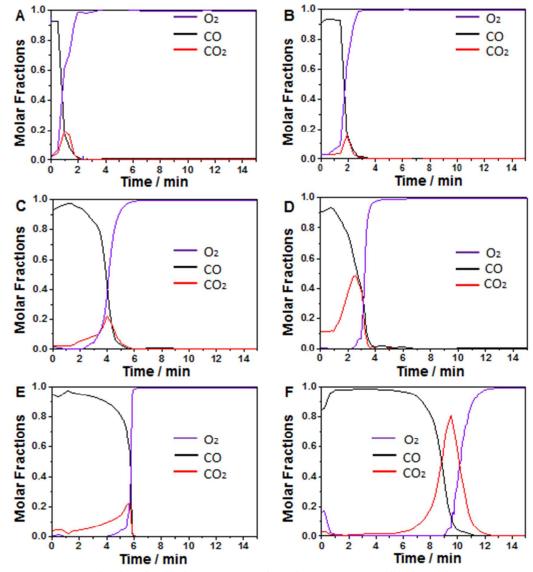
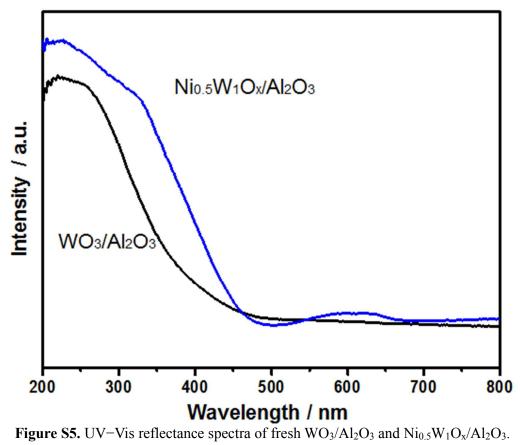



Figure S4. Molar fractions of CO, CO₂ and O₂ from oxygen oxidation of (A) WO₃, (B)

WO₃/Al₂O₃, (C) Ni_{0.3}W₁O_x/Al₂O₃, (D) Ni_{0.5}W₁O_x/Al₂O₃, (E) Ni₁W₁O_x/Al₂O₃ and (F)

NiO/Al₂O₃ at 800 °C in the first cycle.

