Supporting Info

Using Functionalized Silyl Ligands to Suppress Solvent Coordination to Silyl Lanthanide(II) Complexes

Rainer Zitz,¹ Johann Hlina,¹ Mohammad Aghazadeh Meshgi,¹ Heinz Krenn,^{4,*} Christoph Marschner,^{1,*} Tibor Szilvási,^{2,*} and Judith Baumgartner^{3,*}

¹Institut für Anorganische Chemie, Technische Universität Graz, Stremayrgasse 9, 8010 Graz, Austria

²Department of Chemical & Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, 53706, Madison, WI, United States

³Institut für Chemie, Universität Graz, Stremayrgasse 9, 8010 Graz, Austria

⁴Institut für Physik, Fachbereich Experimentalphysik, Magnetometry und Photonics, Universität Graz, Universitätsplatz 5, 8010 Graz, Austria

Contents

1.	NMR Spectra of Compounds 2, 3, 7, 8, 9, 10, 14, 16, 19, 21a, and 22	S2
2.	Crystallographic Information of all Compounds	
3.	ORTEP Plots of 3 , 7 , 10 , 20 , and 22	
4.	Packing Plots of 22 and 23	S41
5.	Energy Levels of Complex 23	S18
6.	Cartesian Coordinates of 2, 4, and 23	
7.	References	

Figure S1. ${}^{1}H^{1}H$ -gCOSY of compound **2** in THF-d₈.

Figure S2. ¹H¹³C-gHSQC of compound **2** in THF-d₈.

Figure S3. ¹H²⁹Si-gHMBC of compound **2** in THF-d₈.

Figure S4. ${}^{1}\text{H}^{29}\text{Si-gHMBC}$ of compound **3** in C₆D₆.

Figure S5. ${}^{13}C{}^{1}H$ -NMR of compound **3**.

Figure S6. ²⁹Si $\{^{1}H\}$ -INEPT-NMR of compound 3.

Figure S7. ${}^{13}C{}^{1}H$ -NMR of compound 7.

Figure S8. ¹H-NMR of compound 7.

Figure S9. 29 Si{ 1 H}-INEPT-NMR of compound 7.

Figure S10. ¹³C{¹H}-NMR of compound 8 (* = ${}^{t}BuOSiMe_{3}$).

Figure S11. ¹H-NMR of compound 8 (* = ${}^{t}BuOSiMe_{3}$).

Figure S12. ²⁹Si{¹H}-INEPT-NMR of compound **8**.

Figure S13. $^{13}C{^{1}H}$ -NMR of compound 9.

Figure S14. ¹H-NMR of compound **9**.

Figure S15. 29 Si{ 1 H}-INEPT-NMR of compound 9.

Figure S16. ¹H¹H-gCOSY of compound 10 in d8-THF.

Figure S17. ¹H¹³C-gHSQC of compound 10 in d8-THF.

Figure S18. ¹H²⁹Si-gHMBC of compound **10** in d8-THF.

Figure S19. ${}^{13}C{}^{1}H$ -NMR of compound 14.

Figure S20. ¹H-NMR of compound 14.

Figure S21. ²⁹Si{¹H}-INEPT-NMR of compound 14.

Figure S22. $^{13}C{^{1}H}$ -NMR of compound 16.

Figure S23. ¹H-NMR of compound **16**.

Figure S24. ²⁹Si $\{^{1}H\}$ -INEPT-NMR of compound 16.

Figure S25. $^{13}C{^{1}H}$ -NMR of compound 19.

Figure S26. ¹H-NMR of compound **19**.

Figure S27. ²⁹Si{¹H}-INEPT-NMR of compound 19.

Figure S28. ²⁹Si{¹H}-INEPT-NMR of compound 21a (* = ${}^{t}BuOSiMe_{3}$)..

Figure S29. $^{13}C{^{1}H}$ -NMR of compound 22.

Figure S30. ¹H-NMR of compound 22.

Figure S31. 29 Si{ 1 H}-INEPT-NMR of compound 22.

	2	3	4	6
Empirical formula	C ₃₀ H ₇₄ O ₄ Si ₇ Sm	C ₃₀ H ₇₄ O ₄ Si ₇ Yb	C ₃₆ H ₁₀₀ O ₂ Si ₁₄ Sm ₂	C ₃₈ H ₁₀₆ O ₂ Si ₁₄ Yb
M _w	845.87	868.56	1259.12	1161.53
Temperature [K]	100(2)	200(2)	100(2)	100(2)
Size [mm]	0.34×0.34×0.14	0.34×0.17×0.13	0.44×0.29×0.23	0.30×0.22×0.16
Crystal system	monoclinic	orthorhombic	monoclinic	orthorhombic
Space group	P2(1)/c	Pna2(1)	C2/c	Pbca
a [Å]	10.182(2)	22.675(5)	23.027(5)	19.344(4)
b [Å]	20.869(4)	11.418(2)	14.538(3)	20.358(4)
c [Å]	22.152(4)	17.749(4)	19.296(4)	36.442(7)
α [°]	90	90	90	90
β[°]	102.83(3)	90	102.44(3)	90
γ [°]	90	90	90	90
$V[Å^3]$	4589(2)	4595(2)	6308(2)	14351(5)
Z	4	4	4	8
$\rho_{calc} [gcm^{-3}]$	1.224	1.255	1.326	1.075
Absorption coefficient [mm ⁻¹]	1.490	2.245	2.136	1.561
F(000)	1784	1816	2608	4928
θ range	1.34<0<26.37	1.80<0<26.37	1.67< 0 <26.36	1.54<0<26.39
Reflections collected/unique	36096/9410	35364/9359	24683/6401	110630/14683
Completeness to θ [%]	99.7	100	99.5	99.8
Data/restraints/parameters	9410/0/393	9359/1/394	6401/0/258	14683/76/555
Goodness of fit on F^2	1.10	1.03	1.04	1.03
Final R indices $[I>2\sigma(I)]$	R1=0.045	R1=0.037	R1=0.020	R1=0.084
	wR2=0.103	wR2=0.076	wR2=0.050	wR2=0.218
R indices (all data)	R1=0.054	R1=0.042	R1=0.021	R1=0.117
	wR2=0.106	wR2=0.078	wR2=0.050	wR2=0.237
Largest diff. Peak/hole $[e^{-7}/Å^3]$	2.53/-0.87	1.27/-0.91	0.80/-0.38	2.66/-0.91

 Table S1. Crystallographic data for compounds 2, 3, 4, and 6.

	7	9	10	19
Empirical formula	C22H66OSi10	C ₂₈ H ₇₂ O ₄ Si ₈ Yb	C ₂₈ H ₇₂ O ₄ Si ₈ Sm	C ₃₀ H ₈₆ O ₃ Si ₁₂ Yb
M_{w}	627.65	870.62	847.93	1005.11
Temperature [K]	100(2)	100(2)	100(2)	100(2)
Size [mm]	0.40×0.23×0.20	0.40×0.20×0.18	0.22×0.17×0.11	0.40×0.23×0.20
Crystal system	monoclinic	monoclinic	monoclinic	triclinic
Space group	P2(1)	P2(1)/c	P2(1)/c	P-1
a [Å]	9.391(2)	15.441(3)	15.491(4)	10.444(3)
b [Å]	13.142(3)	18.603(4)	18.840(5)	15.475(5)
c [Å]	16.586(3)	16.113(3)	16.136(4)	19.428(6)
α [°]	90	90	90	67.632(5)
β[°]	93.003(3)	102.583(3)	103.266(4)	86.605(5)
γ [°]	90	90	90	71.706(5)
$V[Å^3]$	2044(2)	4517(2)	4584(2)	2751(2)
Ζ	2	4	4	2
$\rho_{calc} [gcm^{-3}]$	1.020	1.280	1.229	1.214
Absorption coefficient [mm ⁻¹]	0.335	2.309	1.516	1.986
F(000)	692	1816	1784	1056
θ range	1.23< 0 <26.34	1.35< 0 <26.37	1.69<0<26.35	1.50< 0 <26.34
Reflections collected/unique	16479/8261	35249/9216	35696/9288	21715/10990
Completeness to θ [%]	99.6	99.6	99.4	98.1
Data/restraints/parameters	8261/113/545	9216/0/386	9288/0/386	10990/0/441
Goodness of fit on F^2	1.08	1.08	1.08	1.09
Final R indices $[I>2\sigma(I)]$	R1=0.079	R1=0.025	R1=0.041	R1=0.059
	wR2=0.162	wR2=0.065	wR2=0.094	wR2=0.130
R indices (all data)	R1=0.095	R1=0.029	R1=0.049	R1=0.068
	wR2=0.173	wR2=0.067	wR2=0.098	wR2=0.134
Largest diff. Peak/hole $[e^{-}/ Å^3]$	0.74/-0.61	1.67/-1.09	2.63/-0.89	3.77/-2.47

 Table S2. Crystallographic data for compounds 7, 9, 10, and 19.

	20	22	23
Empirical formula	C ₆ H ₁₄ ClNO ₂ Si	$C_{24}H_{64}N_2O_4Si_8Yb$	C24H64EuN2O4Si8
M _w	195.72	842.53	821.45
Temperature [K]	100(2)	100(2)	100(2)
Size [mm]	0.52×0.33×0.11	0.18×0.16×0.08	0.34×0.12×0.08
Crystal system	monoclinic	monoclinic	monoclinic
Space group	P2(1)/n	C2	C2/c
a [Å]	6.884(2)	17.833(3)	23.45(2)
b [Å]	11.800(2)	10.295(3)	10.198(5)
c [Å]	11.154(2)	13.216(3)	17.953(9)
α [°]	90	90	90
β [°]	92.907(3)	121.406(5)	100.48(2)
γ [°]	90	90	90
$V[Å^3]$	904.9(3)	2071(2)	4221(4)
Z	4	2	4
$\rho_{calc} [gcm^{-3}]$	1.437	1.351	1.292
Absorption coefficient [mm ⁻¹]	0.509	2.517	1.740
F(000)	416	872	1716
θ range	2.51<θ<26.28	1.81<θ<26.35	1.77< 0 <26.38
Reflections collected/unique	7036/1833	8284/4085	15593/4301
Completeness to θ [%]	99.8	99.3	99.8
Data/restraints/parameters	1833/0/102	4085/0/186	4301/0/185
Goodness of fit on F^2	1.12	1.12	1.13
Final R indices $[I>2\sigma(I)]$	R1=0.026	R1=0.066	R1=0.069
	wR2=0.069	wR2=0.177	wR2=0.163
R indices (all data)	R1=0.027	R1=0.066	R1=0.081
	wR2=0.070	wR2=0.177	wR2=0.170
Largest diff. Peak/hole $[e^{-7}/Å^3]$	0.39/-0.20	2.86/-1.80	2.28/-1.06

Table S3. Crystallographic data for compounds 20, 22, and 23.

Figure S32. Molecular structure of **3** (thermal ellipsoid plot drawn at the 30% probability level). All hydrogen atoms are omitted for clarity (bond lengths in Å, angles in deg). Yb(1)-O(3) 2.437(3), Yb(1)-O(2) 2.464(4), Yb(1)-O(1) 2.482(3), Yb(1)-O(4) 2.492(4), Yb(1)-Si(3) 3.0571(13), Yb(1)-Si(1) 3.0658(13), Si(1)-Si(4) 2.335(2), Si(4)-C(5) 1.882(6), Si(3)-Yb(1)-Si(1) 76.29(4).

Figure S33. Molecular structure of 7 (thermal ellipsoid plot drawn at the 30% probability level). All hydrogen atoms are omitted for clarity (bond lengths in Å, angles in deg). O(1)-Si(5) 1.628(6), O(1)-Si(6) 1.645(7), Si(1)-Si(2) 2.358(2), Si(2)-C(1) 1.896(9), Si(5)-O(1)-Si(6) 149.5(5).

Figure S34. Molecular structure of **10** (thermal ellipsoid plot drawn at the 30% probability level). All hydrogen atoms are omitted for clarity (bond lengths in Å, angles in deg). C(1)-Si(2) 1.888(4), O(1)-Si(6) 1.693(2), O(1)-Si(4) 1.696(2), O(1)-Sm(1) 2.588(2), O(2)-Sm(1) 2.562(2), O(4)-Sm(1) 2.568(3), O(5)-Sm(1) 2.558(2), Si(1)-Si(2) 2.3347(14), Si(1)-Sm(1) 3.1827(10), Si(5)-Sm(1) 3.1472(11), O(5)-Sm(1)-O(1) 125.67(7), O(2)-Sm(1)-O(1) 85.67(8), O(4)-Sm(1)-O(1) 156.14(8), O(1)-Sm(1)-Si(5) 66.95(5), O(1)-Sm(1)-Si(1) 66.66(5), Si(5)-Sm(1)-Si(1) 130.52(3).

Figure S35. Molecular structure of 20 (thermal ellipsoid plot drawn at the 30% probability level). All hydrogen atoms are omitted for clarity (bond lengths in Å, angles in deg). Cl(1)-Si(1) 2.2297(5), Si(1)-O(1) 1.6553(9), Si(1)-N(1) 2.1168(11), O(1)-Si(1)-O(2) 121.69(5), C(5)-Si(1)-N(1) 94.41(5), N(1)-Si(1)-Cl(1) 169.95(3).

Figure S36. Molecular structure of **22** (thermal ellipsoid plot drawn at the 30% probability level). All hydrogen atoms are omitted for clarity (bond lengths in Å, angles in deg). Yb(1)-O(2) 2.491(8), Yb(1)-N(1) 2.705(9), Yb(1)-Si(1) 3.050(3), Si(1)-Si(2) 2.311(5), Si(2)-O(1) 1.6497(11), Si(2)-O(2) 1.717(9), Si(2)-C(1) 1.862(12), C(3)-N(1) 1.513(15), N(1)-C(6) 1.439(18), O(2)-Yb(1)-O(2A) 143.8(4), O(2A)-Yb(1)-N(1) 147.0(3), N(1)-Yb(1)-N(1A) 94.3(4), O(2)-Yb(1)-Si(1) 67.49(19), N(1)-Yb(1)-Si(1) 108.8(3), Si(1)-Yb(1)-Si(1A) 140.56(11).

Figure S37. left: packing of Sm compound **23** along c-axis. right: packing of Yb compound **22** along the c-axis.

Density Functional Calculations

DFT calculations were carried out by using the GAUSSIAN 09 program.¹ Geometry optimization was performed with the B3PW91 functional,²⁻⁴ because we have shown that this methodology can afford good agreement with experimental results in case of f-block-silyl complexes.⁵ We employed the Stuttgart RSC 1997 ECP⁶ basis set from Basis Set Exchange^{7,8} for f-elements, 6- $31G(d)^9$ for Si atoms and 6- $31G(d)^{10,11}$ basis for the other atoms, denoted as Basis1 in the manuscript. Natural Population Analysis was performed with NBO program 5.0¹²⁻¹⁴ implemented in Gaussian 09.

Figure S38. Energy levels of 23.

Atomtype	X Coordinates	Y Coordinates	Z Coordinates
С	2.085163	4.262991	-0.134407
0	2.030036	2.818009	-0.012621
С	3.41078	2.376666	-0.130918
С	3.991949	3.233075	-1.268056
С	3.248762	4.586327	-1.107921
Sm	0.052239	1.084081	0.226773
0	-1.639374	2.900781	0.9987
С	-2.742376	2.460709	1.842686
С	-3.996863	3.004032	1.152654
С	-3.516421	4.387524	0.664292
С	-2.015899	4.160072	0.366487
0	-0.602633	2.183333	-2.010894
С	-1.874436	1.831986	-2.648911
С	-1.983198	2.720387	-3.894468
С	-0.509374	2.923985	-4.28332
С	0.166847	3.034229	-2.910146
Si	-1.950277	-1.37615	-0.000567
Si	-3.35942	-2.123194	-1.732108
С	-2.553157	-2.149751	-3.463504
0	0.514541	1.406739	2.733522
С	1.13278	0.343413	3.524812
С	2.270846	1.023037	4.291013
С	1.655707	2.401538	4.600865
С	0.856404	2.699611	3.318786
Si	1.919588	-1.463064	-0.107971
Si	-0.039386	-2.81437	0.098399
С	0.077208	-3.72532	1.780748
Si	-3.241566	-1.883676	1.90544
С	-4.954344	-1.031908	1.841329
С	-3.618567	-3.711035	2.325063
С	-2.395503	-1.20177	3.480383
Si	3.63632	-2.659753	0.956995
С	3.76068	-4.509658	0.497561
Si	2.520941	-1.574557	-2.379251
С	2.864968	-3.274503	-3.163347
С	5.347795	-1.906057	0.569774
С	3.51287	-2.569483	2.866508
С	4.111831	-0.593455	-2.785229
С	1.165096	-0.773528	-3.449999
С	-0.138762	-4.261179	-1.162808

Table S4. Cartesian coordinates of **2** in Angstrom. (Energy = -4389.872036 Hartree)

С	-4.818626	-0.904505	-1.911739
С	-4.136972	-3.852207	-1.512192
Н	-2.752333	1.36402	1.895468
Н	-2.63815	2.876178	2.857967
Н	-4.293386	2.361128	0.312567
Н	-4.839313	3.094309	1.853528
Н	-3.652521	5.150648	1.443352
Н	-4.060272	4.701843	-0.237819
Н	-1.409368	4.979923	0.781533
Н	-1.831493	4.091671	-0.714292
Н	3.953394	2.554516	0.811779
Н	3.437592	1.304884	-0.366854
Н	5.078954	3.355848	-1.158951
Н	3.77984	2.779064	-2.244929
Н	2.868638	4.941356	-2.075475
Н	3.909898	5.355895	-0.685536
Н	1.126046	4.633593	-0.520313
Н	2.27078	4.71691	0.852513
Н	0.152897	4.074835	-2.549252
Н	1.207745	2.683981	-2.950327
Н	-0.124152	2.062754	-4.846498
Н	-0.369048	3.838285	-4.878405
Н	-2.549393	2.223085	-4.695089
Н	-2.468086	3.679059	-3.658167
Н	-2.701935	2.017126	-1.95027
Н	2.523685	0.475689	5.210474
Н	3.169977	1.115044	3.665211
Н	2.431945	3.160412	4.776956
Н	0.994986	2.354586	5.478101
Н	1.459694	3.279749	2.605663
Н	-0.063179	3.257758	3.547535
Н	-1.871038	0.767712	-2.920033
Н	-0.99906	-4.901525	-0.911299
Н	-0.26541	-3.863761	-2.180424
Н	0.78992	-4.850562	-1.113769
Н	-0.766559	-4.425215	1.872912
Н	-4.842306	0.013398	1.514754
Н	-5.606789	-1.563686	1.132074
Н	-4.021632	-4.222996	1.438733
Н	-2.242496	-1.132431	-3.746132
Н	-1.670708	-2.807208	-3.458088
Н	-3.284849	-2.525299	-4.197108
Н	-5.302972	-0.754444	-0.936189

Н	-4.448219	0.06326	-2.284475
Н	-5.555288	-1.313752	-2.623101
Н	-4.690138	-4.122487	-2.426859
Н	-3.346326	-4.596246	-1.32992
Н	-4.829498	-3.843199	-0.656524
Н	4.518461	-4.995956	1.134178
Н	2.787827	-5.000095	0.65234
Н	4.050545	-4.60778	-0.559379
Н	5.620793	-2.116747	-0.475489
Н	5.316993	-0.815962	0.723906
Н	3.678197	-3.777711	-2.619362
Н	1.961443	-3.901104	-3.119115
Н	3.161025	-3.134844	-4.216191
Н	4.274905	-0.603945	-3.87548
Н	4.012252	0.446801	-2.440003
Н	4.9734	-1.058184	-2.28289
Н	0.198822	-1.262155	-3.256643
Н	1.084528	0.296413	-3.204073
Н	1.423725	-0.884338	-4.5164
Н	0.394319	-0.090457	4.215393
Н	1.508535	-0.444385	2.85749
Н	1.023508	-4.284862	1.828641
Н	0.040844	-3.000035	2.607582
Н	-5.4093	-1.054617	2.845288
Н	-2.69558	-4.216052	2.645705
Н	-4.360889	-3.751267	3.139669
Н	-3.076093	-1.314752	4.340778
Н	-1.468413	-1.762807	3.671482
Н	-2.153473	-0.136656	3.34505
Н	4.270891	-3.232926	3.314219
Н	3.692556	-1.533973	3.194816
Н	2.51088	-2.886294	3.194118
Н	6.101929	-2.349598	1.240686

Table S5. Cartesian coordinates of **4** in Angstrom. (Energy = -6951.758503 Hartree)

Atomtype	X Coordinates	Y Coordinates	Z Coordinates
С	2.117263	3.696651	-3.087466
Ο	2.540796	2.797171	-2.012119
С	3.921859	3.128157	-1.676521
С	4.028400	4.632944	-1.912191
С	3.156496	4.835355	-3.155417
Sm	1.451703	1.240150	-0.366924

Si	1.231210	-1.756277	-1.480078
Si	3.591166	-1.585357	-1.047338
С	4.382435	-3.321683	-0.999297
Sm	-1.451914	-1.240576	0.367256
Si	-1.230953	1.755900	1.480356
Si	-3.590897	1.585254	1.047403
С	-4.381720	3.321799	0.999014
0	-2.543966	-2.796062	2.011765
С	-2.121694	-3.695466	3.087556
С	-3.161845	-4.833337	3.155343
С	-4.033007	-4.630698	1.911661
С	-3.925195	-3.126077	1.675581
Si	-3.965768	0.134331	-0.788273
Si	-3.299644	1.376358	-2.659944
С	-4.035621	3.113097	-2.911103
Si	-6.301157	-0.083467	-0.975300
С	-7.281203	1.541374	-0.856147
С	-6.749275	-0.822881	-2.667395
С	-7.042216	-1.237860	0.340973
Si	3.966245	-0.134481	0.788463
Si	3.301704	-1.376822	2.660399
С	4.038475	-3.113273	2.911417
Si	6.301598	0.083956	0.975090
С	7.282092	-1.540594	0.855665
С	7.042106	1.238628	-0.341262
С	6.749792	0.823409	2.667139
Si	-0.592427	4.012282	1.129255
С	-1.247663	5.257950	2.399023
Si	-0.991980	1.615496	3.832235
С	-2.098481	2.754495	4.884930
С	-1.032881	4.749147	-0.567392
С	1.323454	4.128825	1.223320
Si	0.991726	-1.615484	-3.831892
С	2.098261	-2.754091	-4.884964
Si	0.593671	-4.013221	-1.129882
С	-1.322108	-4.131389	-1.224093
С	1.386573	0.138739	-4.459963
С	-0.796080	-2.022696	-4.315303
С	-1.387305	-0.138560	4.460573
С	0.795810	2.022450	4.315885
С	-4.438476	0.737395	2.547946

С	1.249606	-5.257928	-2.400225
С	1.034576	-4.750374	0.566537
С	4.438141	-0.737003	-2.548016
С	-3.655407	0.454655	-4.289770
С	-1.411701	1.621460	-2.520680
С	3.657895	-0.454904	4.289993
С	1.413965	-1.622606	2.521869
Н	-4.070844	-0.273248	2.655619
Н	1.195545	-2.146067	1.601016
Н	0.925307	-0.657145	2.518654
Н	1.059963	-2.202816	3.364981
Н	3.595671	-3.567659	3.789141
Н	5.108802	-3.037826	3.046960
Н	3.831660	-3.729094	2.047809
Н	2.996861	-0.820676	5.065401
Н	3.497995	0.605388	4.155064
Н	4.684752	-0.626280	4.581857
Н	6.585739	0.086690	3.441169
Н	6.133064	1.690253	2.864300
Н	7.791728	1.117991	2.665392
Н	1.481051	1.491378	3.670956
Н	0.963228	3.086196	4.217599
Н	0.969855	1.724825	5.341961
Н	-1.832219	3.787353	4.713036
Н	-3.135575	2.608104	4.617927
Н	-1.959191	2.516923	5.932021
Н	-1.194162	-0.187989	5.524699
Н	-2.427865	-0.364117	4.272897
Н	-0.766921	-0.860876	3.950239
Н	1.608622	5.113536	1.568674
Н	1.707005	3.387115	1.911969
Н	-1.749098	-3.965179	-0.243358
Н	-0.865917	5.016523	3.380734
Н	0.698785	-5.778835	0.603764
Н	0.553224	-4.185625	1.352189
Н	2.104357	-4.716921	0.715095
Н	-1.136519	-4.082710	2.869641
Н	-2.086267	-3.155064	4.023882
Н	-3.752810	-4.759270	4.057793
Н	-2.679830	-5.801294	3.137612
Н	-3.646884	-5.185827	1.067795

Н	-5.057286	-4.928009	2.092006
Н	-4.608939	-2.581422	2.313956
Н	-4.128386	-2.870188	0.644461
Н	-5.507496	0.714956	2.385220
Н	-4.224297	1.292597	3.450388
Н	-4.142049	3.850774	1.911696
Н	-4.001027	3.875768	0.153766
Н	-5.455038	3.224907	0.908287
Н	-7.150366	1.978300	0.124054
Н	-6.926090	2.236315	-1.604587
Н	-8.331910	1.338431	-1.021830
Н	-8.109112	-1.325971	0.180224
Н	-6.585202	-2.215625	0.266441
Н	-6.860059	-0.833400	1.327279
Н	-2.327945	5.224625	2.419781
Н	-0.923569	6.253237	2.122153
Н	5.507186	-0.714319	-2.385541
Н	4.070326	0.273604	-2.655589
Н	4.223870	-1.292122	-3.450480
Н	4.142706	-3.850605	-1.911997
Н	4.002045	-3.875825	-0.154031
Н	5.455748	-3.224546	-0.908773
Н	-1.193438	2.144783	-1.599650
Н	-0.923458	0.655811	-2.517311
Н	-1.057277	2.201589	-3.363709
Н	-2.993858	0.820201	-5.064849
Н	-3.495986	-0.605702	-4.154813
Н	7.151215	-1.977513	-0.124534
Н	6.927300	-2.235668	1.604132
Н	8.332770	-1.337361	1.021174
Н	8.109005	1.327032	-0.180695
Н	6.584832	2.216262	-0.266596
Н	6.859900	0.834173	-1.327563
Н	-1.481322	-1.491869	-3.670172
Н	-0.963267	-3.086495	-4.217182
Н	-0.970386	-1.724919	-5.341287
Н	1.832238	-3.787034	-4.713208
Н	3.135379	-2.607551	-4.618132
Н	1.958731	-2.516356	-5.931983
Н	1.193221	0.188319	-5.524046
Н	2.427121	0.364489	-4.272443

Н	0.766126	0.860792	-3.949341
Н	-1.606117	-5.116309	-1.569852
Н	-1.706370	-3.389892	-1.912485
Н	1.749747	3.961797	0.242356
Н	2.329872	-5.223966	-2.421044
Н	0.867655	-5.016291	-3.381802
Н	0.926121	-6.253527	-2.123764
Н	-0.551879	4.183770	-1.352793
Н	1.131910	4.083082	-2.868905
Н	2.081754	3.156499	-4.023928
Н	3.747073	4.762047	-4.058186
Н	2.673776	5.802952	-3.137121
Н	3.642263	5.187498	-1.067955
Н	5.052368	4.931087	-2.092932
Н	4.605719	2.584260	-2.315398
Н	4.125781	2.872087	-0.645535
Н	-3.592231	3.567336	-3.788598
Н	-5.105917	3.038087	-3.047118
Н	-3.828941	3.728772	-2.047360
Н	-4.682055	0.626439	-4.582133
Н	-6.584882	-0.086254	-3.441442
Н	-6.132762	-1.689913	-2.864402
Н	-7.791296	-1.117165	-2.665813
Н	-0.696411	5.777374	-0.604971
Н	-2.102685	4.716353	-0.715942

Atomtype	X Coordinates	Y Coordinates	Z Coordinates
С	3.792593	-1.120891	3.121330
Si	2.890075	-0.093953	1.837154
Si	2.942562	-0.456594	-0.451679
Si	5.107838	0.251556	-0.982647
С	5.635768	-0.479436	-2.642897
Ο	3.252358	1.453084	2.316622
С	2.657704	2.612597	1.750158
С	1.401779	3.085784	2.453245
Ν	0.147427	2.389260	2.097273
С	-0.954577	3.351952	1.894645
Eu	0.000000	0.593189	0.000000
Ν	-0.147428	2.389261	-2.097272
С	-1.401780	3.085784	-2.453245
С	-2.657705	2.612597	-1.750157
Ο	-3.252358	1.453084	-2.316623
Si	-2.890076	-0.093952	-1.837154
С	-3.792592	-1.120891	-3.121331
Ο	1.203572	-0.215309	2.160380
С	0.719336	0.326206	3.403320
С	-0.292321	1.405154	3.120747
Si	-2.942562	-0.456593	0.451679
Si	-5.107838	0.251556	0.982646
С	-5.635768	-0.479438	2.642896
Ο	-1.203572	-0.215309	-2.160379
С	-0.719336	0.326206	-3.403319
С	0.292321	1.405155	-3.120746
Si	-3.038079	-2.796422	0.482926
С	-4.715522	-3.610223	0.182168
С	-1.846119	-3.569431	-0.765103
С	-2.462046	-3.383827	2.175561
Si	3.038079	-2.796423	-0.482927
С	4.715521	-3.610222	-0.182168
С	1.846119	-3.569431	0.765103
С	2.462046	-3.383827	-2.175562
С	0.954577	3.351952	-1.894644
С	5.149032	2.113915	-1.171761
С	6.421759	-0.179615	0.300166
С	-5.149033	2.113914	1.171760

Table S6. Cartesian coordinates of **23** in Angstrom. (Energy = -4389.74682 Hartree)

С	-6.421759	-0.179615	-0.300166
Н	0.301998	-0.391734	3.941404
Н	1.473582	0.702512	3.922054
Н	-0.488679	1.887519	3.961656
Н	-1.133467	0.980917	2.812560
Н	1.540163	2.992982	3.429011
Н	2.438834	2.424953	0.802772
Н	3.600137	-0.769060	4.014045
Н	3.491229	-2.051969	3.064659
Н	4.755909	-1.079079	2.953080
Н	1.772351	2.867548	-1.650631
Н	6.030421	2.388241	-1.506870
Н	4.456395	2.394360	-1.806131
Н	4.986446	2.535093	-0.302591
Н	1.727866	-4.520904	0.557306
Н	2.211599	-3.474589	1.668713
Н	0.978900	-3.114600	0.713339
Н	-1.513386	-3.172729	2.287995
Н	2.981802	-2.931036	-2.873091
Н	2.593949	-4.351617	-2.246964
Н	6.210767	0.267057	1.146236
Н	6.437088	-1.149444	0.437894
Н	7.297377	0.120206	-0.018199
Н	5.384999	-3.204342	-0.771819
Н	4.979436	-3.477649	0.752163
Н	4.652856	-4.568835	-0.373357
Н	-0.301997	-0.391733	-3.941404
Н	-1.473582	0.702513	-3.922053
Н	0.488679	1.887520	-3.961655
Н	1.133467	0.980918	-2.812559
Н	-1.540163	2.992983	-3.429009
Н	-2.438834	2.424953	-0.802773
Н	-3.600136	-0.769060	-4.014045
Н	-3.491227	-2.051968	-3.064660
Н	-4.755908	-1.079079	-2.953081
Н	-1.772352	2.867547	1.650632
Н	-6.030421	2.388240	1.506870
Н	-4.456396	2.394359	1.806132
Н	-4.986446	2.535092	0.302592
Н	-1.727866	-4.520904	-0.557308
Н	-2.211598	-3.474589	-1.668714

Н	-0.978900	-3.114600	-0.713340
Н	1.513386	-3.172728	-2.287996
Н	-2.981803	-2.931037	2.873089
Н	-2.593949	-4.351617	2.246964
Н	-6.210767	0.267057	-1.146237
Н	-6.437088	-1.149445	-0.437895
Н	-7.297377	0.120206	0.018198
Н	-6.419815	0.004967	2.978193
Н	-5.863029	-1.425812	2.526151
Н	-4.901576	-0.395814	3.285811
Н	-5.384999	-3.204343	0.771818
Н	-4.979435	-3.477649	-0.752164
Н	-4.652856	-4.568835	0.373357
Н	1.286214	4.049495	2.262039
Н	3.322581	3.345833	1.763515
Н	-0.718054	3.975049	1.175350
Н	-1.109047	3.852673	2.723047
Н	-1.286215	4.049495	-2.262039
Н	-3.322582	3.345833	-1.763514
Н	0.718053	3.975050	-1.175349
Н	1.109047	3.852674	-2.723047
Н	6.419814	0.004969	-2.978194
Н	5.863029	-1.425811	-2.526152
Н	4.901575	-0.395813	-3.285811

References

 (1) Frisch, M. J.; Trucks, G. W.; Cheeseman, J. R.; Scalmani, G.; Caricato, M.; Hratchian, H. P.; Li, X.; Barone, V.; Bloino, J.; Zheng, G.; Vreven, T.; Montgomery, J. A.; Petersson, G. A.; Scuseria, G. E.; Schlegel, H. B.; Nakatsuji, H.; Izmaylov, A. F.; Martin, R. L.; Sonnenberg, J. L.; Peralta, J. E.; Heyd, J. J.; Brothers, E.; Ogliaro, F.; Bearpark, M.; Robb, M. A.; Mennucci, B.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Rendell, A.; Gomperts, R.; Zakrzewski, V. G.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H. *Gaussian 09*.
 (2) Perdew, J. P. In *Electronic Structure of Solids '91*; Ziesche, P., Eschrig, H., Eds.; Akademie Verlag: Berlin, 1991; pp 11–20.

(3) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.

(4) Burke, K.; Perdew, J. P.; Wang, Y. In *Electronic density functional theory: recent progress and new directions*; Dobson, J. F., Vignale, G., Das, M. P., Eds.; Plenum Press: New York, 1998; pp 81–111.

(5) Zitz, R.; Arp, H.; Hlina, J.; Walewska, M.; Marschner, C.; Szilvási, T.; Blom, B.;

Baumgartner, J. Inorg. Chem. 2015, 54, 3306-3315.

- (6) Dolg, M.; Stoll, H.; Savin, A.; Preuss, H. Theoret. Chim. Acta 1989, 75, 173-194.
- (7) Feller, D. J. Comput. Chem. 1996, 17, 1571-1586.
- (8) Schuchardt, K. L.; Didier, B. T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.;
- Windus, T. L. J. Chem. Inf. Model. 2007, 47, 1045–1052.
- (9) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. R. J. Comput. Chem. 1983, 4, 294–301.
- (10) Hariharan, P. C.; Pople, J. A. Theoret. Chim. Acta 1973, 28, 213-222.
- (11) Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265-3269.
- (12) Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohman, J. A.; Morales,
- C. M.; Weinhold, F. NBO Version 5.0, 2001.
- (13) Weinhold, F.; Landis, C. R. Chem. Educ. Res. Pract. 2001, 2, 91-104.
- (14) Carpenter, J. E.; Weinhold, F. J. Mol. Struct.: THEOCHEM 1988, 169, 41-62.