Supporting Information

Methanogenic Biocathode Microbial Community Development and the Role of Bacteria

Christy M. Dykstra and Spyros G. Pavlostathis*

School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive,

Atlanta, GA 30332-0512, USA

*Corresponding author. Tel.: +404-894-9367; fax: +404-894-8266;

E-mail address: spyros.pavlostathis@ce.gatech.edu (S. G. Pavlostathis)

Journal:	Environmental Science & Technology
Date Prepared:	March 17, 2017
Text Sections:	S1 - S4
Tables:	S1 – S2
Figures:	S1 – S13
Pages:	20
References	

Text S1. DNA Analysis

Following extraction, all DNA was quantified using Nanodrop 3300 (Thermo Scientific, Wilmington, DE) and stored at -20°C until sequencing was performed. Amplified DNA was sequenced using the Illumina MiSeq platform (Research and Testing Laboratory, Lubbock, TX). Forward and reverse reads were merged with PEAR Illumina paired-end read merger and trimmed for quality. Clustering was performed at a 4% divergence using the USEARCH clustering algorithm and the UPARSE OTU selection algorithm was utilized to classify clusters into OTUs. Chimera checking of selected OTUs was performed with UCHIME software. Phylogenetic analysis was conducted by comparing sequences that had a relative abundance \geq 1% with the closest 16S rRNA gene matches in GenBank (National Center for Biotechnology Information; Bethesda, MD). Using Mega 7.0 software, sequences were aligned with ClustalW and trimmed. A maximum likelihood phylogenetic tree was constructed using the Tamura-Nei model, 100 bootstrap replications and the Nearest-Neighbor-Interchange heuristic method.

Text S2. Enrichment of the Hydrogenotrophic Methanogenic (EHM) Suspended Growth Culture

The EHM culture was enriched for hydrogenotrophic methanogens by feeding a mixture of H₂ and CO₂. The headspace pressure decreased following each feeding (Figure S1A) because of gas dissolution into the medium and because hydrogenotrophic methanogenesis requires 5 moles of gas (4 H₂, 1 CO₂) to produce 1 mole of CH₄. Throughout each incubation cycle, the EHM culture pH remained stable at 6.8.

The culture headspace gas composition over the course of three representative 7-d feeding cycles is shown in Figure S1B. The mean daily H₂ and CO₂ removal rates were 69.1±6.9 mmol/d and 18.5±0.7 mmol/d (n = 3), respectively, representing a CO₂:H₂ removal ratio of 1:3.7, which is close to the theoretical stoichiometric ratio of 1:4 for hydrogenotrophic methanogenesis. The variation from the stoichiometric ratio may be due to differences in H₂ and CO₂ dissolution, microbial carbon storage and/or biomass production (168±5 mg/L TSS and 95±4 mg/L VSS at the end of a feeding cycle) (Dykstra and Pavlostathis, 2017).The culture actively produced CH₄ at a mean rate normalized to the total biomass (VSS) concentration over one feeding cycle equal to 1.96 mol CH₄/g VSS-d.

Text S3. Cyclic Voltammetry at Various Ionic Strengths

While all compared cyclic voltammograms (CVs) were conducted under similar conditions (e.g., scan rate, ionic strength, etc.), the effect of ionic strength on the shape and magnitude of the CV curve should be considered. In an abiotic system, ionic strength may affect the CV curve in two ways. First, an increase in ionic strength causes the diffuse layer of ions associated with the electrical double layer at the electrode surface to become compressed. As this layer becomes more compressed, redox-active molecules are able to approach the electrode surface more closely, enhancing electron transfer (Rieger, 2012). Thus, at a certain applied voltage, an increase in ionic strength is expected to increase current output. Second, an increase in conductivity, resulting from increased ionic strength, may reduce the ohmic potential drop, which is the required difference in potential to move ions in solution. This may result in the shifting of redox peaks (e.g., as ions migrate with a smaller ohmic potential drop, redox reactions may occur at lower applied voltages) (Britz, 1978).

To understand how ionic strength would affect the cyclic voltammetry of the system in this study, an abiotic BES was constructed as described in the Materials and Methods section of the main manuscript,

without inoculation of the anode and cathode. The anolyte and catholyte was 300 mM phosphate buffer medium (1.21 M ionic strength) and its ionic strength was increased stepwise from 1.21 M to 1.26, 1.31, 1.36 and 1.41 M by sequentially adding sodium chloride. CVs were conducted in triplicate. A representative CV for each ionic strength is plotted in Figure S4, which shows a trend of increasing current with increasing ionic strength, which follows expectations of double layer compression. Additionally, a more negative open circuit potential was observed at a higher ionic strength, which is consistent with a reduction in ohmic potential drop. Similar results were observed in a study that assessed the power generation of a microbial fuel cell in response to increasing ionic strength (Liu et al., 2005).

Text S4. Discussion of Proteobacteria in Suspended Growth and Cathode Biofilm Cultures.

 α -Proteobacteria represented 2% and 4% of all Proteobacteria in the MM and MM-biocathode communities, respectively. In contrast, α -Proteobacteria increased from 1% to 26% of Proteobacteria between the EHM culture and EHM-biocathode. Within α -Proteobacteria, a phylotype similar to Ochrobactrum sp. was enriched on both the EHM- and MM-biocathodes. In the EHM and MM suspended growth cultures, this phylotype made up 17% and 77% of the α -Proteobacteria, respectively, but represented a respective 25% and 83% of EHM- and MM-biocathode α -Proteobacteria. Ochrobactrum species are known exoelectrogens capable of producing current from volatile fatty acids, sugars and alcohols (Logan, 2009; Liu et al., 1999; Matias et al., 2005).

 β -Proteobacteria represented similar fractions of Proteobacteria in the MM and EHM cultures (18% and 14%, respectively) and each biocathode achieved similar enrichment to 47% and 35% of Proteobacteria in the MM- and EHM-biocathodes, respectively. Within β -Proteobacteria, a phylotype similar to Achromobacter sp. was enriched on both the EHM- and MM-biocathodes. In the EHM and MM suspended growth cultures, this phylotype made up 9% and 28% of the β -Proteobacteria, respectively, but represented a respective 39% and 55% of EHM- and MM-biocathode β -Proteobacteria. In fact, in the EHM-biocathode, the Achromobacter phylotype alone made up 6% of total Bacteria. Achromobacter enrichment on a biocathode with CO₂ as a sole external carbon source has previously been reported (Bond et al., 2002).

The δ -Proteobacteria composition differed between the MM and EHM suspended growth cultures (Table S2), with a greater relative abundance of phylotypes related to Smithella sp., Desulfovibrionales spp., and Geobacter sp. in the EHM culture than in the MM culture. Smithella propionica are syntrophic Bacteria that ferment propionate in association with methanogens that consume H₂ (McLennan et al., 2008). Desulfovibrio spp. are anaerobic Bacteria that are also capable of fermentation in association with methanogens during anaerobic digestion (Gölz et al., 2012). Geobacter species are well known exoelectrogens capable of utilizing organics such as acetate to produce current and CO₂ (Huang et al., 2015). δ -Proteobacteria represented a far smaller fraction of Proteobacteria in the MM- and EHM-biocathodes (19% and 0.5%, respectively) than in the MM and EHM inocula (64% and 14%, respectively). δ -Proteobacteria contains many sulfate- and iron-reducing species (Jeon et al., 2012), which require oxidized electron acceptors unlikely to be abundant near a highly-reduced cathode. In contrast, Campylobacterales, an order of ε -Proteobacteria, represented a moderately higher fraction of Proteobacteria in the MM- and EHM-biocathodes (5% and 11%, respectively) than in the MM and EHM inocula (2% and 7%, respectively). Many species of Campylobacterales possess surface polysaccharides that have been implicated in biofilm formation (Xu et al., 2011; Savelieva et al., 2004).

 γ -*Proteobacteria* (64%) were the most abundant *Proteobacteria* in the EHM culture but made up only 12% of the MM culture *Proteobacteria* (Figure S11). Additionally, the γ -*Proteobacteria* composition was markedly different between the two cultures. In the EHM culture, 93% of γ -

Proteobacteria was made up of a phylotype similar to *Citrobacter freundii*. In both biocathodes, a phylotype similar to *Citrobacter* sp. dominated the *Enterobacteriaceae*, making up 97% and 99% of the *Enterobacteriaceae* in the EHM- and MM-biocathodes, respectively. This phylotype made up 3% of total Bacteria in the EHM-biocathode but only 0.5% of total Bacteria in the MM-biocathode. *Citrobacter* spp. have been shown to be exoelectrogens capable of utilizing a wide range of substrates and producing current in an MFC (Bouvet et al., 1995; Yong et al., 2011). In one study, a strain of *C. freundii* exhibited high electrochemical activity and was thought to transfer electrons through extracellular mediators (Bouvet et al., 1995), suggesting a potentially useful role in bioelectrochemical systems. *C. freundii* can ferment pyruvate, producing acetate, CO₂ and H₂, as well as small amounts of lactate, succinate and formate (Seviour et al., 2015; Price-Whelan et al., 2007). In the EHM culture, cell lysis products may have supplied fermentation substrates for *C. freundii*. However, it is not clear why *C. freundii* comprised such a large fraction (93%) of the *γ-Proteobacteria* in the EHM culture or what role it played in the microbial community.

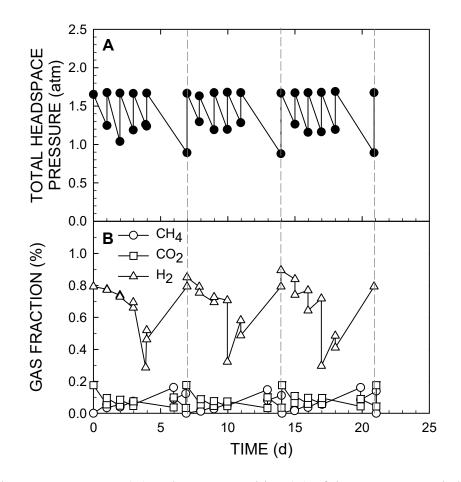
The γ -Proteobacteria families represented in the MM culture were more diverse: Enterobacteriaceae (33%), Vibrionaceae (24%), Xanthomonadaceae (13%), Pseudomonaceae (12%) and unclassified (19%). In the MM culture, the most abundant family, Enterobacteriaceae, was dominated by a phylotype related to Citrobacter sp. (29% of Enterobacteriaceae), indicating a significant presence of Citrobacter phylotypes in both the MM and EHM cultures. Other families, such as the Xanthomonadaceae, Pseudomonadaceae and Vibrionaceae fell in relative abundance over the course of enrichment to 3%, 2% and below detection, respectively, in the EHM culture. Thus, enrichment conditions favored the growth of Enterobacteriaceae, in particular Citrobacter, over the growth of other types of γ -Proteobacteria.

The γ -Proteobacteria fraction of Proteobacteria increased between the MM inoculum (12%) and the MM-biocathode (20%), but decreased between the EHM inoculum (64%) and the EHM-biocathode (29%). The family composition of γ -Proteobacteria was also substantially different between the suspended growth cultures and the cathode biofilms. The family Enterobacteriaceae represented 69% of γ -Proteobacteria in the MM-biocathode but only 33% in the MM suspended growth culture. In contrast, Enterobacteriaceae represented 9% and 27% of the γ -Proteobacteria in the EHM and EHM-biocathode, respectively. Instead, Pseudomonas and Xanthomonadales, which represented only 2% and 3% of the γ -Proteobacteria in the EHM suspended growth culture, respectively, made up 54% and 19% in the EHM-biocathode, respectively.

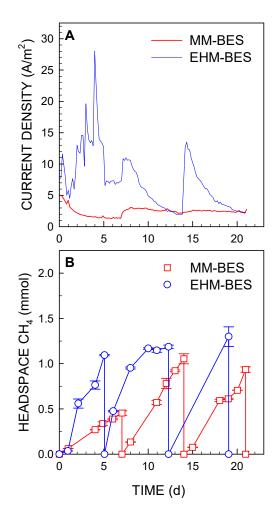
Within the family of *y*-Proteobacteria, the genus Pseudomonas was enriched on both biocathodes. Pseudomonas represented only 0.1% of the total Bacteria in the EHM suspended growth culture but made up 7% of all Bacteria in the EHM-biocathode biofilm. In the MM suspended growth culture, Pseudomonas made up only 0.03% of all Bacteria, which increased to 0.1% in the MM cathode biofilm. A previous study observed the enrichment of *Pseudomonas* on a cathode with CO₂ as a sole external carbon source (Bond et al., 2002). Within the genus, a phylotype similar to Pseudomonas aeruginosa represented 26% and 30% of Pseudomonas in the MM suspended growth culture and MMbiocathode biofilm, respectively, indicating not much change in Pseudomonas composition due to biofilm development. In contrast, the P. aeruginosa phylotype made up 100% of Pseudomonas in the EHM suspended growth culture and 70% of Pseudomonas in the EHM-biocathode. P. aeruginosa produces compounds, such as pyocyanin and phenazine, which are capable of acting as electron shuttles that can be utilized by other species for electron transfer in BESs (Logan, 2009; Pham et al., 2008). Indeed, phenazine has been shown to increase electron transfer in the anode of a MFC (Rabaey et al., 2005). Excretion of electron shuttles by P. aeruginosa appears to be associated with quorum sensing. In a study of a P. aeruginosa strain in which the rhl quorum sensing system was overexpressed, pyocyanin and phenazine-1-carboxylate were produced, with reduction potentials of -0.37 V and -0.48 V,

respectively (Leschine et al., 2006). Thus, excreted phenazines may act as mediators between a cathode surface poised at -0.80 V and the terminal electron acceptor, CO_2 ($E^{0'} = -0.24$ V for CO_2/CH_4). Furthermore, another study showed *P. aeruginosa*-excreted pyocyanin concentrations were higher at more negative working electrode potentials (Veldkamp, 1960), although the tested potentials were not as negative as the cathode potential used in the present study (i.e., -0.8 V). Finally, phenazines are known to be produced when cell densities are high (Dollhopf et al., 2001), which is also consistent with microbial growth as a biofilm on the cathode. Thus, it is possible that the greater abundance of the *P. aeruginosa* phylotype in the EHM-biocathode contributed to the observed higher CH₄ production than in the MM-biocathode.

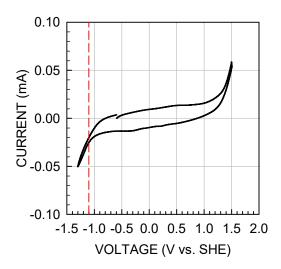
	мм с	Culture	EHM Culture			
Closest Matching Species	Fraction of δ- Proteobacteria	Fraction of Total Bacteria	Fraction of δ- Proteobacteria	Fraction of Total Bacteria		
Unclassified Syntrophobacterales	58	0.8	19	0.2		
Smithella sp.	26	0.4	49	0.6		
Syntrophus spp.	7	0.1	7	0.09		
Syntrophorhabdus sp.	6	0.08	3	0.04		
Syntrophus buswelli	1	0.01	ND	ND		
Geobacter sp.	2	0.02	4	0.05		
Desulfovibrionales sp.	0.3	0.005	17	0.2		
<i>Desulfobulbus</i> sp.	0.2	0.003	ND	ND		
Sorangium cellulosum	ND ^a	ND	0.3	0.004		
Desulfofaba sp.	ND	ND	0.2	0.003		

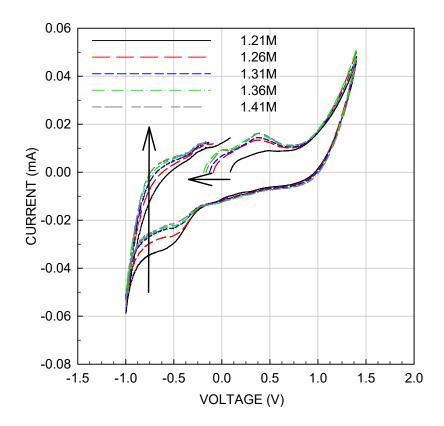

Table S1. Composition of δ -Proteobacteria in the MM and EHM suspended growth cultures

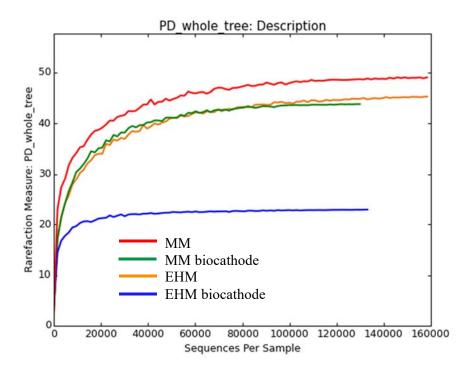
^a ND, not detected

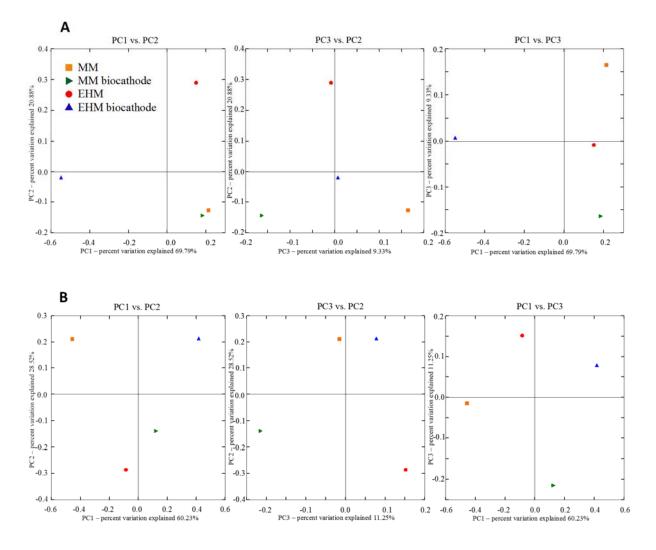

Table S2. Closest GenBank Match and Relative Abundance of Identified Bacterial OTUs in theMM and EHM Suspended Growth and Biofilm Cultures

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ID	·	R	a (%)		
KU597440 90 NR_026182 Actimomyces georgiae strain DSM 6843 2 2 0 KU597462 86 NR_074624 Aminobacterium colombiense strain DSM 12261 0 0 1 0 0 KU59749 87 NR_074383 Anaerolinea thermophila strain UNI-1 9 0 0 0 0 KU597451 88 FJ156092 Arcobacter mytili strain T234 0 0 1 1 KU597452 99 DQ453797 Bacterium MB7-1 0 0 0 8 0 KU597451 99 DQ453797 Bacterium MB7-1 0 0 0 8 0 KU597452 98 AY949860 Bacteroides sp. strain 724 0 9 0 0 0 3 0 0 0 3 1 0 0 0 12 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 <t< td=""><td>OTU</td><td>(%)</td><td>Closest GenBank Match</td><td>MM</td><td>MM-B</td><td>EHM</td><td>EHM-B</td></t<>	OTU	(%)	Closest GenBank Match	MM	MM-B	EHM	EHM-B
KU59740 90 1 2 2 0 0 KU59742 86 NR 074624 Aminobacterium colombiense strain DSM 12261 0 0 1 0 KU597439 87 NR 074383 Anaerolinea thermophila strain UNI-1 9 0 0 0 KU597451 89 FJ156092 Arcobacter mytili strain T234 0 0 1 1 KU597452 99 DQ453797 Bacterium MB7-1 0 0 0 8 0 KU597464 97 AY949860 Bacteroides sp. strain Z4 0 0 7 0 KU597451 99 LN564018 Citrobacter amalonaticus Y19 0 0 0 3 KU597463 86 NR 115465 Cloacibacillus evyensis strain 158 0 0 1 0 KU597457 90 NR 103938 Clostridium paseurianum BC1 strain DS1 0 0 0 0 KU597453 90 NR 101985 Clostridium paseurianum ST1 1 0 0 0 0 0 0 0 <	KU597466	90	NP 026182 Actin company according attain DSM 6842	0	0	5	0
KUS97439 87 NR_074383 Anaerolinea thermophila strain UNI-1 9 0 0 KUS97471 88 FJ156092 Arcobacter mytili strain T234 0 0 1 1 KUS97456 89 DQ453797 Bacterium MB7-1 0 0 0 6 KUS97452 99 DQ453797 Bacterium MB7-1 0 0 0 6 KUS97451 99 DQ453797 Bacterium MB7-1 0 0 0 7 0 KUS97452 98 AY949860 Bacteroides sp. strain 74 0 9 0 0 12 0 0 KUS97451 9 LN564018 Citrobacter amalonaticus Y19 0 0 0 3 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 <td< td=""><td>KU597440</td><td>90</td><td>NR_020182 Actinomyces georgiae strain DSM 0843</td><td>2</td><td>2</td><td>0</td><td>0</td></td<>	KU597440	90	NR_020182 Actinomyces georgiae strain DSM 0843	2	2	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	KU597462	86	NR_074624 Aminobacterium colombiense strain DSM 12261	0	0	1	0
KU597456 89 F156092 Arcobacter mythi strain 1234 0 0 1 KU597452 99 DQ453797 Bacterium MB7-1 0 0 0 6 KU597464 99 AY949860 Bacteroides sp. strain Z4 0 0 0 7 0 KU597464 97 AY949860 Bacteroides sp. strain Z4 0 9 0 0 12 0 0 12 0 0 12 0 0 12 0 0 12 0 0 12 0 0 12 0 0 12 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 <	KU597439	87	NR_074383 Anaerolinea thermophila strain UNI-1	9	0	0	0
KU597456 89 0 0 1 1 KU597452 99 DQ453797 Bacterium MB7-1 0 0 0 8 0 KU597464 99 0 0 8 0 0 7 0 KU597425 98 AY949860 Bacteroides sp. strain Z4 0 0 12 0 0 KU597427 100 0 12 0 0 3 0 0 3 KU597451 99 LN564018 Citrobacter amalonaticus Y19 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0			F1156092 Arcobacter mytili strain T234	0	0	1	1
KU597464 99 0 0 8 0 KU597468 97 AY949860 Bacteroides sp. strain Z4 0 0 0 9 0 KU597427 100 0 12 0 0 12 0 0 KU597451 99 LN564018 Citrobacter amalonaticus Y19 0 0 0 3 KU597453 86 NR 115465 Cloacibacillus evyensis strain 158 0 0 1 0 KU597454 90 NR 103938 Clostridium pasteurianum BC1 strain BC1 0 0 0 0 KU597455 92 NR 118812 Helicobacter cholecystus strain 158 0 0 1 0 0 0 KU597454 90 NR 074986 Lactobacillus crispatus ST1 strain ST1 2 0 0 0 1 0 KU5974745 95 NR_102952 Mesotoga prima strain MesG1.Ag.4.2 0 0 1 0 KU597433 100 NR 074586 Pedobacter saltans strain ATCC 49188 0 0 3 0 </td <td>KU597456</td> <td>89</td> <td>13130092 Arcobucier mytut strain 1254</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td>	KU597456	89	13130092 Arcobucier mytut strain 1254	0	0	1	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	KU597452		DQ453797 Bacterium MB7-1	0	0	0	6
KU597425 98 AY 949860 Bacteroides sp. strain Z4 0 9 0 0 KU597427 100 0 12 0 0 KU597427 100 0 0 0 0 0 KU597431 99 LN564018 Citrobacter amalonaticus Y19 0 0 0 0 KU597438 88 NR 115465 Cloacibacillus evryensis strain 158 0 0 1 0 KU597438 88 NR 119085 Clostridium pasteurianum BC1 strain BC1 0 0 0 0 KU597433 99 NR 121725 Eubacterium acidaminophilum strain al-2 1 0 0 0 KU597451 92 NR 118812 Helicobacter cholecystus strain Hkb-1 0 0 0 KU597461 95 NR_102952 Mesotoga prima strain MesG1.Ag.4.2 0 0 5 3 0 0 KU597453 100 NR 074284 Ochrobacterum frederiksbergense isolate VM0503 0 0 5 3 0 0 KU597454 95 NR 074586 Pedobacter saltans strain DSM 12145 3 0 0 0	KU597464			0	0	8	0
kU597425 ys 0 9 0 0 kU597427 100 0 12 0 kU597451 99 LN564018 Citrobacter amalonaticus Y19 0 0 0 3 kU597463 86 NR_115465 Cloacibacillus evryensis strain 158 0 0 1 0 KU597438 88 L34418 Clostridium herbivorans 3 0 0 0 KU597437 90 NR_103938 Clostridium polysaccharolyticum strain DSM 1801 1 0 0 0 KU597435 88 NR_119085 Clostridium polysaccharolyticum strain DSM 1801 1 0 0 0 KU597450 92 NR_11812 Helicobacter cholecystus strain Hkb-1 0 0 0 3 KU597460 93 K NR_102952 Mesotoga prima strain MesG1.Ag.4.2 0 0 1 0 KU597435 100 NR_074243 Ochrobacterium firderiksbergense isolate VM0503 0 0 0 3 KU597451 94 5 3 0 0 3 0 0 3 0 0 0	KU597468	97	AV040860 Bastaroidas en strain 74	0	0	7	0
KUS97451 99 LN564018 Citrobacter amalonaticus Y19 0 0 0 3 KUS97463 86 NR_115465 Cloacibacillus evryensis strain 158 0 0 1 0 KUS97438 88 L34418 Clostridium herbivorans 3 0 0 0 KUS97437 90 NR_103938 Clostridium pasteurianum BC1 strain BC1 0 0 0 0 KUS97435 88 NR_119085 Clostridium polysaccharolyticum strain DSM 1801 0 0 0 KUS97437 90 NR_121725 Eubacterium acidaminophilum strain a1-2 1 0 0 0 KUS97437 100 NR_074986 Lactobacillus crispatus ST1 strain ST1 2 0 0 0 KUS97428 93 0 0 0 1 0 KUS97435 100 NR_102952 Mesotoga prima strain MesG1.Ag.4.2 0 17 0 0 KUS97442 94 5 3 0 0 0 3 KUS97443 100 NR_074586 Pedobacter s	KU597425	98	A 1949800 Duclerolides sp. strain 24	0	9	0	0
KU597463 86 NR_115465 Cloacibacillus evryensis strain 158 0 0 1 0 KU597467 90 NR_103938 Clostridium herbivorans 3 0 0 0 KU597467 90 NR_103938 Clostridium polysaccharolyticum strain DSM 1801 0 0 1 0 KU597433 99 NR_121725 Eubacterium acidaminophilum strain DSM 1801 0 0 0 0 KU597433 99 NR_111812 Helicobacter cholecystus strain 14-2 0 0 0 3 KU597440 93 NR_102952 Mesotoga prima strain MesG1.Ag.4.2 0 0 0 5 3 0 0 KU597442 94 5 3 0 0 5 3 0 0 17 0 0 0 3 KU597437 0 0 0 3 KU597437 0 0 0 0 3 0 0 0 3 0 0 0	KU597427	100		0	12	0	0
KU597438 88 L34418 Clostridium herbivorans 3 0 0 KU597457 90 NR_103938 Clostridium pasteurianum BC1 strain BC1 0 0 1 0 KU597435 88 NR_119085 Clostridium polysaccharolyticum strain DSM 1801 1 0 0 0 KU597435 99 NR_121725 Eubacterium acidaminophilum strain al-2 1 0 0 0 KU597435 92 NR_118812 Helicobacter cholecystus strain Hkb-1 0 0 0 0 KU597437 100 NR_074986 Lactobacillus crispatus ST1 strain ST1 2 0 0 0 KU597440 93 NR_102952 Mesotoga prima strain MesG1.Ag.4.2 0 0 5 0 KU597428 95 NR_102952 Mesotoga prima strain MesG1.Ag.4.2 0 17 0 0 KU597435 100 NR_074243 Ochrobacterium frederiksbergense isolate VM0503 0 0 0 3 KU597445 90 NR_074586 Pedobacter saltans strain DSM 12145 3 0 0 0 <t< td=""><td>KU597451</td><td>99</td><td>LN564018 Citrobacter amalonaticus Y19</td><td>0</td><td>0</td><td>0</td><td>3</td></t<>	KU597451	99	LN564018 Citrobacter amalonaticus Y19	0	0	0	3
KU597467 90 NR_103938 Clostridium pasteurianum BC1 strain BC1 0 0 1 0 KU597435 88 NR_119085 Clostridium polysaccharolyticum strain DSM 1801 1 0 0 0 KU597435 99 NR_121725 Eubacterium acidaminophilum strain a1-2 1 0 0 0 KU597437 100 NR_074986 Lactobacillus crispatus ST1 strain ST1 2 0 0 0 KU597460 93 0 0 1 0 0 0 KU597461 95 NR_102952 Mesotoga prima strain MesG1.Ag.4.2 0 0 17 0 0 KU597428 95 NR_102952 Mesotoga prima strain MesG1.Ag.4.2 0 17 0 0 KU597429 94 5 3 0 0 3 0 0 13 KU597435 100 NR_074243 Ochrobactrum anthropi strain ATCC 49188 0 0 0 3 KU597449 92 NR_025455 Propionivibrio limicola strain GolChi1 0 0	KU597463	86	NR_115465 Cloacibacillus evryensis strain 158	0	0	1	0
KU597435 88 NR_119085 Clostridium polysaccharolyticum strain DSM 1801 1 0 0 KU597433 99 NR_121725 Eubacterium acidaminophilum strain al-2 1 0 0 0 KU597435 92 NR_118812 Helicobacter cholecystus strain Hkb-1 0 0 0 3 KU597437 100 NR_074986 Lactobacillus crispatus ST1 strain ST1 2 0 0 0 1 0 KU597436 93 0 0 1 0 0 1 0 KU597428 95 NR_102952 Mesotoga prima strain MesG1.Ag.4.2 0 17 0 0 KU597429 94 5 3 0 0 5 3 0 0 5 S S 0 0 3 S S S 0 0 0 3 S S S 0 0 0 3 S S S 0 0 0	KU597438	88	L34418 Clostridium herbivorans	3	0	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	KU597467	90	NR_103938 Clostridium pasteurianum BC1 strain BC1	0	0	1	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	KU597435	88	NR_119085 Clostridium polysaccharolyticum strain DSM 1801	1	0	0	0
KU597437 100 NR_074986 Lactobacillus crispatus ST1 strain ST1 2 0 0 KU597460 93 0 0 1 0 KU597461 95 NR_102952 Mesotoga prima strain MesG1.Ag.4.2 0 0 52 0 KU597428 95 NR_102952 Mesotoga prima strain MesG1.Ag.4.2 0 17 0 0 KU597429 94 5 3 0 0 55 3 0 KU597453 100 NR_074243 Ochrobactrum anthropi strain ATCC 49188 0 0 0 3 KU597454 79 NR_074586 Pedobacter saltans strain DSM 12145 3 0 0 0 KU597457 92 NR_025455 Propionivibrio limicola strain GolChil 0 0 0 3 KU597448 90 NR_044093 Proteiniborus ethanoligenes strain TB107 0 0 0 0 0 0 43 KU597445 96 NR_043154 Proteiniphilum acetatigenes strain TB107 0 0 0 0 0	KU597433	99	NR 121725 Eubacterium acidaminophilum strain a1-2	1	0	0	0
KU597460 93 0 0 1 0 KU597461 95 NR_102952 Mesotoga prima strain MesG1.Ag.4.2 0 0 0 52 0 KU597428 95 NR_102952 Mesotoga prima strain MesG1.Ag.4.2 0 17 0 0 KU597429 94 5 3 0 0 55 3 0 KU597447 98 AF544628 Mycobacterium frederiksbergense isolate VM0503 0 0 0 5 KU597453 100 NR_074243 Ochrobactrum anthropi strain ATCC 49188 0 0 0 3 KU597449 92 NR_074586 Pedobacter saltans strain DSM 12145 3 0 0 0 3 KU597449 92 NR_025455 Propionivibrio limicola strain GolChi1 0 0 0 3 KU597448 90 NR_044093 Proteiniborus ethanoligenes strain GW 0 0 0 1 KU597445 96 NR_043154 Proteiniphilum acetatigenes strain TB107 0 0 0 1	KU597455	92	NR 118812 Helicobacter cholecystus strain Hkb-1	0	0	0	3
KU597461 95 NR_102952 Mesotoga prima strain MesG1.Ag.4.2 0 0 52 0 KU597428 95 NR_102952 Mesotoga prima strain MesG1.Ag.4.2 0 17 0 0 KU597429 94 5 3 0 0 5 3 0 KU597429 94 5 3 0 0 5 3 0 0 KU597429 94 NR_074243 Ochrobacterium frederiksbergense isolate VM0503 0 0 0 5 KU597457 100 NR_074243 Ochrobacterium anthropi strain ATCC 49188 0 0 0 3 KU597449 92 NR_025455 Propionivibrio limicola strain GolChi1 0 0 0 3 KU597448 90 NR_044093 Proteiniborus ethanoligenes strain GW 0 0 0 1 KU597443 94 NR_043154 Proteiniphilum acetatigenes strain TB107 0 0 0 4 KU597458 100 KR054983 Pseudomonas aeruginosa strain KAR21 0 0 0 <td>KU597437</td> <td>100</td> <td>NR 074986 Lactobacillus crispatus ST1 strain ST1</td> <td>2</td> <td>0</td> <td>0</td> <td>0</td>	KU597437	100	NR 074986 Lactobacillus crispatus ST1 strain ST1	2	0	0	0
KU597428 95 NR_102952 Mesotoga prima strain MesG1.Ag.4.2 0 17 0 0 KU597429 94 5 3 0 0 KU597427 98 AF544628 Mycobacterium frederiksbergense isolate VM0503 0 0 0 5 KU597453 100 NR_074243 Ochrobactrum anthropi strain ATCC 49188 0 0 0 3 KU597436 79 NR_074586 Pedobacter saltans strain DSM 12145 3 0 0 0 3 KU597449 92 NR_025455 Propionivibrio limicola strain GolChi1 0 0 0 3 KU597448 90 NR_044093 Proteiniborus ethanoligenes strain GW 0 0 0 1 KU597448 90 NR_043154 Proteiniphilum acetatigenes strain TB107 0 0 0 43 KU597450 100 KR054983 Pseudomonas aeruginosa strain KAR21 0 0 0 2 KU597451 100 NR_074795 Spirochaeta thermophila strain DSM 6578 0 0 2 0 KU597456 77 NR_074169 Treponema primitia strain ZAS-2 0 0	KU597460	93		0	0	1	0
KU597428 95	KU597461	95		0	0	52	0
KU597447 98 AF544628 Mycobacterium frederiksbergense isolate VM0503 0 0 0 5 KU597453 100 NR_074243 Ochrobactrum anthropi strain ATCC 49188 0 0 0 3 KU597436 79 NR_074586 Pedobacter saltans strain DSM 12145 3 0 0 0 3 KU597449 92 NR_025455 Propionivibrio limicola strain GolChi1 0 0 0 3 KU597448 90 NR_044093 Proteiniborus ethanoligenes strain GW 0 0 0 1 KU597445 96 NR_043154 Proteiniphilum acetatigenes strain TB107 0 0 0 43 KU597458 100 KR054983 Pseudomonas aeruginosa strain KAR21 0 0 0 1 KU597458 100 KR054989 Pseudomonas grimontii strain KAR27 0 0 0 2 KU597450 100 NR_074795 Spirochaeta thermophila strain DSM 6578 0 0 2 0 KU597454 99 NR_074169 Treponema primitia strain ZAS-2 0 0 1 0 KU597454 89 AF023060 Treponema sp. I:K:T3<	KU597428	95	NR_102952 Mesotoga prima strain MesG1.Ag.4.2	0	17	0	0
KU597453 100 NR_074243 Ochrobactrum anthropi strain ATCC 49188 0 0 0 3 KU597436 79 NR_074586 Pedobacter saltans strain DSM 12145 3 0 0 0 KU597436 79 NR_074586 Pedobacter saltans strain DSM 12145 3 0 0 0 KU597449 92 NR_025455 Propionivibrio limicola strain GolChi1 0 0 0 3 KU597448 90 NR_044093 Proteiniborus ethanoligenes strain GolChi1 0 0 0 1 KU597445 96 NR_043154 Proteiniphilum acetatigenes strain TB107 0 0 0 43 KU597446 100 KR054983 Pseudomonas aeruginosa strain KAR21 0 0 0 1 0 KU597458 100 KR054989 Pseudomonas grimontii strain KAR27 0 0 0 2 0 KU597465 77 NR_074795 Spirochaeta thermophila strain DSM 6578 0 0 2 0 KU597469 88 NR_074169 Treponema primitia strain ZAS-2 <t< td=""><td></td><td>94</td><td></td><td>5</td><td>3</td><td>0</td><td>0</td></t<>		94		5	3	0	0
KU597453 100 NR_074243 Ochrobactrum anthropi strain ATCC 49188 0 0 0 3 KU597436 79 NR_074586 Pedobacter saltans strain DSM 12145 3 0 0 0 KU597449 92 NR_025455 Propionivibrio limicola strain GolChi1 0 0 0 3 KU597448 90 NR_044093 Proteiniborus ethanoligenes strain GolChi1 0 0 0 1 KU597445 96 NR_043154 Proteiniphilum acetatigenes strain GW 0 0 0 43 KU597444 94 NR_043154 Proteiniphilum acetatigenes strain TB107 0 0 0 43 KU597446 100 KR054983 Pseudomonas aeruginosa strain KAR21 0 0 0 1 0 KU597458 100 KR054989 Pseudomonas grimontii strain KAR27 0 0 0 2 0 KU597455 77 NR_074795 Spirochaeta thermophila strain DSM 6578 0 0 2 0 KU597465 77 NR_074169 Treponema primitia strain ZAS-2			AF544628 Mycobacterium frederiksbergense isolate VM0503	0	0	0	5
KU597436 79 NR_074586 Pedobacter saltans strain DSM 12145 3 0 0 0 KU597449 92 NR_025455 Propionivibrio limicola strain GolChi1 0 0 0 0 3 KU597448 90 NR_044093 Proteiniborus ethanoligenes strain GW 0 0 0 0 1 KU597445 96 NR_043154 Proteiniphilum acetatigenes strain TB107 0 0 0 43 KU597446 100 KR054983 Pseudomonas aeruginosa strain KAR21 0 0 0 1 0 KU597458 100 KR054989 Pseudomonas grimontii strain KAR21 0 0 0 1 0 0 2 0 1 0 2 0 1 1 1 0 0 2 0 0 1 1 3 0 0 2 0 0 1 1 3 0 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 3 3 3 3 3					0	0	
KU59744992 NR_025455 Propionivibrio limicola strain GolChi10003KU59745792NR_025455 Propionivibrio limicola strain GolChi10003KU59744890NR_044093 Proteiniborus ethanoligenes strain GW0001KU59744596 NR_043154 Proteiniphilum acetatigenes strain TB10700043KU597446100KR054983 Pseudomonas aeruginosa strain KAR210005KU597458100KR054989 Pseudomonas grimontii strain KAR270001KU597450100NR_115618 Sphingopyxis terrae strain IFO 150980002KU59745577NR_074795 Spirochaeta thermophila strain DSM 65780020KU59746988 KU597469NR_074169 Treponema primitia strain ZAS-20010KU59742689AF023060 Treponema sp. I:K:T313400		79		3	0	0	0
KU59745792NR_025455 Propionivibrio limicola strain GolCh110003KU59744890NR_044093 Proteiniborus ethanoligenes strain GW0001KU59744596NR_043154 Proteiniphilum acetatigenes strain TB10700043KU597434949400005KU597446100KR054983 Pseudomonas aeruginosa strain KAR210005KU597458100KR054989 Pseudomonas grimontii strain KAR270001KU597455100NR_115618 Sphingopyxis terrae strain IFO 150980002KU59745577NR_074795 Spirochaeta thermophila strain DSM 65780020KU59745988NR_074169 Treponema primitia strain ZAS-20010KU59742689AF023060 Treponema sp. 1:K:T313400						0	3
KU597448 90 NR_044093 Proteiniborus ethanoligenes strain GW 0 0 0 1 KU597445 96 NR_043154 Proteiniphilum acetatigenes strain TB107 0 0 0 43 KU597434 94 NR_043154 Proteiniphilum acetatigenes strain TB107 0 1 0 0 KU597446 100 KR054983 Pseudomonas aeruginosa strain KAR21 0 0 0 5 KU597458 100 KR054989 Pseudomonas grimontii strain KAR27 0 0 0 1 KU597455 100 NR_115618 Sphingopyxis terrae strain IFO 15098 0 0 0 2 0 KU597465 77 NR_074795 Spirochaeta thermophila strain DSM 6578 0 0 2 0 KU597469 88 NR_074169 Treponema primitia strain ZAS-2 0 0 1 0 KU597426 89 AF023060 Treponema sp. I:K:T3 1 34 0 0			NR_025455 <i>Propionivibrio limicola</i> strain GolChil				
KU597445 96 NR_043154 Proteiniphilum acetatigenes strain TB107 0 0 0 43 KU597434 94 NR_043154 Proteiniphilum acetatigenes strain TB107 0 1 0 0 KU597434 94 NR_043154 Proteiniphilum acetatigenes strain TB107 0 1 0 0 KU597446 100 KR054983 Pseudomonas aeruginosa strain KAR21 0 0 0 5 KU597458 100 KR054989 Pseudomonas grimontii strain KAR27 0 0 0 1 KU597450 100 NR_115618 Sphingopyxis terrae strain IFO 15098 0 0 0 2 KU597465 77 NR_074795 Spirochaeta thermophila strain DSM 6578 0 0 2 0 KU597454 99 NR_074593 Thiomonas intermedia K12 strain K12 0 0 1 0 KU597469 88 NR_074169 Treponema primitia strain ZAS-2 0 0 1 0 KU597426 89 AF023060 Treponema sp. I:K:T3 1 34 0 0		90	NR 044093 Proteiniborus ethanoligenes strain GW			-	
KU597434 94 NR_043154 Proteiniphilum acetatigenes strain 1B107 0 1 0 0 KU597434 94 100 KR054983 Pseudomonas aeruginosa strain KAR21 0 0 0 5 KU597446 100 KR054983 Pseudomonas aeruginosa strain KAR21 0 0 0 1 0 0 5 KU597458 100 KR054989 Pseudomonas grimontii strain KAR27 0 0 0 1 1 10 0 2 KU597450 100 NR_115618 Sphingopyxis terrae strain IFO 15098 0 0 0 2 0 KU597465 77 NR_074795 Spirochaeta thermophila strain DSM 6578 0 0 2 0 KU597454 99 NR_074593 Thiomonas intermedia K12 strain K12 0 0 1 1 KU597469 88 NR_074169 Treponema primitia strain ZAS-2 0 0 1 0 KU597426 89 AF023060 Treponema sp. I:K:T3 1 34 0 0						0	
KU597446100KR054983 Pseudomonas aeruginosa strain KAR210005KU597458100KR054989 Pseudomonas grimontii strain KAR270001KU597450100NR_115618 Sphingopyxis terrae strain IFO 150980002KU59746577NR_074795 Spirochaeta thermophila strain DSM 65780020KU59745499NR_074593 Thiomonas intermedia K12 strain K120001KU59746988NR_074169 Treponema primitia strain ZAS-20050KU59742689AF023060 Treponema sp. I:K:T313400		94	NR_043154 Proteiniphilum acetatigenes strain TB107	0	1	0	0
KU597458 100 KR054989 Pseudomonas grimontii strain KAR27 0 0 0 1 KU597450 100 NR_115618 Sphingopyxis terrae strain IFO 15098 0 0 0 2 KU597455 77 NR_074795 Spirochaeta thermophila strain DSM 6578 0 0 2 0 KU597454 99 NR_074593 Thiomonas intermedia K12 strain K12 0 0 0 1 KU597469 88 NR_074169 Treponema primitia strain ZAS-2 0 0 1 0 KU597426 89 AF023060 Treponema sp. I:K:T3 1 34 0 0			KR054983 Pseudomonas aeruginosa strain KAR21		0		
KU597450 100 NR_115618 Sphingopyxis terrae strain IFO 15098 0 0 0 2 KU597465 77 NR_074795 Spirochaeta thermophila strain DSM 6578 0 0 2 0 KU597454 99 NR_074593 Thiomonas intermedia K12 strain K12 0 0 0 1 KU597469 88 NR_074169 Treponema primitia strain ZAS-2 0 0 5 0 KU597426 89 AF023060 Treponema sp. I:K:T3 1 34 0 0							
KU597465 77 NR_074795 Spirochaeta thermophila strain DSM 6578 0 0 2 0 KU597465 77 NR_074795 Spirochaeta thermophila strain DSM 6578 0 0 2 0 KU597454 99 NR_074593 Thiomonas intermedia K12 strain K12 0 0 0 1 KU597469 88 NR_074169 Treponema primitia strain ZAS-2 0 0 5 0 KU597470 88 NR_074169 Treponema primitia strain ZAS-2 0 0 1 0 KU597426 89 AF023060 Treponema sp. I:K:T3 1 34 0 0				0	0	0	2
KU597454 99 NR_074593 Thiomonas intermedia K12 strain K12 0 0 0 1 KU597469 88 NR_074169 Treponema primitia strain ZAS-2 0 0 5 0 KU597426 89 AF023060 Treponema sp. I:K:T3 1 34 0 0						2	0
KU597469 88 NR_074169 Treponema primitia strain ZAS-2 0 0 5 0 KU597470 88 NR_074169 Treponema primitia strain ZAS-2 0 0 1 0 KU597426 89 AF023060 Treponema sp. I:K:T3 1 34 0 0				-	-		1
KU597470 88 NR_074169 Treponema primitia strain ZAS-2 0 0 1 0 KU597426 89 AF023060 Treponema sp. I:K:T3 1 34 0 0					-	-	0
KU597426 89 AF023060 Treponema sp. I:K:T3 1 34 0 0			NR_074169 Treponema primitia strain ZAS-2				
			AF023060 Treponema sp. I:K:T3		~		~
	KU597430	99	NR 036793 <i>Trichococcus pasteurii</i> strain KoTa2	0	1	0	0
OtherNAMinor species (< 1% relative abundance)72211218					21	-	-


^a Abbreviations: MM, mixed methanogenic suspended growth culture; EHM, enriched methanogenic suspended growth culture; MM-B, MM-inoculated biocathode; EHM-B, EHM-inoculated biocathode.


Figure S1. Headspace gas pressure (A) and gas composition (B) of the EHM suspended growth culture over three, representative feeding cycles. Dashed vertical lines indicate the wasting of a portion of the culture and replacement with fresh medium, accompanied by the complete flushing of the headspace with H_2/CO_2 (80:20 v:v). The increase in total headspace pressure on days other than those at the end of a 7-d feeding cycle (i.e., days not indicated by dashed vertical lines), was due to the addition of H_2/CO_2 without any gas release.


Figure S2. Time course of BES current density (A) and headspace methane (B) over the course of the first three feeding cycles for the MM-inoculated biocathode BES (MM-BES) and the EHM-inoculated biocathode BES (EHM-BES).


Figure S3. Cyclic voltammetry scan of inactive BES after the EHM-biocathode was maintained unfed in fresh catholyte and a N₂-filled headspace for 24 h. Scan conducted at a rate of 50 mV/s. Vertical broken line denotes an applied potential of -1.1 V at which H₂ evolution was noted.

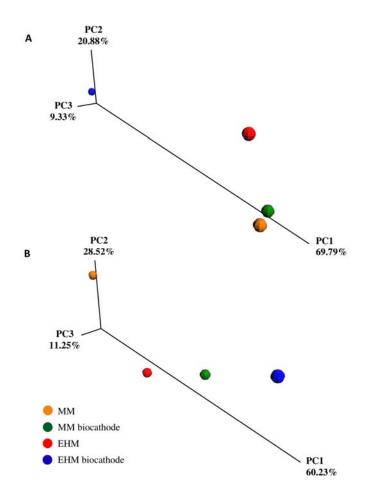
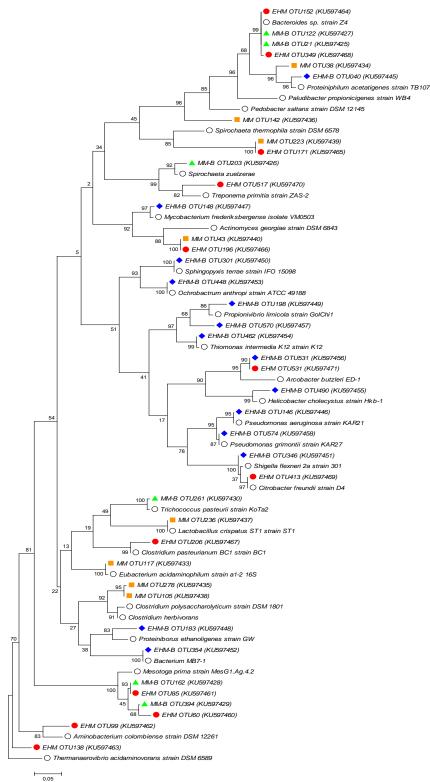
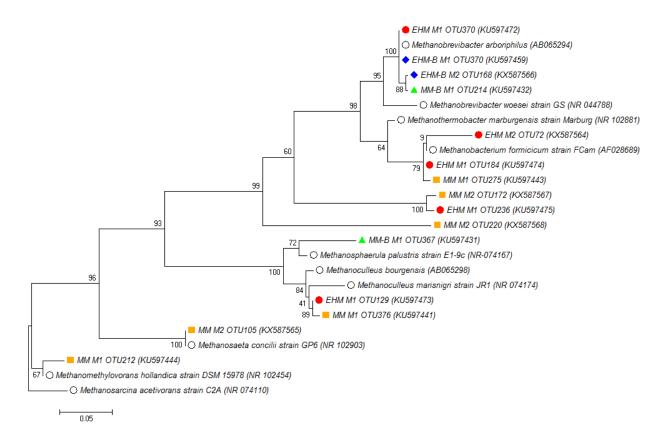
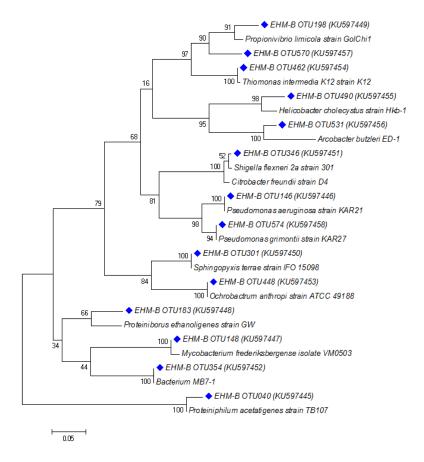

Figure S4. Cyclic voltammograms of an abiotic (i.e., uninoculated) BES with anolyte and catholyte at various ionic strengths (1.21, 1.26, 1.31, 1.36 and 1.41 M), starting at open circuit potential. Scans conducted at a scan rate of 50 mV/s. The vertical arrow shows how the CV curve shifts due to double layer compression, while the horizontal arrow shows how the open circuit potential shifts due to decreasing ohmic resistance.


Figure S5. Rarefaction curves for the EHM culture, EHM biocathode, MM culture and MM biocathode. Lower and upper limits of rarefaction depths were 10 and 100, respectively, and the number of steps (i.e., rarefied OTU table sizes) was 100.

Figure S6. 2-D Principal Coordinate Analysis (PCA) plots for bacterial communities (A) and archaeal communities (B) of the MM suspended growth, MM biocathode, EHM suspended growth and EHM biocathode cultures.

Figure S7. 3-D Principal Coordinate Analysis (PCA) plots for bacterial communities (A) and archaeal communities (B) of the MM suspended growth, MM biocathode, EHM suspended growth and EHM biocathode cultures. Axes are scaled to the percent variation explained by the principal coordinates.

Figure S8. Redundancy analysis (A) and canonical correspondence analysis (B) plots to determine changes in OTU abundance attributed to biofilm development and higher buffer strength (MM Biocathode and EHM Biocathode), or higher temperature (35 vs. 22° C) with a more complex (dextrin and peptone) substrate (MM culture). EHM was maintained with a lower buffer strength (100 vs. 300 mM) and a simple (CO₂/H₂) substrate.

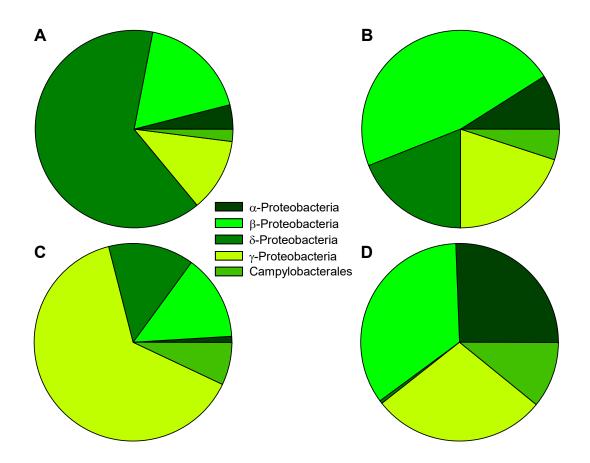

Figure S9. Phylogenetic tree showing the relationship of suspended growth cultures and BES biocathodes Bacteria OTUs (\geq 1% relative abundance) to their closest matched species in GenBank. Mixed methanogenic suspended growth culture (MM; orange square); MM-inoculated biocathode (MM-B; green triangle); Enriched hydrogenotrophic methanogenic suspended growth culture (EHM; red circle); EHM-inoculated biocathode (EHM-B; blue diamond).

Figure S10. Phylogenetic tree showing the relationship of suspended growth cultures and BES biocathodes Archaea OTUs (\geq 1% relative abundance) to their closest matched species in GenBank. Mixed methanogenic suspended growth culture (MM; orange square); MM-inoculated biocathode (MM-B; green triangle); Enriched hydrogenotrophic methanogenic suspended growth culture (EHM; red circle); EHM-inoculated biocathode (EHM-B; blue diamond); DNA extraction method 1 (M1) and method 2 (M2)(See manuscript text).

Figure S11. Phylogenetic tree showing the relationship of EHM-biocathode (EHM-B; blue diamond) Bacteria OTUs (\geq 1% relative abundance) to their closest matched species in GenBank.

Figure S12. Relative abundance of classes within the phylum *Proteobacteria* for MM suspended growth culture (A), MM-inoculated biocathode BES (B), EHM suspended growth culture (C) and EHM-inoculated biocathode BES (D).

	Relative Abundance of OTUs Related to Species of Various Categories (%)											
Culture	CF	AAF	HP	HS	Ac	EE	HD	MP	BF	AB	СВ	Unk
MM	22	15	10	1	1	4	0	0	2	6	0	75
MM-B	43	21	20	34	34	0	1	0	2	21	1	21
EHM	76	55	55	7	7	1	0	0	8	16	2	12
EHM-B	1	44	1	4	0	6	48	6	13	6	2	20

Figure S13. Relative abundance heatmap of OTUs most closely related to species classified as a carbohydrate fermenter (CF); amino acid fermenter (AAF); hydrogen producer (HP); hydrogen scavenger (HS); acetogen (Ac); exoelectrogen (EE); hydrocarbon degrader (HD); mediator producer (MP); implicated in biofilm formation (BF); found in anode biofilm (AB); found in cathode biofilm (CB); and unknown function (Unk). Mixed methanogenic suspended growth culture (MM); MM-inoculated biocathode (MM-B); Enriched hydrogenotrophic methanogenic suspended growth culture (EHM); EHM-inoculated biocathode (EHM-B). Note that most identified OTUs were related to species that belong to more than one class and, therefore, the row total for each culture exceeded 100%.

References

- Bond, D. R.; Holmes, D. E.; Tender, L. M.; Lovley, D. R. Electrode-reducing microorganisms that harvest energy from marine sediments. *Science* 2002, 295 (5554), 483-485.
- Bouvet, O. M. M.; Lenormand, P.; Ageron, E.; Grimont, P. A. D. Taxonomic diversity of anaerobic glycerol dissimilation in the Enterobacteriaceae. *Res. Microbiol.* 1995, 146 (4), 279-290.
- Britz, D. iR elimination in electrochemical cells. J. Electroanal. Chem. Interfacial Electrochem. 1978, 88 (3) 309-352.
- Dollhopf, S.; Hashsham, S.; Dazzo, F.; Hickey, R.; Criddle, C.; Tiedje, J. The impact of fermentative organisms on carbon flow in methanogenic systems under constant low-substrate conditions. *Appl. Microbiol. Biotechnol.* 2001, 56 (3-4), 531-538.
- Dykstra, C. M.; Pavlostathis, S. G. Evaluation of gas and carbon transport in a methanogenic bioelectrochemical system (BES). *Biotechnol. Bioeng.* 2017, DOI 10.1002/bit.26230.
- Gölz, G.; Sharbati, S.; Backert, S.; Alter, T. Quorum sensing dependent phenotypes and their molecular mechanisms in Campylobacterales. *Eur. J. Microbiol. Immunol.* 2012, 2 (1), 50-60.
- Huang, J.; Zhu, N.; Cao, Y.; Peng, Y.; Wu, P.; Dong, W. Exoelectrogenic bacterium phylogenetically related to Citrobacter freundii, isolated from anodic biofilm of a microbial fuel cell. *Appl. Biochem. Biotechnol.* 2015, 175 (4), 1879-1891.
- Jeon, B. Y.; Jung, I. L.; Park, D. H. Enrichment and isolation of CO2-fixing bacteria with electrochemical reducing power as a sole energy source. *J. Environ. Prot.* 2012, 3 (1), 55-60.
- Leschine, S.; Paster, B.; Canale-Parola, E. Free-living saccharolytic Spirochetes: The genus Spirochaeta. In The Prokaryotes; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer New York: New York 2006; pp 195-210.
- Liu, H.; Cheng, S.; Logan, B. E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. *Environ. Sci. Technol.* 2005, *39* (14) 5488-5493.
- Liu, Y.; Balkwill, D. L.; Aldrich, H. C.; Drake, G. R.; Boone, D. R. Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. *Int. J. Syst. Evol. Micr.* 1999, 49 (2), 545-556.
- Logan, B. E. Exoelectrogenic bacteria that power microbial fuel cells. *Nat. Rev. Micro.* 2009, 7 (5), 375-381.
- Matias, P. M.; Pereira, I. A. C.; Soares, C. M.; Carrondo, M. A. Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. *Prog. Biophys. Mol. Biol.* 2005, 89 (3), 292-329.
- McLennan, M. K.; Ringoir, D. D.; Frirdich, E.; Svensson, S. L.; Wells, D. H.; Jarrell, H.; Szymanski, C. M.; Gaynor, E. C. Campylobacter jejuni biofilms up-regulated in the absence of the stringent response utilize a calcofluor white-reactive polysaccharide. *J. Bacteriol.* 2008, 190 (3), 1097-1107.
- Pham, T.; Boon, N.; Aelterman, P.; Clauwaert, P.; De Schamphelaire, L.; Vanhaecke, L.; De Maeyer, K.; Höfte, M.; Verstraete, W.; Rabaey, K. Metabolites produced by Pseudomonas sp. enable a gram-positive bacterium to achieve extracellular electron transfer. *Appl. Microbiol. Biotechnol.* 2008, 77 (5), 1119-1129.
- Price-Whelan, A.; Dietrich, L. E. P.; Newman, D. K. Pyocyanin alters redox homeostasis and carbon flux through central metabolic pathways in Pseudomonas aeruginosa PA14. J. Bacteriol. 2007, 189 (17), 6372-6381.

- Rabaey, K.; Boon, N.; Höfte, M.; Verstraete, W. Microbial phenazine production enhances electron transfer in biofuel cells. *Environ. Sci. Technol.* 2005, 39 (9), 3401-3408.
- Rieger, P. H. Electrochemistry. 2012. Springer Netherlands.
- Savelieva, O.; Kotova, I.; Roelofsen, W.; Stams, A. M.; Netrusov, A. Utilization of aminoaromatic acids by a methanogenic enrichment culture and by a novel Citrobacter freundii strain. Arch. Microbiol. 2004, 181 (2), 163-170.
- Seviour, T.; Doyle, L. E.; Lauw, S. J. L.; Hinks, J.; Rice, S. A.; Nesatyy, V. J.; Webster, R. D.; Kjelleberg, S.; Marsili, E. Voltammetric profiling of redox-active metabolites expressed by Pseudomonas aeruginosa for diagnostic purposes. *Chem. Commun.* 2015, 51 (18), 3789-3792.
- Veldkamp, H. Isolation and characteristics of Treponema zuelzerae nov. spec., an anaerobic, free-living spirochete. *Anton. Leeuw.* 1960, 26 (1), 103-125.
- Xu, S.; Liu, H. New exoelectrogen Citrobacter sp. SX-1 isolated from a microbial fuel cell. J. Appl. Microbiol. 2011, 111 (5), 1108-1115.
- Yong, Y.-C.; Yu, Y.-Y.; Li, C.-M.; Zhong, J.-J.; Song, H. Bioelectricity enhancement via overexpression of quorum sensing system in Pseudomonas aeruginosa-inoculated microbial fuel cells. *Biosens. Bioelectron.* 2011, 30 (1), 87-92.