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I. THEORETICAL METHODS 

I.1. Ab initio Quantum Chemical and Density Functional Theory Methods 

The optimization and vibrational analysis of both initial and final states needed to evaluate FC 

integrals and associated PES were carried out using the GAMESS software.1 The levels of theory 

used for each of the applications were selected based on a performance analysis to provide 

optimal accuracy for the electronic structure, vibrational frequencies and simulated photoelectron 

spectra. For the 3-D FC application of H2O and H2O+ cation B!B! state, the completely 

renormalized Coupled-Cluster method (CR-CC(2,3))2,3 together with aug-cc-pVTZ basis set was 

used. For both the 15-D case of syn and anti vinyl alcohol and 30-D case of benzene cation, DFT 

was employed using the ωB97x-D functional4 together with the Def2-TZVPPD basis set.5 The 

choice of this functional was based on a comparative analysis across a broad array of functionals 

and conventional wavefunction theory. Full geometry optimizations were performed and 

uniquely characterized via second derivative (Hessian) analysis to determine stationary states as 

well as to obtain vibrational frequencies and normal mode data for FC computations. In all DFT 

calculations, an army grade grid was used for radial points in the Euler-MacLaurin quadrature 

and Lebedev grids (NRAD=155 and NLEB=1202, respectively). 

I.2. Deconvolution of Spectra 

The representation of spectra is dependent on the spectral bandwidth and resolution and not on 

the methodology used to deconvolute the spectra. The spectral bands are typically fit to either 

Gaussian or Lorentzian functions.6 The Gaussian function is more applicable to UV-Vis spectra, 

while the Lorentzian function is more applicable to NMR spectra.6 Online resources are available 

for generation of photoelectron/photodetachment spectra for polyatomic molecules, such as 

eZspectrum,7 where Franck-Condon factors (FCF) are calculated as overlaps of 1-D harmonic 
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wave functions and neglecting mode mixing.7 In the present work, a spectrum generating 

program has been created using Gaussian functions for the general case of multi-dimensional 

FCFs, including Duschinsky rotation (mode mixing).  

A peak of the Gaussian line shape is governed by the function  

 
(s1) 

where I is the intensity of the peak, A is the oscillator strength (FCF value), 𝜈!"# is the energy at 

the band maximum,  𝜈 is an arbitrary energy, and ∆𝜈 is the full width at half maximum (FWHM) 

value. The resolution of the spectra is dependent on the FWHM, for example, higher values of 

FWHM correspond to a broadening of the peak. The complete spectrum is the sum of the 

individual Gaussian bands as, 

 
(s2) 

I.3. Handedness of Coordinate system 

The Cartesian coordinate system has two orientations as determined by the handedness. 

Defining the xy-plane as the plane of the paper and the z-axis to be coming out of that plane, the 

representation is “right-handed” (e.g., Figure S1a). If the direction of the z-axis is into the plane 

(e.g., Figure S1b), the representation is “left-handed.” When the xy-plane of the left and the right 

handed representations are overlayed, the z-axes of the left and right handed representations will 

180° opposed.  
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Figure S1. Cartesian coordinate representations for a) left handed and b) right handed coordinate 
systems. 

I.3.1. Rotational	
  matrix	
  	
  
With reference to the coordinate axis, there are three possibilities for rotation: rotation about 

the x-axis or Pitch,8 rotation about the y-axis, or Heading,8 and rotation about the z-axis, or 

Bank.8 These are briefly defined as follows.  

I.3.1.1 Pitch: The positive rotation about the x-axis in the left-handed coordinate system is 

clockwise. After the pitch rotation, the yz-plane is rotated by θl. In Figure S2a, the new +Yl and 

+Zl represent the coordinate axis change due to the rotation (black to red). The pitch matrix is 

𝑃! =
1 0 0
0 cos  (𝜃!) −sin  (𝜃!)
0 sin  (𝜃!) cos  (𝜃!)

 

In contrast, the positive rotation about the x-axis in the right-handed coordinate system is 

counterclockwise. After the pitch rotation, the yz-plane is rotated by θr. The new +Yl	
   and	
  +Zl	
  

axes	
  are depicted in red in Figure S2b. The pitch matrix in this case is 

𝑃! =
1 0 0
0 cos  (𝜃!) −sin  (𝜃!)
0 sin  (𝜃!) cos  (𝜃!)

 

a) left handed representation b) right handed representation
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Figure S2. (a) Rotation about the x-axis in the left-handed coordinate system, and (b) Rotation 
about the x-axis in the right-handed coordinate system. 

I.3.1.2 Heading: Rotations about the y-axis for both left-handed and right-handed coordinate 

systems are illustrated in Figure S3. The clockwise rotation about the +Yl-axis results in the 

change of +Xl and +Zl axis, as represented by the red axis. The rotational matrix of Heading is 

𝐻! =
cos  (𝜃!) 0 sin  (𝜃!)

0 1 0
−sin  (𝜃!) 0 cos  (𝜃!)

 

The rotation in the right-handed coordinate system is counterclockwise. The positive angle of 

this rotation is θr,	
  and	
  the	
  heading	
  matrix	
  is	
  

𝐻! =
cos  (𝜃!) 0 sin  (𝜃!)

0 1 0
−sin  (𝜃!) 0 cos  (𝜃!)

 

  

Figure S3. Representation of rotation about the y-axis in the (a) left-handed and (b) right-handed 
coordinate systems. 
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I.3.1.3 Bank: A positive rotation about the +Zl-axis is clockwise. The bank angle is θl, as 

depicted in Figure S4a. The bank matrix is, 

𝐵! =
cos  (𝜃!) −sin  (𝜃!) 0
sin  (𝜃!) cos  (𝜃!) 0
0 0 1

 

Positive rotation about the +Zr-axis is counterclockwise (Figure S4b). As a result, the bank 

matrix in the right-handed coordinate system is given as 

𝐵! =
cos  (𝜃!) −sin  (𝜃!) 0
sin  (𝜃!) cos  (𝜃!) 0

0 0 1
 

 

Figure S4. Rotation about the z-axis in the (a) left-handed and (b) right-handed coordinate 
systems. 

The rotational matrices for operation on x-, y-, and z- axes are composed of heading, pitch, and 

bank matrices. The left-handed rotation is determined as, 

𝑅! = 𝐻!𝑃!𝐵! (s3) 

and the rotation in the right-handed coordinate system as determined from the left-handed system 

is 

  𝑅! = 𝑆!𝑅!𝑆!   (s4) 

where 
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𝑆! =
1 0 0
0 1 0
0 0 −1

 

The right-handed and left-handed systems are related by Qr=SzQl. Using the rotational 

relationship in Eqn S5, the transformation of the right-handed coordinate system is given by  

𝑄′! = 𝑆!𝑄′! = 𝑆!𝑅!𝑄! = 𝑆!𝑅!𝑆!𝑄! (s5) 

For correct determination of FCF and associated photoelectron spectra, the coordinate system 

must be consistent from the ground to the excited states. There is a noticeable effect of 

handedness on the results of the FC calculation and associated prediction of photoelectron 

spectra. 

II. 1-D FCF Mathematical Formalism 

Vibronic transitions are governed by the Franck-Condon principle, such that the probability of 

transition involves the overlap integral of the initial state and final state, e.g., Franck-Condon 

Factor (FCF).9,10 The transition probability (P) is given as, 

 (s6) 

where 𝜓! and 𝜓! are the electronic vibrational of wavefunction of the ground and the excited 

states, respectively.  

Under the assumption of the harmonic oscillator approximation, the 1-D vibronic 

wavefunctions is, 

 (s7) 
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where N! is a normalized factor, 𝑁! =
𝛼

2𝜐𝜐! 𝜋

!/!
,  H!(x) is the Hermite polynomial, and α is 

a function of the frequency, 𝛼 = 𝜔
ℏ  with angular frequency, ω, and ħ Planck’s constant.  

The ground state geometry is typically altered during the excitation process as manifested by 

displacement and/or distortions of the involved normal modes. In this case, the overlap integral 

between the two vibrational states is, 

 

      
(s8) 

where the prime and non-primed values refer to the initial and final states, respectively. The 

displacement (d) between the equilibrium ground (x’) and excited (x) states can be determined 

from   

                        (s9) 

Using Eqn s9 and substituted to Eqn s8, one obtains11 

 

                               
(s10) 

where  𝑆 = 𝛼𝛼′𝑑2

𝛼+𝛼′  . Substituting 𝑦 = 𝑥 + 𝛼′𝑑
𝛼+𝛼′ into Eqn s10, 

 

                                                            
(s11) 
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where 𝑏 = −𝛼′ 𝛼𝑑𝛼+𝛼′   and  𝑏 = −𝛼 𝛼′𝑑
𝛼+𝛼′  . Using the properties of Hermite polynomials in Eqn 

s12,  

               (s12) 

and the well-known Gaussian integral in Eqn s13, which is nonzero when k + k’ is even, 

 (s13) 

where 2𝑛 − 1 ‼ = 1×3×5×…×(2𝑛 − 1), the overlap integral in Eqn s11 becomes 

 

                     (s14) 

where  𝐴= 2 𝛼+𝛼′
𝛼+𝛼′ , and 

 (s15) 

with 𝐾 = (𝑘 + 𝑘!)/2. 

The Franck Condon Integral (FCI) can be determined completely from Eqn s14.11 This 1-D 

FCI can be applied to diatomic molecules (e.g., one normal mode).  

III. Supplementary Figure of the photoelectron spectra of H2O+ (𝑩𝟐𝑩𝟐) 
demonstrating the influence of handedness assignment. 

In this particular case, the handedness of the asymmetric stretching mode does not appear to 

affect the intensity of the PES, as illustrated by comparison of Figure S5c (l, l, r) with Figure S5e 
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(l, l, l), which shows that the spectral bands are identical. This is due to the fact that the 

corresponding Duschinsky matrices have zero values for J13, and J23, an indication of no coupling 

to this normal mode.  A ‘l’ and ‘r’ triplet notation has been introduced to show the effects of the 

handedness on the prediction of the spectra.  Figure S5b, Figure S5c and Figure S5d with mode 

assignments (r, r, r), (l, l, r) and (l, l, l), with the remaining two normal modes (symmetric stretch 

and bend) having the same handedness, result in essentially identical PES results, however with 

the resulting intensity higher and information about the progression of transitions more than 

when the spectra are determined using a mixture of handedness, such as (l, r, x). All three of 

these last spectra provide similar spectral band shapes as determined by Chang (Figure S5f). 

	
  

Figure S5. Simulated photoelectron spectra of H2O+ (𝑩𝟐𝑩𝟐) with FWHM 50 cm-1 calculated at 
CR-CC(2,3)/aug-cc-pVTZ level of theory for coordinate assignments as a) (l,r,r) b) (r,r,r) c) 
(l,l,r) d) (l,r,l) e) (l,l,l) f) (U)CCSD(T)/6-311++G(3df,2pd)12 
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IV. Supplementary Table for ground and cation of vinyl alcohol  

 

 
Figure S6. Numbering systems of anti- and syn-vinyl alcohol. 

 

Table S1. ωB97x-D/Def2-TZVPPD optimized geometries of anti- and syn- vinyl alcohol and the 
respective cation states (reference geometry specifications depicted in Figure S6).  

Parameter 
Anti-rotamer Syn-rotamer 

Neutral Cation 
(calc.) 

Neutral Cation 
(calc.) Calc. Expt.[13] Calc. Expt.[14] 

O-H4 0.955 0.955 0.955 0.959 0.960 0.971 
C2-O 1.358 1.358 1.358 1.352 1.372 1.275 
C1-C2 1.322 1.322 1.322 1.325 1.326 1.407 
C2-H3 1.085 1.085 1.085 1.082 1.097 1.086 
C1-H1 1.079 1.079 1.079 1.079 1.079 1.082 
C1-H2 1.081 1.081 1.081 1.083 1.086 1.084 
∠H4OC2 110.1 110.1 110.1 109.7 126.2 115.7 
∠OC2C1 122.5 122.5 122.5 126.8 108.3 124.6 
∠C1C2H3 121.8 121.8 121.8 122.4 129.1 121.8 
∠C2C1H1 119.5 119.5 119.5 119.8 119.5 119.3 
∠C2C1H2 121.5 121.5 121.5 122.2 121.7 121.6 
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Table S2. ωB97x-D/Def2-TZVPPD calculated harmonic vibrational frequencies for anti- and 
syn- vinyl alcohol and their respective cation states. 

Freq. 
Anti-rotamer Syn-rotamer 

Neutral Cation Neutral Cation Calc. Expt. [15] 
ν1 3950.5 3757.8 3889.3 3633.5 3731.7 
ν2 3280.5 3292.1 3269.4 3121.7 3280.7 
ν3 3185.1 3165.6 3211.7 - 3203.0 
ν4 3164.4 3178.9 3163.9 - 3157.3 
ν5 1754.7 1644.1 1727.7 1644.5 1623.0 
ν6 1445.7 1483.4 1456.5 1411.8 1492.8 
ν7 1360.9 1325.2 1363.0 1300.0 1429.6 
ν8 1302.2 1391.3 1339.6 1259.7 1308.7 
ν9 1162.6 1159.1 1140.2 1097.9 1154.9 
ν10 973.8 1009.8 974.4 947.6 996.3 
ν11 491.3 494.4 503.8 - 499.9 
ν12 991.2 1040.5 1014.9 972.5 1055.7 
ν13 878.3 942.6 852.3 816.7 934.1 
ν14 725.6 437.7 723.9 698.9 398.1 
ν15 292.1 672.2 456.1 - 694.3 

 

 

V. Supplementary Table for ground and cation 𝑿𝟐𝑬𝟏𝒈 states of benzene  

 

Figure S7. ωB97x-D/Def2-TZVPPD optimized geometry parameters for benzene ground (left) 
and cation 𝑿𝟐𝑬𝟏𝒈 (right) states. 
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Table S3. ωB97x-D/Def2-TZVPPD calculated harmonic vibrational frequencies of the ground 
and cation 𝑿𝟐𝑬𝟏𝒈 state of benzene. 

Mode 

Symmetry 

(D6h) 

C6H6 C6H6
+ (𝑿𝟐𝑬𝟏𝒈) 

Calc. Expt.[16] Calc. Expt.[17] 

1 A1G 3220.05 3073.94 3242.57 2960.12 
2 A1G 1029.72 993.07 994.96 984.02 
3 A2G 1390.74 1350.00 1399.69 

 4 A2U 697.21  689.62 
 5 B1U 3184.33  3210.69 
 6 B1U 1033.13 990.00 1021.95 
 7 B2G 1040.47 707.00 1046.31 
 8 B2G 729.18 1010.00 386.49 
 9 B2U 1341.34 1309.40 1416.20 
 10 B2U 1178.95 1149.70 1212.19 
 11 E1G 881.64 848.90 811.57 
 12 E1G 881.64  917.63 
 13 E1U 3209.91 3057.70 3239.75 
 14 E1U 3209.91  3230.82 
 15 E1U 1529.61 1483.99 1462.75 
 16 E1U 1529.61  1566.72 
 17 E1U 1073.79 1038.27 965.81 
 18 E1U 1073.79  1083.00 
 19 E2G 3194.09 3047.91 3214.45 
 20 E2G 3194.09  3228.11 
 21 E2G 1670.21 1609.52 1393.24 
 22 E2G 1670.21  1705.94 1588.95 

23 E2G 1208.92 1177.78 992.25  
24 E2G 1208.92  1228.95 1290.52 
25 E2G 626.62 608.13 325.96 

 26 E2G 626.62  605.61 685.59 
27 E2U 1014.05 967.00 1044.34 

 28 E2U 1014.05  1030.89 
 29 E2U 416.00 398.00 283.90 
 30 E2U 416.00  338.17 
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