Electronic Supporting Information

Vertically aligned and ordered one-dimensional mesoscale polyaniline

**Alonso Gamero-Quijano, **Cheryl Karman, Neus Vilà, Grégoire Herzog, Alain Walcarius*

CNRS-Université de Lorraine, LCPME UMR 7564, 405 Rue de Vandoeuvre, 54600 Villers-lès-Nancy, France

** Both authors contributed equally to this work

*Corresponding author: alain.walcarius@univ-lorraine.fr

<u>Figure SI1</u>: STEM micrographs of a mesoporous silica template (SiO₂-100): (A) top view and (B) cross-section.

<u>Figure SI2</u>: Cyclic voltammograms recorded in 1 mM $[Ru(NH_3)_6]^{3+}$ (+0.1 M NaNO₃) solution using ITO electrodes covered with mesoporous silica films prepared from sol solutions containing TEOS at various concentrations (A, 75 mM; B, 100 mM; C, 200 mM), respectively before (dashed red curves) and after surfactant removal (dotted blue curves); black curve is the response of bare ITO.

<u>Figure SI3</u>: Potentiostatic electropolymerization of PANI at ITO electrodes modified with SiO_2 -75, SiO_2 -100, and SiO_2 -200 templates (up to Q = 3mC), as performed from a solution made of 0.1 M aniline in 0.5 M H₂SO₄, by applying a constant potential of +0.85 V.

<u>Figure SI4</u>: Typical EDS spectra recorded at a localized place (red point on the blue line) on the cross-section TEM view for a SiO_2 -200/PANI nanocomposite.