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S1. BOUNDARY CONDITIONS FOR A 1X1XL CELL PORE WITH R = 2 
 
To illustrate the additional complications in treating models with longer interaction range 
R ≥ 2, we consider the simplest case: the 1x1xL cell model for R = 2, i.e., no pairs of 
particles with separations 2 or less. In this case, there are no pairs of particles in the 3D 
fluid with separations 1, √2, √3, or 2. The maximum concentration in this model is 
<Xmax> = 1/3 within the pore. The rate of adsorption to an end site within the pore is 
given by 
 
Rads = h<C0,0,0 E1 E2 E3> = h<C0,0,0|E1 E2 E3><E1 E2 E3> = h<C0><E1 E2 E3>.  (S1.1) 
 
Using the spatial Markov property that a pair of cells shields for R = 2, one has <C0> = 
<C0,0,0|E1 E2 E3> = <C0,0,0|E1 E2> is the conditional concentration, <C0>, at cells just 
outside the pore opening given that the end pair of sites within the pore are empty. 
Again, <C0> corresponds to the concentration in the layer against the wall for a semi-
infinite system, and can be determined from a tailored simulation. See Figure S1a. 
 

 
 
Figure S1. 2D schematic of configurations relevant for adsorption, desorption, and pre-
desorption in 1x1xL cell model for R = 2. E denotes empty cells; Ē in red text denotes cells 
prescribed to be empty. Conditional probabilities, Qn|m, indicating the number of sites required 
(n) and given (m) empty for a 2D (3D) exterior fluid lattice. 
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Desorption from an end site within the pore to the exterior fluid requires 23 sites 
just outside the pore to be empty in 3D. Using the spatial Markov property, the 
associated rate of desorption is given by 
 
Rdes = h Q13|10 <C1>.         (S1.2) 
 
Here, Q13|10 is the conditional probability for 13 cells to be empty given 10 cells closest 
to the pore opening are empty in 3D. Q13|10 is determined from a second tailored 
simulation for a semi-infinite system with 10 cell against the wall specified empty.  See 
Figure S1b. 

Stand-alone simulations must also treat the pre-desorption step of hopping from 
cell 2 to cell 1 at the end of the pore which requires 10 cells just outside the pore to be 
empty in 3D. Analysis of the associated conditional probability, Q9|1, requires a third 
tailored simulation given one cell against the wall in a semi-infinite system is specified 
empty. See Figure S1c.  One must also treat hopping from cell 3 to cell 2 which requires 
a single cell just outside the opening of the pore to be empty. See again Figure S1d. 
 
S2. MEAN-FIELD TYPE TREATMENTS OF TRACER DIFFUSIVITY 
 
Below, JC

k>k+1 denotes the net flux of C = A or B from cell layer k to k+1. We consider 
behavior in a counter diffusion mode where the pore is occupied by just A and B such 
that the total concentration of particles X = A + B or either type is constant (at least in 
the pore interior). Thus <Xint> and <Eint> = 1-<Xint> are independent of k. Schematics of 
the multi-cell probabilities associated with this diffusion flux are given in Figure S2 for 
the 1x1xL cell model with R = 0, the 2x1xL cell model with R = 1, and the 2x2xL cell 
model with R = √2.  
 

 
 
Figure S2. Schematic of multi-cell configurations probabilities defining JC

k>k+1 for the: (a) 1x1xL 
cell model with R = 0; (b) 2x1xL cell model with R = 1; and (c) 2x2xL cell model with R = √2.  
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First, we consider behavior for the 1x1xL cell model with R = 0 where it is natural 
to apply a standard mean-field (MF) site approximation to obtain (cf. Figure S2a) 
 
JC

k>k+1 = h (<CkEk+1> - <EkCk+1>)  
 

≈ h (<Ck><Ek+1> - <Ek><Ck+1>) = -h<Eint> ∇<Ck+1>.     (S2.1) 
 
where  ∇<Ck> = <Ck> - <Ck+1>. We thus conclude that  
 
Dtr(1x1xL, R=0, MF site) = h<Eint> = h(1-<Xint>).      (S2.2) 
 
This result implies that Dtr(1x1xL, R=0, MF site) = 0.6h for <Xint> = 0.4 which is 
significantly above Dtr(max) ≈ 0.32h for this model with L ≥ 25. 

For any model with R > 0, the site approximation is inadequate as it does not 
account for the exclusion of nearby pairs of particles. However, the pair approximation 
is reasonable for the 2x1xL cell model with NN exclusion. We now consider the 2x2xL 
cell model with R = 1. Here, we use the simplified notation <C0,j,k> = <Cj,k> for cells 
within the pore where j = 0 or 1 and 1 ≤ k ≤ L.  After applying the standard pair 
approximation to factorize the probabilities of multi-cell configurations appearing in 
Figure S2b for JC

k>k+1, one obtains 
 
JC

k>k+1  ≈  h <C1,kE0,k><C1,kE1,k+1><E0,kE0,k+1><E1,k+1E0,k+1><E1,k+1E1,k+2> 
                                         <C1,k><E0,k><E0,k+1><E1,k+1>

2 
            (S2.3) 
               -h <C1,k+1E0,k+1><C1,k+1E1,k><E0,kE0,k+1><E1,k+1E0,k+1><E1,k-1E1,k> . 
                                          <C1,k+1><E0,k+1><E0,k><E1,k>

2 
 
 
Using that exact relations including <C1,kE0,k> = <Ck>, <E0,k> = <Eint>, <E0.kE0.k+1> = 
2<Eint> -1, etc., it follows that 
 
JC

k>k+1  ≈   h (2<Eint > -1)
3<Eint>

-4 ∇<Ck+1>.      (S2.4) 
 
From (S2.4), we conclude that  
 
Dtr(2x1xL, R=1, pair) = h (2<Eint > - 1)

3/<Eint>
4 = h(1 - 2<Xint>)

3/(1 - <Xint>)
4.  (S2.5) 

 
This result implies that, e.g., Dtr(2x1xL, R=1, pair) = 0.406h for <Xint> = 0.246 which is 
significantly above Dtr(max) ≈ 0.15h for this model with L ≥ 25. 
 For the 2x2xL cell model with R = √2, it is reasonable to implement a pair 
approximation which accounts for the feature that both NN and second NN pairs of cells 
cannot be occupied. Each of the multi-site configurations shown in Figure S2c 
determining the particle flux include: 3 NN CE pairs, 14 NN EE pairs, 3 second NN CE 
pairs, and 16 second NN EE pairs. Either the NN or second NN EE pairs produce a 
factor 2<Eint> - 1. Also accounting for cells shared between multiple NN and second NN 
pairs, we obtain 
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Dtr(2x2xL, R=√2, pair) = h(2<Eint> - 1)

30/<Eint>
56 = h(1 - 2<Xint>)

30/(1 - <Xint>)
56. (S2.6)  

 
This result implies that Dtr(2x2xL, R=√2, pair)= 0.263h for <Xint> = 0.136 which is 
significantly above Dtr(max) ≈ 0.08h for this model with L ≥ 25.  
 
S3. ANALYTIC ESTIMATES OF ADSORPTION PARAMETERS 
 
Determination of the adsorption rate for reactants into the pore in our 2x1xL cell model 
with R = 1 and the 2x2xL cell model with R = √2 requires analysis of the concentration 
variation approaching a planar wall in a semi-infinite lattice-gas model on a simple-cubic 
lattice with R = 1 and R = √2, respectively. We let <X0> denote the concentration in cells 
in the layer adjacent to the wall, <X-1> the concentration in cells in the next layer away 
from the wall, etc., and <Xb> denotes the bulk concentration far from the wall. Analytic 
estimation of this concentration variation, and importantly of <X0>, is possible utilizing 
appropriate pair approximations. In this analysis, we consider the semi-infinite 
equilibrated fluid as having arbitrary-range exchange dynamics described by a rate f, 
where exchange events are consistent with range R exclusion. In equilibrium, the 
corresponding flux of atoms from a cell adjacent to the wall to the bulk, Jw→b, and the 
reverse flux from the bulk to the wall, Jb→w, must balance.  
 First, we estimate <X0> for models with R = 1. The probability, P7, of an empty 
cell in the bulk with all six NN cells also empty is estimated in a standard pair 
approximation as P7 ≈ (1 - 2<Xb>)

6/(1 - <Xb>)
5. The probability, P6, of an empty cell 

against the wall with all five NN cells also empty is estimated as                                    
P6 ≈ (1 - 2<X0>)

4(1 - <X0> - <X-1>)/(1 - <X0>)
4. Then, it follows that    

 
Jw→b = r<X0>P7 and Jb→w = r<Xb>P6.       (S3.1) 
 
Assuming that <X-1> ≈ <Xb>, i.e., rapid decay of concentration oscillations, the equality 
Jw→b = Jb→w, yields <X0> ≈ 0.2189 (0.1071) versus the Monte Carlo simulation values of 
0.211 (0.106) for <Xb> = 0.20 (0.10). The above analysis can be refined to provide 
additional assessment of concentration oscillations away from the wall. 

For models with R = √2, we implement a pair approximation which accounts for 
the feature that both NN and second NN pairs of cells cannot be occupied. The 
probability, P19, of an empty cell in the bulk with all six NN cells and all additional twelve 
second NN cells also empty is estimated as P19 ≈ (1 - 2<Xb>)

18/(1 - <Xb>)
17. The 

probability, P14, of an empty cell against the wall with all five NN cells and all additional 
eight second NN cells also empty is estimated as  
P14 ≈ (1 - 2<X0>)

8(1 -<X0> -<X-1>)
5/(1 -<X0>)

12. Then, it follows that    
 
Jw→b = r<X0>P19 and Jb→w = r<Xb>P14.       (S3.2) 
 
Assuming again that <X-1> ≈ <Xb>, the equality Jw→b = Jb→w, yields <X0> ≈ 0.187 (0.081) 
versus the Monte Carlo simulation values of 0.123 (0.059) for <Xb> = 0.10 (0.05). The 
above analysis can be refined to assess concentration oscillations.1 
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S4. ANALYTIC ESTIMATES OF DESORPTION PARAMETERS 
 
To treat desorption, one needs to assess the conditional probability Q5|1 (Q9/5) in the 
2x1xL (2x2xL) cell model with R = 1 (R =  √2). Recall that Q5|1 = P6/P1 denotes the 
conditional probability in a semi-infinite system to five empty cells NN to a specified 
empty cell against the wall in the semi-infinite system for R = 1. Here P6 (P1) is the 
probability of all 6 cells (just one cell against the wall) being empty. See Figure 3b. Q9|5 
is the conditional probability to find nine empty cells NN to a set of five empty cells 
against the wall for R = √2. Here P14 (P5) is the probability of all 14 cells (just 5 cells 
against the wall) being empty. See Figure 4b.  
 For the 1x1xL cell model with R = 1, a standard pair approximation leads to the 
estimate P6 ≈ <E0,0,-1E0,0,0><E0,0,0E1,0,0><E0,0,0E0,1,0><E0,0,0E-1,0,0><E0,0,0E0,-1,0>/<E0>

4. 
Since <E0,0,-1E0,0,0> = 1 - <X0> - <X-1>, <E0,0,0E1,0,0> = 1 - 2<X0>, etc., and <E0> = 1 - 
<X0> = P1, it follows that 
 
Q5|1(pair) = P6/P1 = (1 - <X0> - <X-1>)(1 - 2<X0>)

4/(1 - <X0>)
5.    (S4.1) 

 
For <Xb> = 0.2, we conclude that Q5|1(pair) = 0.237 (0.213) just using <X0> ≈ <X-1> ≈ 
<Xb> = 0.2 (using simulation values of <X0> = 0.212 and <X-1> = 0.199). These 
compare with the simulation value of Q5|1 = 0.279 for <Xb> = 0.2. For <Xb> = 0.1, we 
conclude that Q5|1(pair) = 0.555 just using <X0> ≈ <X-1> ≈ <Xb> = 0.1, compared to the 
simulation value of  Q5|1 = 0.547. 

For the 2x2xL cell model with R = √2, we implement a pair approximation which 
accounts for the feature that both NN and second NN pairs of cells cannot be occupied. 
P14 is factorized into 4 NN pairs and 4 second NN pairs in layer k = -1, 12 NN pairs and 
8 second NN pairs in layer k = 0, and 5 NN pairs and 16 second NN pairs with one 
empty cell in layer k = 0 and the other in layer k = -1. Likewise, P5 factorizes into 4 NN 
pairs and 4 second NN pairs in layer k = 0. One concludes that 
 
Q9|5(pair) = P14/P5  
 
= (1 - <X0> - <X-1>)

21(1 - 2<X-1>)
8 (1 - 2<X0>)

12/[(1 - <X-1>)
32(1 - <X0>)

41].  (S4.2) 
 
For <Xb> = 0.1 (0.05), we conclude that Q5|1(pair) = 0.233 (0.562) just using <X0> ≈    
<X-1> ≈ <Xb> = 0.1 (0.05), compared to the simulation value of  Q5|1 = 0.194 (0.533). 
 
S5. ADDITIONAL ANALYSIS OF TRACER EXCHANGE 
 
Here, we provide a more complete presentation of results than in Sec.4.3 for TE where 
the pore is initially populated by B and the exterior reservoir by A (and the total 
concentration is equilibrated). Figure S5.1 shows the evolution of concentration profiles 
both for A entering the pore and for B exiting the pore. In Figure S5.2, we show the 
corresponding tracer exchange curve, γ(t), versus t, where γ(t) simply gives the fraction 
of particles inside the pore which are of type A at time t. 
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Figure S5.1. Profile evolution for tracer exchange for the three models. Time: 0, 5, 52,M, 57. 
Solid curves: KMC simulation. Dashed curves: generalized hydrodynamic theory. 
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Figure S5.2. Simulated tracer exchange curves for the three models illustrated in Figure S5.1. 
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