Supporting Information

Silver(I)-Catalyzed Regioselective Synthesis of Triazole Fused-1,5-Benzoxazocinones

Indrajeet J. Barve,[†] Tushar Ulhas Thikekar[†] and Chung-Ming Sun^{†,§*}

[†]Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300-10, Taiwan

[§]Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan

Email: cmsun@mail.nctu.edu.tw

Table of Contents

General Methods	S2
Experimental procedures	S3-S10
Characterization data of compounds	S11-S20
Copies of ¹ H, ¹³ C NMR, LRMS and HRMS Spectra	S22-S135
X-ray crystal data of compound 2a	S136-144

General Methods

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra were recorded on 400-MR automated spectrometer. Chemical shifts are reported in parts per million (ppm) on the δ scale from an internal standard (TMS). Analytical thin-layer chromatography (TLC) was performed using 0.25 mm silica gel-coated Kiselgel 60 F₂₅₄ plates. Flash chromatography was performed using the indicated solvent and silica gel 60 (Merck, 230-400 mesh). High-resolution mass spectra (HRMS) were recorded in ESI mode using TOF mass spectrometer. Microwave irradiation experiments were performed in a CEM Discover single-mode microwave reactor equipped with an IR temperature sensor using standard 10 mL CEM process vial sealed with Teflon[®] cap. All materials were purchased from commercial sources and used without further purification.

Experimental Procedures

General procedures for synthesis of 2-(4-phenyl-5-(phenylethynyl)-1*H*-1,2,3triazol-1-yl)benzoic Acid (1)

Synthesis of 2-azido benzoic acid (S2): Compound **S2** was prepared according to literature method.¹

A suspension of anthranilic acid **S1** (3 g, 21.8 mmol) in water (15 mL) was cooled to -5 °C, then conc. HCl (7.5 mL) and a solution of sodium nitrite (1.81 g, 26.2 mmol) in water (15 mL) was added dropwise. The above solution was stirred at -5 °C for 1 h and poured into a solution of sodium azide (1.7 g, 26.2 mmol) in water (25 mL) at -5 °C. The resulting reaction mixtue was stirred for 16 h. After completion of the reaction, the solid was filtered through Buchner funnel, washed with water (200 mL) and dried to afford 2-azido benzoic acid **S2** as an off-white solid (3.4 g, 95%). ¹H NMR (400 MHz, Acetone- d_6) δ 11.35 (bs, 1H), 7.90 (d, J = 9.3 Hz, 1H), 7.63 (t, J = 8.5 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H)

Synthesis of methyl 2-azidobenzoate (S3): Compound **S3** was prepared according to literature method.²

To a solution of 2-azido benzoic acid **S2** (3 g, 18.3 mmol) in methanol was added conc. H₂SO₄ (1.3 mL) and the reaction mixture was refluxed for 16 h. The solvent was evaporated; the crude reaction mixture was neutralized with sat. NaHCO₃ and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were washed with brine solution, dried over MgSO₄ and concentrated *in vacuo* to afford methyl 2-azidobenzoate **S3** as a brown oil (3.2 g, 98%). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.53 – 7.47 (m, 1H), 7.22 (t, *J* = 7.7 Hz, 1H), 7.16 (t, *J* = 7.6 Hz, 1H), 3.88 (s, 3H). Synthesis of methyl 2-(5-iodo-4-phenyl-1*H*-1,2,3-triazol-1-yl)benzoate (S5)

Optimization of the Reaction Conditions for the One-Pot Synthesis of 5-Iodo-1,2,3-Triazole Benzoate S5^{*a*}

^{*a*}Reaction conditions: **S3** (0.56 mmol), **S4** (1 equiv), CuI (1 equiv), NBS (1.09 equiv), DIPEA (1 equiv), solvent (5 mL). N. R. = No Reaction. ^{*b*}Isolated yield.

General procedure for the One-Pot Synthesis of 5-Iodo-1,2,3-Triazole Benzoate S5

A solution of NBS (1.09 g, 6.15 mmol) in THF (40 mL) was cooled to 0 °C and CuI (1.07 g, 5.64 mmol), methyl 2-azidobenzoate S3 (1 g, 5.64 mmol), phenyl

acetylene **S4** (0.57 g, 5.64 mmol) and DIPEA (0.98 mL, 5.64 mmol) were added. The resulting reaction mixture was stirred at room temperature for 16 h. The solvent was evaporated; the reaction mixture was diluted with water (40 mL) and extracted with ethyl acetate (3 x 25 mL). The combined organic layers were washed with brine solution, dried over MgSO₄ and concentrated under reduced pressure. The crude was purified by flash column chromatography (50-70% ethyl acetate in hexanes) to yield methyl 2-(5-iodo-4-phenyl-1*H*-1,2,3-triazol-1yl)benzoate **S5** as a white solid (1.82 g, 80%).

Plausiable Mechanism

The plausible mechanism for CuI/NBS catalyzed 5-iodo-1,2,3-triazole formation is depicted in Scheme S1.^{3,4} In the first step, copper ion is coordinated to alkyne **A** and its deprotonation by base generates terminal copper acetylide **B**. Subsequently, the azide coordinates with dinuclear copper acetylide **B** to form complex **C**. The complex **C** then undergoes ring formation to afford copper triazolide **D**. Finally, trapping of either I+ or H+ ion by nucleophilic copper triazolide **D** provides either iodotriazole **E** or triazole **F**. The CuI provides Cu+ ions for cycloaddition reaction between alkyne and azide as well as I+ ions for iodation. The role of NBS is to oxidize I- to I+.

Scheme S1. A plausible mechanism for CuI/NBS catalyzed iodotriazole formation

Synthesis of methyl 2-(4-phenyl-5-(phenylethynyl)-1*H*-1,2,3-triazol-1yl)benzoate (S7)

To a mixture of methyl 2-(5-iodo-4-phenyl-1*H*-1,2,3-triazol-1-yl)benzoate **S5** (1 g, 2.46 mmol) in toluene was added phenyl acetylene **S4** (0.37 g, 3.7 mmol), $Pd(PPh_3)_2Cl_2$ (0.17 g, 0.24 mmol), CuI (0.093 g, 0.49 mmol) and triethyl amine (2 mL, 14.8 mmol) under nitrogen atmosphere and the reaction mixture was heated at 70 °C for 2.5 h. The solvent was evaporated, the crude reaction mixture was diluted with water (30 mL) and extracted with ethyl acetate (3 x 25 mL). The combined organic layers were washed with brine solution, dried over MgSO₄ and concentrated. The crude product was purified by flash column chromatography (5-7% ethyl acetate in hexanes) to obtain methyl 2-(4-phenyl-5-(phenylethynyl)-1*H*-1,2,3-triazol-1-yl)benzoate **S7** as a brown oil (0.8 g, 90%).

Synthesis of 2-(4-phenyl-5-(phenylethynyl)-1*H*-1,2,3-triazol-1-yl)benzoic acid (1)

To a mixture of methyl 2-(4-phenyl-5-(phenylethynyl)-1*H*-1,2,3-triazol-1yl)benzoate **S7** (0.4 g, 1.05 mmol) in ethanol : H_2O (1:1; 10 mL) was added NaOH (0.4 g) and the reaction was refluxed for 1 h. The solvent was evaporated. The crude reaction mixture was neutralized with 1N HCl and extracted with ethyl acetate (3 x 15 mL). The combined organic layers were washed with brine solution, dried over MgSO₄ and concentrated *in vacuo* to afford 2-(4-phenyl-5-(phenylethynyl)-1*H*-1,2,3-triazol-1-yl)benzoic acid **1** as an off-white solid (0.38 g, 98%).

Typical Procedure for the Synthesis of (Z)-3,5-diphenyl-7*H*benzo[*c*][1,2,3]triazolo[1,5-*e*][1,5]oxazocin-7-one (2a)

A Biotage microwave vial (2-5 mL) was charged with 2-(4-phenyl-5-(phenylethynyl)-1*H*-1,2,3-triazol-1-yl)benzoic acid **1** (0.1 g 0.27 mmol), AgOTf (0.007 g, 0.027 mmol), K₂CO₃ (0.075 g, 0.54 mmol) and CHCl₃ (2 mL). The vial was sealed with a septum, and the mixture was irradiated with microwave (150 W) at 100 °C for 20 min. The reaction mixture was filtered through a thin bed of celite and the filtrate was concentrated under reduced pressure. The crude product was purified by flash column chromatography (10-12 % ethyl acetate in hexanes) to obtain (*Z*)-3,5-diphenyl-7*H*-benzo[*c*][1,2,3]triazolo[1,5-*e*][1,5]oxazocin-7-one **2a** as an off-white solid (0.087 g, 87%).

Representative procedure at 1 mmol scale for the synthesis of (Z)-3,5diphenyl-7*H*-benzo[*c*][1,2,3]triazolo[1,5-*e*][1,5]oxazocin-7-one (2a)

A Biotage microwave vial (10-20 mL) was charged with 2-(4-phenyl-5-(phenylethynyl)-1*H*-1,2,3-triazol-1-yl)benzoic acid **1** (0.5 g 1.36 mmol), AgOTf (0.035 g, 0.13 mmol), K₂CO₃ (0.378 g, 2.73 mmol) and CHCl₃ (10 mL). The vial was sealed with a septum, and the mixture was irradiated with microwave (150 W) at 100 °C for 20 min. The reaction mixture was filtered through a thin bed of celite and the filtrate was concentrated under reduced pressure. The crude product was purified by flash column chromatography (10-12% ethyl acetate in hexanes) to obtain (*Z*)-3,5-diphenyl-7*H*-benzo[*c*][1,2,3]triazolo[1,5-*e*][1,5]oxazocin-7-one **2a** as an off-white solid (0.425 g, 85%).

References

(1) Hahn, F. E.; Langenhahn, V.; Meier, N.; Lügger, T.; Fehlhammer, W. P. *Chem. Eur. J.*, **2003**, *9*, 704-712.

(2) Alcaide, B.; Almendros, P.; Lázaro-Milla, C. Chem. Commun. 2015, 51, 6992-6995.

(3) Li, L.; Zhang, G.; Zhu, A.; Zhang, L. J. Org. Chem. 2008, 73, 3630-3633.

(4) Worrell, B. T.; Malik, J. A.; Fokin, V. V. Science 2013, 340, 457-460.

Characterization data of compounds S5, S7, 1 and 2a-t

Methyl 2-(5-iodo-4-phenyl-1*H*-1,2,3-triazol-1-yl)benzoate (S5)

Brown solid (1.82 g, 80%); mp 160-162 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 7.6 Hz, 1H), 8.03 (d, J = 7.8 Hz, 2H), 7.73 (t, J = 7.5 Hz, 1H), 7.66 (t, J = 7.6 Hz, 1H), 7.50 – 7.37 (m, 4H), 3.65 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.4, 149.4, 136.3, 133.1, 131.7, 130.8, 130.0, 129.3, 128.6, 128.5, 128.5, 127.4, 79.9, 52.6; ; MS (ESI) m/z: 406.1 (M+H)⁺; HRMS (ESI) calcd for C₁₆H₁₃IN₃O₂ m/z: 406.0052; Found 406.0046 (M+H)⁺.

Methyl 2-(4-phenyl-5-(phenylethynyl)-1H-1,2,3-triazol-1-yl)benzoate (S7)

Brown oil (0.8 g, 90%); ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 7.8 Hz, 2H), 8.13 (d, J = 8.0 Hz, 1H), 7.77 – 7.70 (m, 1H), 7.68 – 7.61 (m, 2H), 7.50 (t, J = 7.3Hz, 2H), 7.44 – 7.31 (m, 6H), 3.68 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.4, 147.4, 135.1, 132.8, 131.4, 131.4, 130.2, 130.1, 129.6, 128.7, 128.7, 128.5, 128.0, 127.9, 126.3, 121.2, 118.91, 101.9, 75.4, 52.6; MS (ESI) m/z: 380.3 (M+H)⁺; HRMS (ESI) calcd for C₂₄H₁₈N₃O₂ m/z: 380.1399; Found 380.1399 (M+H)⁺.

2-(4-phenyl-5-(phenylethynyl)-1H-1,2,3-triazol-1-yl)benzoic acid (1)

Off-white solid (0.38 g, 98%); mp 163-165 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 7.6 Hz, 2H), 8.14 (d, J = 7.7 Hz, 1H), 7.72 (t, J = 7.4 Hz, 1H), 7.65 – 7.51 (m, 3H), 7.44 (t, J = 7.5 Hz, 2H), 7.37 – 7.24 (m, 5H), 6.40 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 168.1, 147.3, 135.4, 133.2, 132.1, 132.1, 132.0, 131.9, 131.5, 130.3, 130.0, 129.5, 128.6, 128.6, 128.5, 128.4, 128.2, 126.4, 121.2, 119.2, 102.0, 75.4; MS (ESI) m/z: 366.3 (M+H)⁺; HRMS (ESI) calcd for C₂₃H₁₆N₃O₂ m/z: 366.1242; Found 366.1242 (M+H)⁺.

(Z)-3,5-diphenyl-7*H*-benzo[*c*][1,2,3]triazolo[1,5-*e*][1,5]oxazocin-7-one (2a): Off-white solid (87 mg, 87%); mp 167-169 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 7.4 Hz, 2H), 7.74 – 7.62 (m, 4H), 7.57 – 7.52 (m, 2H), 7.47 – 7.42 (m, 5H), 7.38 (t, *J* = 7.4 Hz, 1H), 6.73 (s, 1H); ¹³C NMR(101 MHz, CDCl₃) δ 165.9, 154.1, 144.5, 133.6, 133.4, 132.2, 130.9, 130.3, 130.2, 130.1, 129.1, 128.9, 128.6, 128.4, 127.0, 126.7, 126.4, 125.5, 102.1; MS (ESI) *m/z:* 366.2 (M+H)⁺; HRMS (ESI) calcd for C₂₃H₁₆N₃O₂ *m/z*: 366.1243; Found 366.1239 (M+H)⁺.

(Z)-3-phenyl-5-propyl-7*H*-benzo[c][1,2,3]trizaolo[1,5-e][1,5]oxazocin-7-one

(2b): White solid (75 mg, 75%); mp 130-132 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 7.8 Hz, 2H), 7.69 (t, J = 7.2 Hz, 2H), 7.64 – 7.58 (m, 1H), 7.53 (d, J =7.9 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.36 (t, J = 7.4 Hz, 1H), 6.01 (s, 1H), 2.36 (t, J = 7.4 Hz, 2H), 1.55 (sext, J = 7.1 Hz, 2H), 0.84 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 158.3, 143.8, 133.1, 132.9, 131.0, 130.2, 129.6, 128.8, 128.4, 127.4, 127.1, 126.6, 126.5, 103.4, 36.9, 19.3, 13.2; HRMS (ESI) calcd for $C_{20}H_{18}N_3O_2 m/z$: 332.1399; Found 332.1402 (M+H)⁺.

(Z)-3-(4-methoxyphenyl)-5-phenyl-7*H*-benzo[*c*][1,2,3]triazolo[1,5-

e][1,5]oxazocin-7-one (2c): Yellow solid (69 mg, 69%); mp 79-81 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 8.5 Hz, 2H), 7.75 – 7.66 (m, 4H), 7.58 – 7.53 (m, 2H), 7.45 – 7.42 (m, 3H), 7.00 (d, J = 8.5 Hz, 2H), 6.71 (s, 1H), 3.85 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 159.9, 153.9, 144.5, 133.7, 133.3, 132.3, 130.7, 130.2, 130.1, 129.1, 128.1, 127.0, 126.5, 125.5, 122.7, 114.4, 102.2, 55.3; HRMS (ESI) calcd for C₂₄H₁₈N₃O₃ *m/z*: 396.1348; Found 396.1344 (M+H)⁺.

(Z)-5-cyclohexyl-3-phenyl-7*H*-benzo[c][1,2,3]triazolo[1,5-*e*][1,5]oxazocin-7-one (2d): Pale yellow solid (76 mg, 76%); mp 176-178 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 7.2 Hz, 2H), 7.72 (t, J = 7.6 Hz, 2H), 7.66 – 7.59 (m, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 7.5 Hz, 2H), 7.38 (t, J = 7.4 Hz, 1H), 6.00 (s, 1H), 2.40 – 2.30 (m, 1H), 1.93 – 1.78 (m, 4H), 1.75 – 1.67 (m, 1H), 1.33 – 1.25 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 165.67, 162.69, 143.77, 133.10, 132.85, 130.32, 130.15, 129.89, 128.86, 128.41, 127.48, 126.56, 101.57, 43.39, 29.97,

25.65, 25.53; MS (ESI) m/z: 372.2 (M+H)⁺; HRMS (ESI) calcd for C₂₃H₂₂N₃O₂ m/z: 372.1712; Found 372.1712 (M+H)⁺.

(Z)-3-cyclohexyl-5-(thiophen-3-yl)-7H-benzo[c][1,2,3]triazolo[1,5-

e][1,5]oxazocin-7-one (2e): Brown solid (72 mg, 72%); mp 195-197 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.65 (m, 3H), 7.57 – 7.45 (m, 2H), 7.37 – 7.34 (m, 1H), 7.25 – 7.22 (m, 1H), 6.45 (s, 1H), 2.84 – 2.76 (m, 1H), 2.02 – 1.99 (m, 2H), 1.86 – 1.83 (m, 2H), 1.75 – 1.66 (m, 3H), 1.44 – 1.30 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 150.1, 149.4, 135.1, 134.0, 133.2, 130.2, 130.0, 127.7, 127.1, 126.3, 125.0, 124.2, 100.8, 35.7, 32.3, 26.3, 25.8; MS (ESI) *m/z*: 378.1(M+H)⁺; HRMS (ESI) calcd for C₂₁H₂₀N₃O₂S *m/z*: 378.1276; Found 378.1271 (M+H)⁺.

(Z)-5-phenyl-3-(thiophen-3-yl)-7*H*-benzo[*c*][1,2,3]triazolo[1,5-*e*][1,5]oxazocin7-one (2f): Pale yellow solid (71 mg, 71%); mp 184-186 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.61 (m, 6H), 7.55 (t, *J* = 8.5 Hz, 2H), 7.47 – 7.38 (m, 4H), 6.74 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 154.3, 141.2, 133.5, 133.4, 132.2, 131.1, 130.9, 130.3, 130.2, 129.1, 127.9, 127.0, 126.6, 126.45, 126.1, 125.5, 122.6, 101.6; MS (ESI) *m*/*z*: 372.1 (M+H)⁺; HRMS (ESI) calcd for C₂₁H₁₄N₃O₂S *m*/*z*: 372.0807; Found 372.0803 (M+H)⁺.

(Z)-3,5-di(thiophen-3-yl)-7*H*-benzo[*c*][1,2,3]triazolo[1,5-*e*][1,5]oxazocin-7-one (2g): Pale brown solid (75 mg, 75%); mp 154-156°C; ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.65 (m, 4H), 7.62 (d, *J* = 4.9 Hz, 1H), 7.54 (t, *J* = 8.0 Hz, 2H), 7.40 (dd, *J* = 4.8, 2.9 Hz, 1H), 7.38 – 7.34 (m, 1H), 7.26 (d, *J* = 3.4 Hz, 1H), 6.56 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 150.5, 141.0, 134.9, 133.6, 133.4, 131.1, 130.4, 130.3, 128.0, 127.7, 127.0, 126.6, 126.2, 126.1, 125.6, 124.3, 122.6, 100.6; MS (ESI) *m*/*z*: 378.1 (M+H)⁺; HRMS (ESI) calcd for C₁₉H₁₂N₃O₂S₂ *m*/*z*: 378.0371; Found 378.0364 (M+H)⁺.

(Z)-5-cyclohexyl-3-(thiophen-3-yl)-7*H*-benzo[*c*][1,2,3]triazolo[1,5-

e][1,5]oxazocin-7-one (2h): Pale brown solid (70 mg, 70%); mp 203-205 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.66 (m, 2H), 7.64 – 7.58 (m, 2H), 7.52 (d, *J* = 7.9 Hz, 1H), 7.41 (dd, *J* = 5.0, 2.9 Hz, 1H), 5.97 (s, 1H), 2.40 – 2.26 (m, 1H), 1.93 – 1.74 (m, 4H), 1.69 (d, *J* = 12.3 Hz, 1H), 1.36 – 1.10 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 162.9, 140.5, 132.9, 132.8, 131.3, 130.1, 129.8, 127.4, 127.0, 126.4, 125.9, 122.1, 101.0, 43.3, 29.9, 25.6; MS (ESI) *m/z*: 378.2 (M+H)⁺; HRMS (ESI) calcd for C₁₉H₁₂N₃O₂S₂ *m/z*: 378.1276; Found 378.1270 (M+H)⁺.

(Z)-3,5-diphenyl-7*H*-naphtho[2,3-*c*][1,2,3]triazolo[1,5-*e*][1,5]oxazocin-7-one

(2j): Yellow solid (77 mg, 77%); mp 224-226 °C; ¹H NMR (400 MHz, CDCl₃) δ
8.24 (s, 1H), 8.05 (s, 1H), 7.96 – 7.92 (m, 4H), 7.70 - 7.62 (m, 4H), 7.50 – 7.38 (m, 6H), 6.76 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 154.1, 144.6, 134.5, 132.4, 132.3, 131.9, 130.8, 130.2, 130.0, 129.6, 129.1, 128.9, 128.7, 128.6, 128.5, 128.3,

126.7, 125.6, 124.0, 102.2; MS (ESI) m/z: 416.2 (M+H)⁺; HRMS (ESI) calcd for $C_{27}H_{17}N_3O_2 m/z$: 416.1399; Found 416.1394 (M+H)⁺.

(Z)-5-cyclohexyl-3-pentyl-7H-naphtho[2,3-c][1,2,3]triazolo[1,5-

e][1,5]oxazocin-7-one (2k): Yellow liquid (81 mg, 81%); ¹H NMR (400 MHz, CDCl₃) δ 8.23 (s, 1H), 8.04 – 7.91 (m, 3H), 7.72 – 7.62 (m, 2H), 5.83 (s, 1H), 2.73 (t, *J* = 7.7 Hz, 2H), 2.31 – 2.21 (m, 1H), 1.88 – 1.82 (m, 2H), 1.81 – 1.65 (m, 6H), 1.42 – 1.34 (m, 4H), 1.27 – 1.22 (m, 6H), 0.93 –0.87 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.0, 162.0, 145.4, 134.3, 132.4, 131.1, 130.1, 129.3, 128.6, 128.3, 125.9, 100.5, 43.4, 31.3, 29.9, 29.7, 28.7, 25.7, 25.5, 25.4, 22.4, 14.0; MS (ESI) *m/z*: 416.2 (M+H)⁺; HRMS (ESI) calcd for C₂₆H₃₀N₃O₂ *m/z*: 416.2338; Found 416.2338 (M+H)⁺.

(Z)-5-cyclohexyl-3-phenyl-7H-naphtho[2,3-c][1,2,3]triazolo[1,5-

e][1,5]oxazocin-7-one (2l): Pale yellow solid (76 mg, 76%); mp 211-213 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 8.05 – 8.01 (m, 2H), 7.99 – 7.94 (m, 1H), 7.91 (d, *J* = 7.8 Hz, 2H), 7.72 – 7.67 (m, 2H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.39 (t, *J* = 7.4 Hz, 1H), 6.01 (s, 1H), 2.39 – 2.32 (m, 1H), 1.90 – 1.89 (m, 2H), 1.80 – 1.79 (m, 2H), 1.70 – 1.67 (m, 2H), 1.34 – 1.23 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 162.5, 143.8, 134.2, 132.5, 131.2, 130.4, 129.7, 129.4, 128.8, 128.6, 128.5, 128.3, 127.7, 126.5, 126.1, 125.2, 101.6, 43.4, 29.8, 25.6, 25.5; MS (ESI) *m/z*:

442.4 (M+H)⁺; HRMS (ESI) calcd for $C_{27}H_{23}N_3O_2 m/z$: 422.1869; Found 422.1873 (M+H)⁺.

(Z)-5-butyl-3-phenyl-7*H*-naphtho[2,3-c][1,2,3]triazolo[1,5-e][1,5]oxazocin-7-

one (2m): Yellow liquid (75 mg, 75%); ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 8.06 – 7.90 (m, 5H), 7.75 – 7.67 (m, 2H), 7.54 – 7.46 (m, 2H), 7.42 – 7.38 (m, 1H), 6.03 (s, 1H), 2.40 (t, *J* = 7.5 Hz, 2H), 1.30 – 1.21 (m, 4H), 0.86 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 158.4, 143.8, 134.3, 132.5, 131.0, 130.3, 129.8, 129.4, 128.9, 128.6, 128.4, 127.7, 126.6, 126.2, 124.9, 103.3, 34.8, 27.9, 21.9, 13.5; MS (ESI) *m/z*: 396.3 (M+H)⁺; HRMS (ESI) calcd for C₂₅H₂₁N₃O₂ *m/z*: 396.1712; Found 396.1600 (M+H)⁺.

(Z)-9-methyl-5-pentyl-3-phenyl-7*H*-benzo[*c*][1,2,3]triazolo[1,5-

e][1,5]oxazocin-7-one (2n): Yellow solid (78 mg, 78%); mp 149-151 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 7.5 Hz, 2H), 7.51 – 7.42 (m, 5H), 7.37 (t, J =7.3 Hz, 1H), 6.01 (s, 1H), 2.48 (s, 3H), 2.40 (t, J = 7.5 Hz, 2H), 1.55 (p, J = 7.3 Hz, 2H), 1.27 (p, J = 7.2 Hz, 2H), 1.18 (p, J = 7.6 Hz, 2H), 0.85 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 158.4, 143.6, 140.8, 133.6, 130.8, 130.3, 129.8, 128.8, 128.3, 127.4, 126.8, 126.5, 103.4, 35.1, 30.8, 25.6, 22.2, 21.0, 13.8; MS (ESI) m/z: 374.2 (M+H)⁺; HRMS (ESI) calcd for C₂₃H₂₃N₃O₂ m/z: 374.1869; Found 374.1870 (M+H)⁺.

(Z)-5-cyclohexyl-9-methyl-3-phenyl-7H-benzo[c][1,2,3]triazolo[1,5-

e][1,5]oxazocin-7-one (2o): Yellow solid (75 mg, 75%); mp 201-203 °C¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 7.5 Hz, 2H), 7.53 – 7.41 (m, 5H), 7.37 (t, *J* = 7.6 Hz, 1H), 5.99 (s, 1H), 2.50 (s, 3H), 2.37 – 2.30 (m, 1H), 1.89 – 1.81 (m, 5H), 1.33 – 1.20 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 162.6, 140.8, 133.6, 130.7, 130.3, 130.1, 128.8, 128.3, 127.5, 127.0, 126.5, 126.4, 101.6, 43.4, 29.9, 25.6, 25.5, 21.1; MS (ESI) *m/z*: 386.2 (M+H)⁺; HRMS (ESI) calcd for C₂₄H₂₃N₃O₂ *m/z* : 386.1869; Found 386.1875 (M+H)⁺.

(Z)-3-(4-methoxyphenyl)-9-methyl-5-phenyl-7*H*-benzo[*c*][1,2,3]triazolo[1,5*e*][1,5]oxazocin-7-one (2p):

Pale yellow solid (68 mg, 68%); 149-151 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.8 Hz, 2H), 7.68 – 7.66 (m, 2H), 7.48 – 7.44 (m, 5H), 7.00 (d, *J* = 8.7 Hz, 2H), 6.72 (s, 1H), 3.85 (s, 3H), 2.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 159.9, 153.8, 144.3, 140.8, 134.1, 132.5, 131.3, 130.7, 130.4, 129.0, 128.1, 127.5, 126.9, 126.0, 125.5, 122.7, 114.3, 102.3, 55.3, 21.0; MS (ESI) *m/z*: 410.2 (M+H)⁺; HRMS (ESI) calcd for C₂₅H₁₉N₃O₃ *m/z*: 410.1505; Found 410.1505 (M+H)⁺.

(Z)-9-methyl-3-phenyl-5-(4-(trifluoromethyl)phenyl)-7H-

benzo[c][1,2,3]triazolo[1,5-e][1,5]oxazocin-7-one (2q): Yellow solid (71 mg, 71%); mp 242-244 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, J = 8.3 Hz, 1H),

8.23 (s, 1H), 7.78 (d, J = 7.8 Hz, 1H), 7.33 – 7.17 (m, 5H), 7.09 – 7.02 (s, 5H), 2.61 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 195.1, 163.1, 141.0, 137.9, 135.8, 133.6, 133.3, 132.6, 132.1, 128.8, 128.4, 128.3, 127.6, 125.5, 124.9 (q, J = 3.6 Hz), 117.8, 116.6, 102.3, 21.4; HRMS (ESI) calcd for C₂₅H₁₇F₃N₃O₂ m/z: 448.1273; Found 448.1274 (M+H)⁺.

(Z)-9-methyl-3-phenyl-5-(thiophen-3-yl)-7*H*-benzo[*c*][1,2,3]triazolo[1,5-

e][1,5]oxazocin-7-one (2r): Brown solid (73 mg, 73%); mp 75-77 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 7.5 Hz, 2H), 7.72 (s, 1H), 7.52 – 7.42 (m, 5H), 7.41 – 7.34 (m, 2H), 7.27 (d, *J* = 5.3 Hz, 1H), 6.57 (s, 1H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 150.3, 144.2, 135.1, 134.2, 131.3, 130.6, 130.2, 128.9, 128.5, 128.1, 127.8, 126.9, 126.7, 125.8, 125.4, 124.3, 101.3, 21.0; MS (ESI) *m/z*: 386.1 (M+H)⁺; HRMS (ESI) calcd for C₂₂H₁₆N₃O₂S *m/z*: 386.0963; Found 386.0958 (M+H)⁺.

(Z)-10-chloro-5-pentyl-3-phenyl-7H-benzo[c][1,2,3]triazolo[1,5-

e][1,5]oxazocin-7-one (2t): Yellow solid (74 mg, 74%); mp 151-153 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 6.3 Hz, 1H), 7.71 – 7.55 (m, 4H), 7.48 – 7.44 (m, 2H), 7.41 – 7.35 (m, 1H), 6.04 (s, 1H), 2.40 (t, *J* = 6.4 Hz, 2H), 1.30 – 1.22 (m, 6H), 0.87 – 0.84 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.5, 158.7, 143.9, 139.1, 134.1, 131.0, 130.5, 129.9, 128.9, 128.6, 127.4, 127.0, 126.6, 125.9, 125.5, 103.3, 35.0, 30.9, 25.7, 22.2, 13.9; MS (ESI) *m/z*: 394.2 (M+H)⁺; HRMS (ESI) calcd for C₂₂H₂₁ClN₃O₂ *m/z*: 394.1322; Found 394.1319 (M+H)⁺.

¹H, ¹³C NMR, LRMS and HRMS Spectra of compounds **S5**, **S7**, **1** and **2a-t**

¹H, ¹³C, LRMS and HRMS Spectra of compounds S5, S7, 1, 2a-t

 1 H NMR Spectrum (400 MHz) of compound S5 in CDCl₃

¹³C NMR Spectrum (101 MHz) of compound **S5** in CDCl₃

LRMS of compound S5

Meas m/z	#	Ion Formula	m/z	err (ppm)	mSigma	# Sigma	Score	rdb	e ⁻ Conf	N-Rule	Adduct
406.0046	1	C16H13IN3O2	406.0047	-0.2	4.0	1	100.00	11.5	even	ok	M+H

HRMS of compound S5

¹H NMR Spectrum (400 MHz) of compound S7 in CDCl₃

 ^{13}C NMR Spectrum (101 MHz) of compound S7 in CDCl_3

ib-N9-061

LRMS of compound S7

HRMS of compound S7

¹H NMR Spectrum (400 MHz) of compound **1** in CDCl₃

 ^{13}C NMR Spectrum (101 MHz) of compound 1 in CDCl_3

LRMS of compound 1

									-		
Meas. m/z	#	Ion Formula	m/z	err [ppm]	mSigma	# Sigma	Score	rdb	e Conf	N-Rule	Adduct
366.1242	1	C23H16N3O2	366.1237	1.4	21.4	1	100.00	17.5	even	ok	M+H

HRMS of compound 1

¹H NMR Spectrum (400 MHz) of compound **2a** in CDCl₃

Expansion of ¹H NMR Spectrum (400 MHz) of compound 2a in CDCl₃

 ^{13}C NMR Spectrum (101 MHz) of compound 2a in CDCl_3

Expansion of ¹³C NMR Spectrum (101 MHz) of compound **2a** in CDCl₃

LRMS of compound 2a

HRMS of compound 2a

¹H NMR Spectrum (400 MHz) of compound **2b** in CDCl₃

Expansion of ¹H NMR Spectrum (400 MHz) of compound **2b** in CDCl₃

 ^{13}C NMR Spectrum (101 MHz) of compound 2b in CDCl_3

Expansion of ¹³C NMR Spectrum (101 MHz) of compound **2b** in CDCl₃

HRMS of compound 2b

 ^1H NMR Spectrum (400 MHz) of compound 2c in CDCl_3

Expansion of ¹H NMR Spectrum (400 MHz) of compound **2c** in CDCl₃

 ^{13}C NMR Spectrum (101 MHz) of compound 2c in CDCl_3

Expansion of ¹³C NMR Spectrum (101 MHz) of compound 2c in CDCl₃

HRMS of compound 2c

¹H NMR Spectrum (400 MHz) of compound 2d in CDCl₃

Expansion of ¹H NMR Spectrum (400 MHz) of compound **2d** in CDCl₃

¹³C NMR Spectrum (101 MHz) of compound **2d** in CDCl₃

Expansion of ¹³C NMR Spectrum (101 MHz) of compound **2d** in CDCl₃

LRMS of compound 2d

Display Report												
Meas. m/z	#	Ion Formula	m/z	err [ppm]	mSigma	# Sigma	Score	rdb	e ⁻ Conf	N-Rule	Adduct	
372.1712	1	C23H22N3O2	372.1707	-1.5	23.3	1	100.00	14.5	even	ok	M+H	

HRMS of compound 2d

Expansion of ¹H NMR Spectrum (400 MHz) of compound 2e in CDCl₃

 ^{13}C NMR Spectrum (101 MHz) of compound 2e in CDCl_3

Expansion of 13 C NMR Spectrum (101 MHz) of compound **2e** in CDCl₃

LRMS of compound 2e

Display Report											
Meas. m/z	#	Ion Formula	m/z	err [ppm]	mSigma	# Sigma	Score	rdb	e [—] Conf	N-Rule	Adduct
378.1271	1	C21H20N3O2S	378.1271	-0.2	21.1	1	100.00	13.5	even	ok	M+H

HRMS of compound 2e

¹H NMR Spectrum (400 MHz) of compound 2f in CDCl₃

Expansion of ¹H NMR Spectrum (400 MHz) of compound **2f** in CDCl₃

¹³C NMR Spectrum (101 MHz) of compound **2f** in CDCl₃

Expansion of ¹³C NMR Spectrum (101 MHz) of compound **2f** in CDCl₃

LRMS of compound 2f

HRMS of compound 2f

 ^1H NMR Spectrum (400 MHz) of compound 2g in CDCl3

7,4123 7,4051 7,4004 7,3031 - 7,3337 - 7,3620 - 7,3520 Expansion of ¹H NMR Spectrum (400 MHz) of compound **2g** in CDCl₃

 ^{13}C NMR Spectrum (101 MHz) of compound 2g in CDCl_3

Expansion of ¹³C NMR Spectrum (101 MHz) of compound **2g** in CDCl₃

LRMS of compound 2g

HRMS spectrum of compound 2g

¹H NMR Spectrum (400 MHz) of compound **2h** in CDCl₃

Expansion of ¹H NMR Spectrum (400 MHz) of compound **2h** in CDCl₃

 ^{13}C NMR Spectrum (101 MHz) of compound 2h in CDCl_3

Expansion of 13 C NMR Spectrum (101 MHz) of compound **2h** in CDCl₃

LRMS of compound 2h

HRMS of compound 2h

¹H NMR Spectrum (400 MHz) of compound **2j** in CDCl₃

Expansion of ¹H NMR Spectrum (400 MHz) of compound **2j** in CDCl₃

¹³C NMR Spectrum (101 MHz) of compound **2j** in CDCl₃

Expansion of 13 C NMR Spectrum (101 MHz) of compound **2j** in CDCl₃

3p12-13 201605200018 21 (1.438) Cn (Cen,3, 80.00, Ht); Sm (Mn, 2x0.75); Sb (3,50.00); Cm (20:24-3:12) 100- ^{173.2} 1007

LRMS of compound 2j

HRMS of compound 2j

¹H NMR Spectrum (300 MHz) of compound **2k** in CDCl₃

Expansion of ¹H NMR Spectrum (300 MHz) of compound **2k** in CDCl₃

 ^{13}C NMR Spectrum (75 MHz) of compound 2k in CDCl_3

Expansion of ¹³C NMR Spectrum (75 MHz) of compound **2k** in CDCl₃

HRMS of compound 2k

¹H NMR Spectrum (400 MHz) of compound **2l** in CDCl₃

Expansion of ¹H NMR Spectrum (400 MHz) of compound **2l** in CDCl₃

 ^{13}C NMR Spectrum (101 MHz) of compound **2l** in CDCl_3

Expansion of ¹³C NMR Spectrum (101 MHz) of compound **2l** in CDCl₃

445.3

457.5

450

473.5

517.6

501.5 518.6

500

319.5

346.5

350

385.5

406.6

400

302.5

290.5

300

218.5

230.5

212.5

200.4

200

106.2

150

0++ 100

256.5

250

Scan ES+ 2.76e6

----- m/z 1000

LRMS of compound 2l

550

561.6

649.7

650

700

750

800

850

900

950

605.7

600

HRMS of compound 2l

¹H NMR Spectrum (400 MHz) of compound **2m** in CDCl₃

Expansion of ¹H NMR Spectrum (400 MHz) of compound **2m** in CDCl₃

 ^{13}C NMR Spectrum (101 MHz) of compound 2m in CDCl_3

Expansion of 13 C NMR Spectrum (101 MHz) of compound **2m** in CDCl₃

LRMS of compound 2m

HRMS of compound 2m

¹H NMR Spectrum (400 MHz) of compound **2n** in CDCl₃

Expansion of ¹H NMR Spectrum (400 MHz) of compound 2n in CDCl₃

¹³C NMR Spectrum (101 MHz) of compound **2n** in CDCl₃

Expansion of ¹³C NMR Spectrum (101 MHz) of compound **2n** in CDCl₃

LRMS of compound 2n

HRMS of compound 2n

 ^1H NMR Spectrum (400MHz) of compound 2o in CDCl_3

Expansion of ¹H NMR Spectrum (400MHz) of compound **20** in CDCl₃

¹³C NMR Spectrum (101 MHz) of compound **20** in CDCl₃

Expansion of ¹³C NMR Spectrum (101 MHz) of compound **20** in CDCl₃

LRMS of compound 20

HRMS spectrum of compound 20

¹H NMR Spectrum (400 MHz) of compound 2p

¹³C NMR Spectrum (101 MHz) of compound **2p** in CDCl₃

LRMS of compound 2p

HRMS spectrum of compound 2p

¹H NMR Spectrum (400MHz) of compound **2q** in CDCl₃

¹³C NMR Spectrum (101 MHz) of compound **2q** in CDCl₃

Expansion of ¹³C NMR Spectrum (101 MHz) of compound **2q** in CDCl₃

HRMS of compound 2q

 ^1H NMR Spectrum (400MHz) of compound 2r in CDCl_3

Expansion of ¹H NMR Spectrum (400MHz) of compound 2r in CDCl₃

 ^{13}C NMR Spectrum (101 MHz) of compound 2r in CDCl_3

Expansion of 13 C NMR Spectrum (101 MHz) of compound 2r in CDCl₃

HRMS of compound 2r

¹H NMR Spectrum (400MHz) of compound **2t** in CDCl₃

Expansion of ¹H NMR Spectrum (400MHz) of compound **2t** in CDCl₃

¹³C NMR Spectrum (75 MHz) of compound **2t** in CDCl₃

Expansion of ¹³C NMR Spectrum (75 MHz) of compound **2t** in CDCl₃

LRMS of compound 2t

Meas. m/z	#	Ion Formula	m/z	err (ppm)	mSigma	# Sigma	Score	rdb	e Conf	N-Rule	Adduct	
394.1319	1	C22H21CIN3O2	394.1317	0.5	40.8	1	100.00	13.5	even	ok	M+H	

HRMS of compound 2t

X-ray crystal data of compound 2a

ORTEP diagram of compound 2a. Atomic displacement ellipsoids are drawn at the 50% probability level

CCDC no. of 2a: 1429500

Table 1. Crystal data and structure r	efinement for 150925LTS.	
Identification code	150925lts	
Empirical formula	C23 H15 N3 O2	
Formula weight	365.38	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Tetragonal	
Space group	P -4 21 c	
Unit cell dimensions	a = 21.6276(14) Å	<i>α</i> = 90°.
	b = 21.6276(14) Å	$\beta = 90^{\circ}$.
	c = 8.1936(6) Å	$\gamma = 90^{\circ}.$
Volume	3832.6(6) Å ³	
Z	8	
Density (calculated)	1.266 Mg/m^3	
Absorption coefficient	0.083 mm ⁻¹	
F(000)	1520	

Crystal size	0.15 x 0.07 x 0.07 mm ³
Theta range for data collection	1.332 to 26.411°.
Index ranges	-26<=h<=26, -26<=k<=26, -9<=l<=9
Reflections collected	24797
Independent reflections	3828 [R(int) = 0.0787]
Completeness to theta = 25.242°	98.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9485 and 0.7895
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3828 / 0 / 255
Goodness-of-fit on F ²	1.053
Final R indices [I>2sigma(I)]	R1 = 0.0981, $wR2 = 0.2457$
R indices (all data)	R1 = 0.1274, wR2 = 0.2641
Absolute structure parameter	0(5)
Extinction coefficient	0.116(14)
Largest diff. peak and hole	0.703 and -0.548 e.Å ⁻³

	X	У	Z	U(eq)
C(1)	5670(3)	1670(3)	3509(10)	43(2)
C(2)	6261(3)	1432(3)	3417(11)	49(2)
C(3)	6829(3)	1645(3)	4236(10)	44(2)
C(4)	6873(3)	2237(3)	4863(11)	52(2)
C(5)	7404(3)	2421(3)	5642(12)	60(2)
C(6)	7910(3)	2026(4)	5766(12)	61(2)
C(7)	7872(3)	1436(3)	5137(12)	60(2)
C(8)	7335(3)	1244(3)	4338(12)	55(2)
C(9)	5361(3)	2147(3)	4427(12)	48(2)
C(10)	5006(3)	2577(3)	3751(10)	41(2)
C(11)	4619(3)	3042(3)	4584(13)	48(2)
C(12)	4645(3)	3118(3)	6264(13)	53(2)
C(13)	4263(3)	3538(3)	7109(13)	61(3)
C(14)	3849(3)	3900(3)	6118(17)	70(3)
C(15)	3818(3)	3822(3)	4445(14)	60(2)
C(16)	4198(3)	3395(3)	3677(13)	58(2)
C(17)	4651(3)	2341(3)	1028(12)	44(2)
C(18)	4342(3)	1756(3)	1664(10)	44(2)
C(19)	3713(3)	1705(3)	1462(11)	50(2)
C(20)	3415(3)	1173(3)	1858(11)	51(2)
C(21)	3736(3)	668(3)	2459(11)	56(2)
C(22)	4376(3)	719(3)	2674(11)	56(2)
C(23)	4674(3)	1258(3)	2301(10)	44(2)
N(1)	5328(2)	1279(2)	2468(9)	49(2)
N(2)	5683(2)	831(2)	1853(9)	48(2)
N(3)	6257(2)	930(2)	2457(9)	49(2)
O(1)	5025(2)	2657(2)	2027(7)	50(2)
O(2)	4583(2)	2517(2)	-323(9)	61(2)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for 150925LTS. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-C(2)	1.381(8)
C(1)-N(1)	1.410(9)
C(1)-C(9)	1.441(10)
C(2)-N(3)	1.341(10)
C(2)-C(3)	1.473(9)
C(3)-C(4)	1.382(9)
C(3)-C(8)	1.399(9)
C(4)-C(5)	1.374(10)
C(4)-H(4)	0.9500
C(5)-C(6)	1.392(10)
C(5)-H(5)	0.9500
C(6)-C(7)	1.379(11)
C(6)-H(6)	0.9500
C(7)-C(8)	1.397(11)
C(7)-H(7)	0.9500
C(8)-H(8)	0.9500
C(9)-C(10)	1.327(9)
C(9)-H(9)	0.9500
C(10)-O(1)	1.423(9)
C(10)-C(11)	1.476(10)
C(11)-C(12)	1.388(12)
C(11)-C(16)	1.402(10)
C(12)-C(13)	1.409(11)
C(12)-H(12)	0.9500
C(13)-C(14)	1.440(12)
C(13)-H(13)	0.9500
C(14)-C(15)	1.382(14)
C(14)-H(14)	0.9500
C(15)-C(16)	1.388(11)
C(15)-H(15)	0.9500
C(16)-H(16)	0.9500
C(17)-O(2)	1.179(10)
C(17)-O(1)	1.338(9)
C(17)-C(18)	1.523(9)

Table 3. Bond lengths [Å] and angles [°] for 150925LTS.

C(18)-C(19)	1.377(9)
C(18)-C(23)	1.395(9)
C(19)-C(20)	1.357(9)
C(19)-H(19)	0.9500
C(20)-C(21)	1.385(11)
C(20)-H(20)	0.9500
C(21)-C(22)	1.401(10)
C(21)-H(21)	0.9500
C(22)-C(23)	1.366(9)
C(22)-H(22)	0.9500
C(23)-N(1)	1.423(8)
N(1)-N(2)	1.335(7)
N(2)-N(3)	1.353(7)
C(2)-C(1)-N(1)	103.2(6)
C(2)-C(1)-C(9)	136.5(7)
N(1)-C(1)-C(9)	120.1(5)
N(3)-C(2)-C(1)	109.2(6)
N(3)-C(2)-C(3)	121.8(5)
C(1)-C(2)-C(3)	129.0(7)
C(4)-C(3)-C(8)	119.9(6)
C(4)-C(3)-C(2)	121.1(6)
C(8)-C(3)-C(2)	119.0(6)
C(5)-C(4)-C(3)	119.9(6)
C(5)-C(4)-H(4)	120.0
C(3)-C(4)-H(4)	120.0
C(4)-C(5)-C(6)	120.9(7)
C(4)-C(5)-H(5)	119.6
C(6)-C(5)-H(5)	119.6
C(7)-C(6)-C(5)	119.6(7)
C(7)-C(6)-H(6)	120.2
C(5)-C(6)-H(6)	120.2
C(6)-C(7)-C(8)	120.1(6)
C(6)-C(7)-H(7)	120.0
C(8)-C(7)-H(7)	120.0
C(7)-C(8)-C(3)	119.6(7)

C(7)-C(8)-H(8)	120.2
C(3)-C(8)-H(8)	120.2
C(10)-C(9)-C(1)	123.5(8)
C(10)-C(9)-H(9)	118.3
C(1)-C(9)-H(9)	118.3
C(9)-C(10)-O(1)	118.9(6)
C(9)-C(10)-C(11)	127.8(8)
O(1)-C(10)-C(11)	113.1(6)
C(12)-C(11)-C(16)	119.2(7)
C(12)-C(11)-C(10)	121.1(6)
C(16)-C(11)-C(10)	119.7(8)
C(11)-C(12)-C(13)	122.7(7)
C(11)-C(12)-H(12)	118.7
C(13)-C(12)-H(12)	118.7
C(12)-C(13)-C(14)	116.0(10)
C(12)-C(13)-H(13)	122.0
C(14)-C(13)-H(13)	122.0
C(15)-C(14)-C(13)	121.6(8)
C(15)-C(14)-H(14)	119.2
C(13)-C(14)-H(14)	119.2
C(14)-C(15)-C(16)	120.1(8)
C(14)-C(15)-H(15)	120.0
C(16)-C(15)-H(15)	120.0
C(15)-C(16)-C(11)	120.5(9)
C(15)-C(16)-H(16)	119.7
C(11)-C(16)-H(16)	119.7
O(2)-C(17)-O(1)	119.0(6)
O(2)-C(17)-C(18)	122.3(7)
O(1)-C(17)-C(18)	118.6(7)
C(19)-C(18)-C(23)	119.4(6)
C(19)-C(18)-C(17)	117.4(6)
C(23)-C(18)-C(17)	123.0(6)
C(20)-C(19)-C(18)	120.6(7)
C(20)-C(19)-H(19)	119.7
C(18)-C(19)-H(19)	119.7
C(19)-C(20)-C(21)	121.0(6)

C(19)-C(20)-H(20)	119.5
C(21)-C(20)-H(20)	119.5
C(20)-C(21)-C(22)	118.6(6)
C(20)-C(21)-H(21)	120.7
C(22)-C(21)-H(21)	120.7
C(23)-C(22)-C(21)	120.3(6)
C(23)-C(22)-H(22)	119.8
C(21)-C(22)-H(22)	119.8
C(22)-C(23)-C(18)	120.0(6)
C(22)-C(23)-N(1)	118.3(6)
C(18)-C(23)-N(1)	121.5(6)
N(2)-N(1)-C(1)	111.3(5)
N(2)-N(1)-C(23)	120.8(5)
C(1)-N(1)-C(23)	126.7(6)
N(1)-N(2)-N(3)	106.0(5)
C(2)-N(3)-N(2)	110.4(5)
C(17)-O(1)-C(10)	121.9(6)

Symmetry transformations used to generate equivalent atoms:

C(1) $33(3)$ $29(3)$ $67(5)$ $5(3)$ $4(3)$ C(2) $29(3)$ $21(3)$ $97(7)$ $14(3)$ $0(4)$ C(3) $35(3)$ $31(3)$ $66(5)$ $4(3)$ $-4(3)$ C(4) $34(3)$ $27(3)$ $97(7)$ $10(3)$ $6(4)$ C(5) $35(4)$ $31(3)$ $114(7)$ $11(4)$ $7(4)$ C(6) $36(4)$ $56(5)$ $90(7)$ $15(4)$ $-7(4)$ C(7) $28(3)$ $39(4)$ $114(8)$ $11(4)$ $-2(4)$ C(8) $36(4)$ $34(3)$ $95(7)$ $11(4)$ $3(4)$ C(9) $21(3)$ $23(3)$ $100(7)$ $-3(3)$ $4(3)$ C(10) $20(3)$ $28(3)$ $75(6)$ $-3(3)$ $-2(3)$ C(11) $26(3)$ $19(3)$ $99(8)$ $8(3)$ $-4(4)$ C(12) $22(3)$ $28(3)$ $109(8)$ $20(4)$ $8(4)$ C(13) $38(4)$ $22(3)$ $124(8)$ $3(4)$ $16(4)$ C(14) $23(3)$ $27(3)$ $160(11)$ $10(5)$ $9(5)$ C(15) $45(4)$ $46(4)$ $89(8)$ $-6(5)$ $-3(4)$ C(16) $27(3)$ $35(3)$ $111(8)$ $-1(4)$ $-3(4)$ C(17) $21(3)$ $33(3)$ $77(6)$ $-4(4)$ $-4(3)$ C(19) $37(3)$ $37(3)$ $77(6)$ $-4(4)$ $-4(3)$ C(20) $29(3)$ $52(4)$ $72(6)$ $-13(4)$ $-5(3)$ C(21) $38(4)$ $29(3)$ $101(7)$ $-10(4)$ $10($	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(2) $29(3)$ $21(3)$ $97(7)$ $14(3)$ $0(4)$ $C(3)$ $35(3)$ $31(3)$ $66(5)$ $4(3)$ $-4(3)$ $C(4)$ $34(3)$ $27(3)$ $97(7)$ $10(3)$ $6(4)$ $C(5)$ $35(4)$ $31(3)$ $114(7)$ $11(4)$ $7(4)$ $C(6)$ $36(4)$ $56(5)$ $90(7)$ $15(4)$ $-7(4)$ $C(7)$ $28(3)$ $39(4)$ $114(8)$ $11(4)$ $-2(4)$ $C(8)$ $36(4)$ $34(3)$ $95(7)$ $11(4)$ $3(4)$ $C(9)$ $21(3)$ $23(3)$ $100(7)$ $-3(3)$ $4(3)$ $C(10)$ $20(3)$ $28(3)$ $75(6)$ $-3(3)$ $-2(3)$ $C(11)$ $26(3)$ $19(3)$ $99(8)$ $8(3)$ $-4(4)$ $C(12)$ $22(3)$ $28(3)$ $109(8)$ $20(4)$ $8(4)$ $C(13)$ $38(4)$ $22(3)$ $124(8)$ $3(4)$ $16(4)$ $C(14)$ $23(3)$ $27(3)$ $160(11)$ $10(5)$ $9(5)$ $C(14)$ $23(3)$ $27(3)$ $160(11)$ $10(5)$ $9(5)$ $C(16)$ $27(3)$ $35(3)$ $111(8)$ $-1(4)$ $-3(4)$ $C(17)$ $21(3)$ $33(3)$ $78(6)$ $5(4)$ $-1(3)$ $C(18)$ $33(3)$ $37(3)$ $77(6)$ $-4(4)$ $-4(3)$ $C(20)$ $29(3)$ $52(4)$ $72(6)$ $-13(4)$ $-5(3)$ $C(21)$ $38(4)$ $29(3)$ $101(7)$ $-10(4)$ $10(4)$ $C(22)$ $39(4)$ $21(3)$ </td <td>33(3)</td> <td>29(3)</td> <td>67(5)</td> <td>5(3)</td> <td>4(3)</td> <td>-4(3)</td>	33(3)	29(3)	67(5)	5(3)	4(3)	-4(3)
C(3) $35(3)$ $31(3)$ $66(5)$ $4(3)$ $-4(3)$ C(4) $34(3)$ $27(3)$ $97(7)$ $10(3)$ $6(4)$ C(5) $35(4)$ $31(3)$ $114(7)$ $11(4)$ $7(4)$ C(6) $36(4)$ $56(5)$ $90(7)$ $15(4)$ $-7(4)$ C(7) $28(3)$ $39(4)$ $114(8)$ $11(4)$ $-2(4)$ C(8) $36(4)$ $34(3)$ $95(7)$ $11(4)$ $3(4)$ C(9) $21(3)$ $23(3)$ $100(7)$ $-3(3)$ $4(3)$ C(10) $20(3)$ $28(3)$ $75(6)$ $-3(3)$ $-2(3)$ C(11) $26(3)$ $19(3)$ $99(8)$ $8(3)$ $-4(4)$ C(12) $22(3)$ $28(3)$ $109(8)$ $20(4)$ $8(4)$ C(13) $38(4)$ $22(3)$ $124(8)$ $3(4)$ $16(4)$ C(14) $23(3)$ $27(3)$ $160(11)$ $10(5)$ $9(5)$ C(14) $23(3)$ $27(3)$ $160(11)$ $10(5)$ $9(5)$ C(15) $45(4)$ $46(4)$ $89(8)$ $-6(5)$ $-3(4)$ C(16) $27(3)$ $35(3)$ $111(8)$ $-1(4)$ $-3(4)$ C(17) $21(3)$ $33(3)$ $78(6)$ $5(4)$ $-1(3)$ C(18) $33(3)$ $37(3)$ $77(6)$ $-4(4)$ $-4(3)$ C(20) $29(3)$ $52(4)$ $72(6)$ $-13(4)$ $-5(3)$ C(21) $38(4)$ $29(3)$ $101(7)$ $-10(4)$ $10(4)$ C(22) $39(4)$ $21(3)$ $108(7)$ $-6(4)$ <t< td=""><td>29(3)</td><td>21(3)</td><td>97(7)</td><td>14(3)</td><td>0(4)</td><td>-2(2)</td></t<>	29(3)	21(3)	97(7)	14(3)	0(4)	-2(2)
C(4) $34(3)$ $27(3)$ $97(7)$ $10(3)$ $6(4)$ $C(5)$ $35(4)$ $31(3)$ $114(7)$ $11(4)$ $7(4)$ $C(6)$ $36(4)$ $56(5)$ $90(7)$ $15(4)$ $-7(4)$ $C(7)$ $28(3)$ $39(4)$ $114(8)$ $11(4)$ $-2(4)$ $C(8)$ $36(4)$ $34(3)$ $95(7)$ $11(4)$ $3(4)$ $C(9)$ $21(3)$ $23(3)$ $100(7)$ $-3(3)$ $4(3)$ $C(10)$ $20(3)$ $28(3)$ $75(6)$ $-3(3)$ $-2(3)$ $C(11)$ $26(3)$ $19(3)$ $99(8)$ $8(3)$ $-4(4)$ $C(12)$ $22(3)$ $28(3)$ $109(8)$ $20(4)$ $8(4)$ $C(13)$ $38(4)$ $22(3)$ $124(8)$ $3(4)$ $16(4)$ $C(14)$ $23(3)$ $27(3)$ $160(11)$ $10(5)$ $9(5)$ $C(15)$ $45(4)$ $46(4)$ $89(8)$ $-6(5)$ $-3(4)$ $C(16)$ $27(3)$ $35(3)$ $111(8)$ $-1(4)$ $-3(4)$ $C(17)$ $21(3)$ $33(3)$ $78(6)$ $5(4)$ $-1(3)$ $C(18)$ $33(3)$ $37(3)$ $77(6)$ $-4(4)$ $-4(3)$ $C(20)$ $29(3)$ $52(4)$ $72(6)$ $-13(4)$ $-5(3)$ $C(21)$ $38(4)$ $29(3)$ $101(7)$ $-10(4)$ $10(4)$ $C(22)$ $39(4)$ $21(3)$ $108(7)$ $-6(4)$ $6(4)$ $C(23)$ $34(3)$ $36(3)$ $63(5)$ $-12(3)$ $2(3)$ $N(1)$ $33(3)$ $21(2)$	35(3)	31(3)	66(5)	4(3)	-4(3)	-1(3)
C(5) $35(4)$ $31(3)$ $114(7)$ $11(4)$ $7(4)$ C(6) $36(4)$ $56(5)$ $90(7)$ $15(4)$ $-7(4)$ C(7) $28(3)$ $39(4)$ $114(8)$ $11(4)$ $-2(4)$ C(8) $36(4)$ $34(3)$ $95(7)$ $11(4)$ $3(4)$ C(9) $21(3)$ $23(3)$ $100(7)$ $-3(3)$ $4(3)$ C(10) $20(3)$ $28(3)$ $75(6)$ $-3(3)$ $-2(3)$ C(11) $26(3)$ $19(3)$ $99(8)$ $8(3)$ $-4(4)$ C(12) $22(3)$ $28(3)$ $109(8)$ $20(4)$ $8(4)$ C(13) $38(4)$ $22(3)$ $124(8)$ $3(4)$ $16(4)$ C(14) $23(3)$ $27(3)$ $160(11)$ $10(5)$ $9(5)$ C(15) $45(4)$ $46(4)$ $89(8)$ $-6(5)$ $-3(4)$ C(16) $27(3)$ $35(3)$ $111(8)$ $-1(4)$ $-3(4)$ C(17) $21(3)$ $33(3)$ $78(6)$ $5(4)$ $-1(3)$ C(18) $33(3)$ $37(3)$ $77(6)$ $-4(4)$ $-4(3)$ C(19) $37(3)$ $37(3)$ $77(6)$ $-13(4)$ $-5(3)$ C(21) $38(4)$ $29(3)$ $101(7)$ $-10(4)$ $10(4)$ C(22) $39(4)$ $21(3)$ $108(7)$ $-6(4)$ $6(4)$ C(23) $34(3)$ $36(3)$ $63(5)$ $-12(3)$ $2(3)$ N(1) $33(3)$ $21(2)$ $92(5)$ $-5(3)$ $-2(3)$ N(2) $28(3)$ $22(2)$ $94(5)$ $2(3)$ <td< td=""><td>34(3)</td><td>27(3)</td><td>97(7)</td><td>10(3)</td><td>6(4)</td><td>-4(3)</td></td<>	34(3)	27(3)	97(7)	10(3)	6(4)	-4(3)
C(6) $36(4)$ $56(5)$ $90(7)$ $15(4)$ $-7(4)$ C(7) $28(3)$ $39(4)$ $114(8)$ $11(4)$ $-2(4)$ C(8) $36(4)$ $34(3)$ $95(7)$ $11(4)$ $3(4)$ C(9) $21(3)$ $23(3)$ $100(7)$ $-3(3)$ $4(3)$ C(10) $20(3)$ $28(3)$ $75(6)$ $-3(3)$ $-2(3)$ C(11) $26(3)$ $19(3)$ $99(8)$ $8(3)$ $-4(4)$ C(12) $22(3)$ $28(3)$ $109(8)$ $20(4)$ $8(4)$ C(13) $38(4)$ $22(3)$ $124(8)$ $3(4)$ $16(4)$ C(14) $23(3)$ $27(3)$ $160(11)$ $10(5)$ $9(5)$ C(14) $23(3)$ $27(3)$ $160(11)$ $10(5)$ $9(5)$ C(15) $45(4)$ $46(4)$ $89(8)$ $-6(5)$ $-3(4)$ C(16) $27(3)$ $35(3)$ $111(8)$ $-1(4)$ $-3(4)$ C(17) $21(3)$ $33(3)$ $78(6)$ $5(4)$ $-1(3)$ C(18) $33(3)$ $33(3)$ $66(6)$ $-5(3)$ $0(3)$ C(19) $37(3)$ $37(3)$ $77(6)$ $-4(4)$ $-4(3)$ C(20) $29(3)$ $52(4)$ $72(6)$ $-13(4)$ $-5(3)$ C(21) $38(4)$ $29(3)$ $101(7)$ $-10(4)$ $10(4)$ C(22) $39(4)$ $21(3)$ $108(7)$ $-6(4)$ $6(4)$ C(23) $34(3)$ $36(3)$ $63(5)$ $-12(3)$ $2(3)$ N(1) $33(3)$ $21(2)$ $92(5)$ $-5(3)$	35(4)	31(3)	114(7)	11(4)	7(4)	-9(3)
C(7) $28(3)$ $39(4)$ $114(8)$ $11(4)$ $-2(4)$ $C(8)$ $36(4)$ $34(3)$ $95(7)$ $11(4)$ $3(4)$ $C(9)$ $21(3)$ $23(3)$ $100(7)$ $-3(3)$ $4(3)$ $C(10)$ $20(3)$ $28(3)$ $75(6)$ $-3(3)$ $-2(3)$ $C(11)$ $26(3)$ $19(3)$ $99(8)$ $8(3)$ $-4(4)$ $C(12)$ $22(3)$ $28(3)$ $109(8)$ $20(4)$ $8(4)$ $C(13)$ $38(4)$ $22(3)$ $124(8)$ $3(4)$ $16(4)$ $C(14)$ $23(3)$ $27(3)$ $160(11)$ $10(5)$ $9(5)$ $C(14)$ $23(3)$ $27(3)$ $160(11)$ $10(5)$ $9(5)$ $C(15)$ $45(4)$ $46(4)$ $89(8)$ $-6(5)$ $-3(4)$ $C(16)$ $27(3)$ $35(3)$ $111(8)$ $-1(4)$ $-3(4)$ $C(17)$ $21(3)$ $33(3)$ $78(6)$ $5(4)$ $-1(3)$ $C(18)$ $33(3)$ $37(3)$ $77(6)$ $-4(4)$ $-4(3)$ $C(20)$ $29(3)$ $52(4)$ $72(6)$ $-13(4)$ $-5(3)$ $C(21)$ $38(4)$ $29(3)$ $101(7)$ $-10(4)$ $10(4)$ $C(22)$ $39(4)$ $21(3)$ $108(7)$ $-6(4)$ $6(4)$ $C(23)$ $34(3)$ $36(3)$ $63(5)$ $-12(3)$ $2(3)$ $N(1)$ $33(3)$ $21(2)$ $94(5)$ $2(3)$ $6(3)$	36(4)	56(5)	90(7)	15(4)	-7(4)	-11(3)
C(8) $36(4)$ $34(3)$ $95(7)$ $11(4)$ $3(4)$ $C(9)$ $21(3)$ $23(3)$ $100(7)$ $-3(3)$ $4(3)$ $C(10)$ $20(3)$ $28(3)$ $75(6)$ $-3(3)$ $-2(3)$ $C(11)$ $26(3)$ $19(3)$ $99(8)$ $8(3)$ $-4(4)$ $C(12)$ $22(3)$ $28(3)$ $109(8)$ $20(4)$ $8(4)$ $C(13)$ $38(4)$ $22(3)$ $124(8)$ $3(4)$ $16(4)$ $C(14)$ $23(3)$ $27(3)$ $160(11)$ $10(5)$ $9(5)$ $C(15)$ $45(4)$ $46(4)$ $89(8)$ $-6(5)$ $-3(4)$ $C(16)$ $27(3)$ $35(3)$ $111(8)$ $-1(4)$ $-3(4)$ $C(17)$ $21(3)$ $33(3)$ $78(6)$ $5(4)$ $-1(3)$ $C(18)$ $33(3)$ $37(3)$ $77(6)$ $-4(4)$ $-4(3)$ $C(20)$ $29(3)$ $52(4)$ $72(6)$ $-13(4)$ $-5(3)$ $C(21)$ $38(4)$ $29(3)$ $101(7)$ $-10(4)$ $10(4)$ $C(22)$ $39(4)$ $21(3)$ $108(7)$ $-6(4)$ $6(4)$ $C(23)$ $34(3)$ $36(3)$ $63(5)$ $-12(3)$ $2(3)$ $N(1)$ $33(3)$ $21(2)$ $94(5)$ $2(3)$ $6(3)$	28(3)	39(4)	114(8)	11(4)	-2(4)	0(3)
C(9) $21(3)$ $23(3)$ $100(7)$ $-3(3)$ $4(3)$ $C(10)$ $20(3)$ $28(3)$ $75(6)$ $-3(3)$ $-2(3)$ $C(11)$ $26(3)$ $19(3)$ $99(8)$ $8(3)$ $-4(4)$ $C(12)$ $22(3)$ $28(3)$ $109(8)$ $20(4)$ $8(4)$ $C(13)$ $38(4)$ $22(3)$ $124(8)$ $3(4)$ $16(4)$ $C(14)$ $23(3)$ $27(3)$ $160(11)$ $10(5)$ $9(5)$ $C(15)$ $45(4)$ $46(4)$ $89(8)$ $-6(5)$ $-3(4)$ $C(16)$ $27(3)$ $35(3)$ $111(8)$ $-1(4)$ $-3(4)$ $C(17)$ $21(3)$ $33(3)$ $78(6)$ $5(4)$ $-1(3)$ $C(18)$ $33(3)$ $37(3)$ $77(6)$ $-4(4)$ $-4(3)$ $C(20)$ $29(3)$ $52(4)$ $72(6)$ $-13(4)$ $-5(3)$ $C(21)$ $38(4)$ $29(3)$ $101(7)$ $-10(4)$ $10(4)$ $C(22)$ $39(4)$ $21(3)$ $108(7)$ $-6(4)$ $6(4)$ $C(23)$ $34(3)$ $36(3)$ $63(5)$ $-12(3)$ $2(3)$ $N(1)$ $33(3)$ $21(2)$ $92(5)$ $-5(3)$ $-2(3)$ $N(2)$ $28(3)$ $22(2)$ $94(5)$ $2(3)$ $6(3)$	36(4)	34(3)	95(7)	11(4)	3(4)	-3(3)
C(10) $20(3)$ $28(3)$ $75(6)$ $-3(3)$ $-2(3)$ $C(11)$ $26(3)$ $19(3)$ $99(8)$ $8(3)$ $-4(4)$ $C(12)$ $22(3)$ $28(3)$ $109(8)$ $20(4)$ $8(4)$ $C(13)$ $38(4)$ $22(3)$ $124(8)$ $3(4)$ $16(4)$ $C(14)$ $23(3)$ $27(3)$ $160(11)$ $10(5)$ $9(5)$ $C(15)$ $45(4)$ $46(4)$ $89(8)$ $-6(5)$ $-3(4)$ $C(16)$ $27(3)$ $35(3)$ $111(8)$ $-1(4)$ $-3(4)$ $C(17)$ $21(3)$ $33(3)$ $78(6)$ $5(4)$ $-1(3)$ $C(18)$ $33(3)$ $37(3)$ $77(6)$ $-4(4)$ $-4(3)$ $C(20)$ $29(3)$ $52(4)$ $72(6)$ $-13(4)$ $-5(3)$ $C(21)$ $38(4)$ $29(3)$ $101(7)$ $-10(4)$ $10(4)$ $C(22)$ $39(4)$ $21(3)$ $108(7)$ $-6(4)$ $6(4)$ $C(23)$ $34(3)$ $36(3)$ $63(5)$ $-12(3)$ $2(3)$ $N(1)$ $33(3)$ $21(2)$ $92(5)$ $-5(3)$ $-2(3)$ $N(2)$ $28(3)$ $22(2)$ $94(5)$ $2(3)$ $6(3)$	21(3)	23(3)	100(7)	-3(3)	4(3)	0(2)
C(11) $26(3)$ $19(3)$ $99(8)$ $8(3)$ $-4(4)$ $C(12)$ $22(3)$ $28(3)$ $109(8)$ $20(4)$ $8(4)$ $C(13)$ $38(4)$ $22(3)$ $124(8)$ $3(4)$ $16(4)$ $C(14)$ $23(3)$ $27(3)$ $160(11)$ $10(5)$ $9(5)$ $C(14)$ $23(3)$ $27(3)$ $160(11)$ $10(5)$ $9(5)$ $C(15)$ $45(4)$ $46(4)$ $89(8)$ $-6(5)$ $-3(4)$ $C(16)$ $27(3)$ $35(3)$ $111(8)$ $-1(4)$ $-3(4)$ $C(17)$ $21(3)$ $33(3)$ $78(6)$ $5(4)$ $-1(3)$ $C(18)$ $33(3)$ $37(3)$ $77(6)$ $-4(4)$ $-4(3)$ $C(20)$ $29(3)$ $52(4)$ $72(6)$ $-13(4)$ $-5(3)$ $C(21)$ $38(4)$ $29(3)$ $101(7)$ $-10(4)$ $10(4)$ $C(22)$ $39(4)$ $21(3)$ $108(7)$ $-6(4)$ $6(4)$ $C(23)$ $34(3)$ $36(3)$ $63(5)$ $-12(3)$ $2(3)$ $N(1)$ $33(3)$ $21(2)$ $92(5)$ $-5(3)$ $-2(3)$ $N(2)$ $28(3)$ $22(2)$ $94(5)$ $2(3)$ $6(3)$	20(3)	28(3)	75(6)	-3(3)	-2(3)	-4(2)
C(12) $22(3)$ $28(3)$ $109(8)$ $20(4)$ $8(4)$ $C(13)$ $38(4)$ $22(3)$ $124(8)$ $3(4)$ $16(4)$ $C(14)$ $23(3)$ $27(3)$ $160(11)$ $10(5)$ $9(5)$ $C(15)$ $45(4)$ $46(4)$ $89(8)$ $-6(5)$ $-3(4)$ $C(16)$ $27(3)$ $35(3)$ $111(8)$ $-1(4)$ $-3(4)$ $C(17)$ $21(3)$ $33(3)$ $78(6)$ $5(4)$ $-1(3)$ $C(18)$ $33(3)$ $33(3)$ $66(6)$ $-5(3)$ $0(3)$ $C(19)$ $37(3)$ $37(3)$ $77(6)$ $-4(4)$ $-4(3)$ $C(20)$ $29(3)$ $52(4)$ $72(6)$ $-13(4)$ $-5(3)$ $C(21)$ $38(4)$ $29(3)$ $101(7)$ $-10(4)$ $10(4)$ $C(22)$ $39(4)$ $21(3)$ $108(7)$ $-6(4)$ $6(4)$ $C(23)$ $34(3)$ $36(3)$ $63(5)$ $-12(3)$ $2(3)$ $N(1)$ $33(3)$ $21(2)$ $92(5)$ $-5(3)$ $-2(3)$ $N(2)$ $28(3)$ $22(2)$ $94(5)$ $2(3)$ $6(3)$	26(3)	19(3)	99(8)	8(3)	-4(4)	-4(2)
C(13) $38(4)$ $22(3)$ $124(8)$ $3(4)$ $16(4)$ $C(14)$ $23(3)$ $27(3)$ $160(11)$ $10(5)$ $9(5)$ $C(15)$ $45(4)$ $46(4)$ $89(8)$ $-6(5)$ $-3(4)$ $C(16)$ $27(3)$ $35(3)$ $111(8)$ $-1(4)$ $-3(4)$ $C(17)$ $21(3)$ $33(3)$ $78(6)$ $5(4)$ $-1(3)$ $C(18)$ $33(3)$ $33(3)$ $66(6)$ $-5(3)$ $0(3)$ $C(19)$ $37(3)$ $37(3)$ $77(6)$ $-4(4)$ $-4(3)$ $C(20)$ $29(3)$ $52(4)$ $72(6)$ $-13(4)$ $-5(3)$ $C(21)$ $38(4)$ $29(3)$ $101(7)$ $-10(4)$ $10(4)$ $C(22)$ $39(4)$ $21(3)$ $108(7)$ $-6(4)$ $6(4)$ $C(23)$ $34(3)$ $36(3)$ $63(5)$ $-12(3)$ $2(3)$ $N(1)$ $33(3)$ $21(2)$ $92(5)$ $-5(3)$ $-2(3)$ $N(2)$ $28(3)$ $22(2)$ $94(5)$ $2(3)$ $6(3)$	22(3)	28(3)	109(8)	20(4)	8(4)	9(2)
C(14) $23(3)$ $27(3)$ $160(11)$ $10(5)$ $9(5)$ $C(15)$ $45(4)$ $46(4)$ $89(8)$ $-6(5)$ $-3(4)$ $C(16)$ $27(3)$ $35(3)$ $111(8)$ $-1(4)$ $-3(4)$ $C(17)$ $21(3)$ $33(3)$ $78(6)$ $5(4)$ $-1(3)$ $C(18)$ $33(3)$ $33(3)$ $66(6)$ $-5(3)$ $0(3)$ $C(19)$ $37(3)$ $37(3)$ $77(6)$ $-4(4)$ $-4(3)$ $C(20)$ $29(3)$ $52(4)$ $72(6)$ $-13(4)$ $-5(3)$ $C(21)$ $38(4)$ $29(3)$ $101(7)$ $-10(4)$ $10(4)$ $C(22)$ $39(4)$ $21(3)$ $108(7)$ $-6(4)$ $6(4)$ $C(23)$ $34(3)$ $36(3)$ $63(5)$ $-12(3)$ $2(3)$ $N(1)$ $33(3)$ $21(2)$ $92(5)$ $-5(3)$ $-2(3)$ $N(2)$ $28(3)$ $22(2)$ $94(5)$ $2(3)$ $6(3)$	38(4)	22(3)	124(8)	3(4)	16(4)	-1(3)
C(15) $45(4)$ $46(4)$ $89(8)$ $-6(5)$ $-3(4)$ $C(16)$ $27(3)$ $35(3)$ $111(8)$ $-1(4)$ $-3(4)$ $C(17)$ $21(3)$ $33(3)$ $78(6)$ $5(4)$ $-1(3)$ $C(18)$ $33(3)$ $33(3)$ $66(6)$ $-5(3)$ $0(3)$ $C(19)$ $37(3)$ $37(3)$ $77(6)$ $-4(4)$ $-4(3)$ $C(20)$ $29(3)$ $52(4)$ $72(6)$ $-13(4)$ $-5(3)$ $C(21)$ $38(4)$ $29(3)$ $101(7)$ $-10(4)$ $10(4)$ $C(22)$ $39(4)$ $21(3)$ $108(7)$ $-6(4)$ $6(4)$ $C(23)$ $34(3)$ $36(3)$ $63(5)$ $-12(3)$ $2(3)$ $N(1)$ $33(3)$ $21(2)$ $92(5)$ $-5(3)$ $-2(3)$ $N(2)$ $28(3)$ $22(2)$ $94(5)$ $2(3)$ $6(3)$	23(3)	27(3)	160(11)	10(5)	9(5)	12(3)
C(16) $27(3)$ $35(3)$ $111(8)$ $-1(4)$ $-3(4)$ $C(17)$ $21(3)$ $33(3)$ $78(6)$ $5(4)$ $-1(3)$ $C(18)$ $33(3)$ $33(3)$ $66(6)$ $-5(3)$ $0(3)$ $C(19)$ $37(3)$ $37(3)$ $77(6)$ $-4(4)$ $-4(3)$ $C(20)$ $29(3)$ $52(4)$ $72(6)$ $-13(4)$ $-5(3)$ $C(21)$ $38(4)$ $29(3)$ $101(7)$ $-10(4)$ $10(4)$ $C(22)$ $39(4)$ $21(3)$ $108(7)$ $-6(4)$ $6(4)$ $C(23)$ $34(3)$ $36(3)$ $63(5)$ $-12(3)$ $2(3)$ $N(1)$ $33(3)$ $21(2)$ $92(5)$ $-5(3)$ $-2(3)$ $N(2)$ $28(3)$ $22(2)$ $94(5)$ $2(3)$ $6(3)$	45(4)	46(4)	89(8)	-6(5)	-3(4)	11(3)
C(17) $21(3)$ $33(3)$ $78(6)$ $5(4)$ $-1(3)$ $C(18)$ $33(3)$ $33(3)$ $66(6)$ $-5(3)$ $0(3)$ $C(19)$ $37(3)$ $37(3)$ $77(6)$ $-4(4)$ $-4(3)$ $C(20)$ $29(3)$ $52(4)$ $72(6)$ $-13(4)$ $-5(3)$ $C(21)$ $38(4)$ $29(3)$ $101(7)$ $-10(4)$ $10(4)$ $C(22)$ $39(4)$ $21(3)$ $108(7)$ $-6(4)$ $6(4)$ $C(23)$ $34(3)$ $36(3)$ $63(5)$ $-12(3)$ $2(3)$ $N(1)$ $33(3)$ $21(2)$ $92(5)$ $-5(3)$ $-2(3)$ $N(2)$ $28(3)$ $22(2)$ $94(5)$ $2(3)$ $6(3)$	27(3)	35(3)	111(8)	-1(4)	-3(4)	8(3)
C(18) $33(3)$ $33(3)$ $66(6)$ $-5(3)$ $0(3)$ $C(19)$ $37(3)$ $37(3)$ $77(6)$ $-4(4)$ $-4(3)$ $C(20)$ $29(3)$ $52(4)$ $72(6)$ $-13(4)$ $-5(3)$ $C(21)$ $38(4)$ $29(3)$ $101(7)$ $-10(4)$ $10(4)$ $C(22)$ $39(4)$ $21(3)$ $108(7)$ $-6(4)$ $6(4)$ $C(23)$ $34(3)$ $36(3)$ $63(5)$ $-12(3)$ $2(3)$ $N(1)$ $33(3)$ $21(2)$ $92(5)$ $-5(3)$ $-2(3)$ $N(2)$ $28(3)$ $22(2)$ $94(5)$ $2(3)$ $6(3)$	21(3)	33(3)	78(6)	5(4)	-1(3)	-2(2)
C(19) $37(3)$ $37(3)$ $77(6)$ $-4(4)$ $-4(3)$ $C(20)$ $29(3)$ $52(4)$ $72(6)$ $-13(4)$ $-5(3)$ $C(21)$ $38(4)$ $29(3)$ $101(7)$ $-10(4)$ $10(4)$ $C(22)$ $39(4)$ $21(3)$ $108(7)$ $-6(4)$ $6(4)$ $C(23)$ $34(3)$ $36(3)$ $63(5)$ $-12(3)$ $2(3)$ $N(1)$ $33(3)$ $21(2)$ $92(5)$ $-5(3)$ $-2(3)$ $N(2)$ $28(3)$ $22(2)$ $94(5)$ $2(3)$ $6(3)$	33(3)	33(3)	66(6)	-5(3)	0(3)	-4(3)
C(20) $29(3)$ $52(4)$ $72(6)$ $-13(4)$ $-5(3)$ $C(21)$ $38(4)$ $29(3)$ $101(7)$ $-10(4)$ $10(4)$ $C(22)$ $39(4)$ $21(3)$ $108(7)$ $-6(4)$ $6(4)$ $C(23)$ $34(3)$ $36(3)$ $63(5)$ $-12(3)$ $2(3)$ $N(1)$ $33(3)$ $21(2)$ $92(5)$ $-5(3)$ $-2(3)$ $N(2)$ $28(3)$ $22(2)$ $94(5)$ $2(3)$ $6(3)$	37(3)	37(3)	77(6)	-4(4)	-4(3)	4(3)
C(21) $38(4)$ $29(3)$ $101(7)$ $-10(4)$ $10(4)$ $C(22)$ $39(4)$ $21(3)$ $108(7)$ $-6(4)$ $6(4)$ $C(23)$ $34(3)$ $36(3)$ $63(5)$ $-12(3)$ $2(3)$ $N(1)$ $33(3)$ $21(2)$ $92(5)$ $-5(3)$ $-2(3)$ $N(2)$ $28(3)$ $22(2)$ $94(5)$ $2(3)$ $6(3)$	29(3)	52(4)	72(6)	-13(4)	-5(3)	-7(3)
C(22) $39(4)$ $21(3)$ $108(7)$ $-6(4)$ $6(4)$ $C(23)$ $34(3)$ $36(3)$ $63(5)$ $-12(3)$ $2(3)$ $N(1)$ $33(3)$ $21(2)$ $92(5)$ $-5(3)$ $-2(3)$ $N(2)$ $28(3)$ $22(2)$ $94(5)$ $2(3)$ $6(3)$	38(4)	29(3)	101(7)	-10(4)	10(4)	-6(3)
C(23) 34(3) 36(3) 63(5) -12(3) 2(3) N(1) 33(3) 21(2) 92(5) -5(3) -2(3) N(2) 28(3) 22(2) 94(5) 2(3) 6(3)	39(4)	21(3)	108(7)	-6(4)	6(4)	4(2)
N(1) 33(3) 21(2) 92(5) -5(3) -2(3) N(2) 28(3) 22(2) 94(5) 2(3) 6(3)	34(3)	36(3)	63(5)	-12(3)	2(3)	8(3)
N(2) 28(3) 22(2) 94(5) 2(3) 6(3)	33(3)	21(2)	92(5)	-5(3)	-2(3)	-1(2)
	28(3)	22(2)	94(5)	2(3)	6(3)	3(2)
N(3) 29(3) 20(2) 98(5) 4(3) 2(3)	29(3)	20(2)	98(5)	4(3)	2(3)	1(2)
O(1) 34(2) 33(2) 82(5) 1(2) 3(3)	34(2)	33(2)	82(5)	1(2)	3(3)	-5(2)
O(2) 49(3) 47(3) 87(5) 11(3) 0(3)	49(3)	47(3)	87(5)	11(3)	0(3)	-4(2)

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for 150925LTS. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}]$

	Х	у	Z	U(eq)
H(4)	6536	2516	4756	63
H(5)	7427	2824	6102	72
H(6)	8279	2162	6281	73
H(7)	8211	1160	5246	72
H(8)	7313	843	3866	66
H(9)	5415	2154	5578	58
H(12)	4932	2877	6870	64
H(13)	4278	3580	8262	73
H(14)	3591	4198	6626	84
H(15)	3535	4062	3821	72
H(16)	4173	3342	2528	69
H(19)	3484	2044	1041	60
H(20)	2979	1147	1722	62
H(21)	3526	295	2719	67
H(22)	4605	377	3081	67

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for 150925LTS.