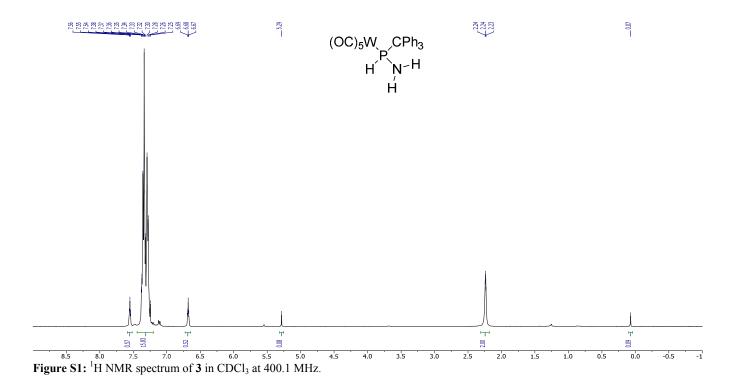
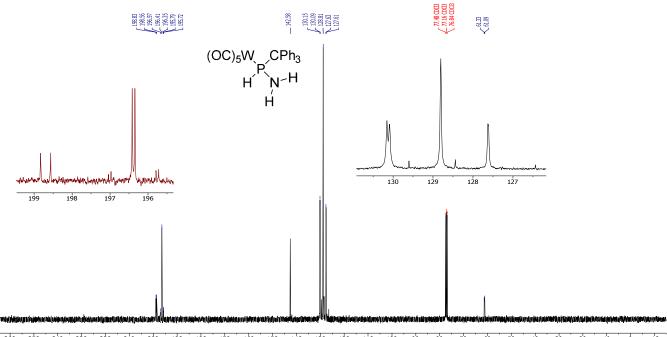
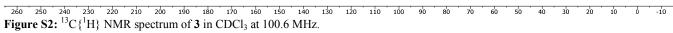
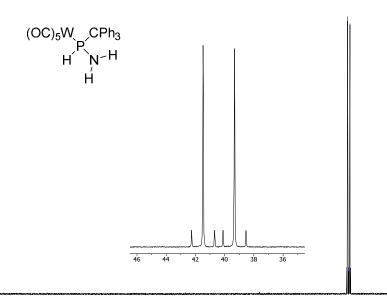
SUPPORTING INFORMATION

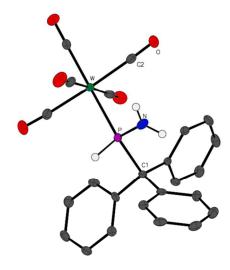

1,1'-BIFUNCTIONAL AMINOPHOSPHANE COMPLEXES VIA N-H BOND INSERTIONS OF A LI/CL PHOSPHINIDENOID COMPLEX AND FIRST STUDIES ON N/P MONO FUNCTIONALIZATIONS

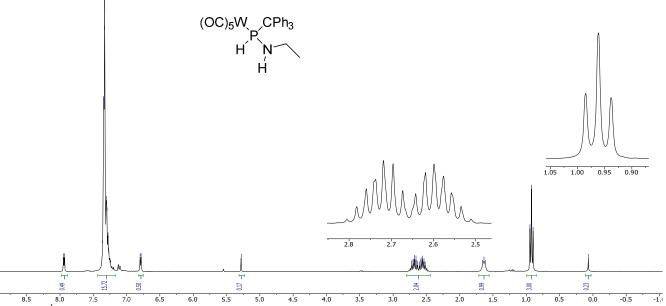

Rainer Streubel,* Alexander Schmer, Andreas W. Kyri and Gregor Schnakenburg

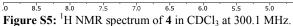

Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany


Content

1.	NMR spectra and crystal structure data for 3	S2-S3
2.	NMR spectra and crystal structure data for 4	S4-S5
3.	NMR spectra and crystal structure data for 5	S6-S7
4.	NMR spectra and crystal structure data for 6	S8-S9
5.	NMR spectra and crystal structure data for 7	S10-S11
6.	NMR spectra and crystal structure data for 8	S12-S13
7.	NMR spectra and crystal structure data for 9	S14-S15
8.	NMR spectra and crystal structure data for 10	S16-S17
9.	NMR spectra for 12	S18-S19
10.	NMR spectra for 13	S20-S21
11.	NMR spectra and crystal structure data for 14	S22-S23
12.	NMR spectra and crystal structure data for 17	S24-S25
13.	NMR spectra and crystal structure data for 19	S26-S27




¹²⁰ 400 380 360 340 320 300 280 240 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 **Figure S3:** ³¹P NMR spectrum of **3** in CDCl₃ at 162.0 MHz.


42.26 41.47 40.69 39.32 39.32

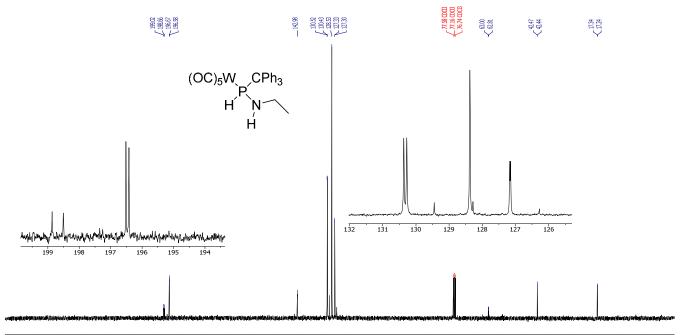
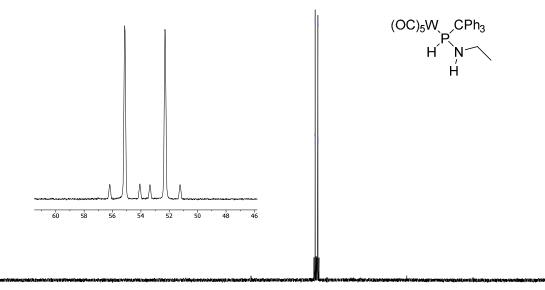
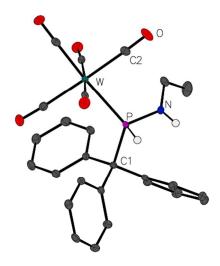


Figure S4: Crystal structure of **3**. Suitable single-crystals of **3** were obtained from a concentrated diethyl ether solution at 4 °C. Data were collected with a Bruker X8-KappaApexII diffractometer equipped with a low-temperature device at 100 K by using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The structure was solved by intrinsic phasing methods (SHELXT 2015) and refined by full-matrix least squares on F² (SHELXL 2015)¹: C₂₄H₁₈NO₅PW, Mr = 615.21, crystal dimensions 0.22 × 0.08 × 0.04 mm³, monoclinic, space group P2₁/c, Z =4, a = 7.2639(9) Å, b = 16.750(2) Å, c = 18.608(2) Å, $\alpha = 90^{\circ}$, $\beta = 98.941(4)^{\circ}$, $\gamma = 90^{\circ}$, V = 2236.6(5) Å³, d_{calcd} = 1.827 g cm⁻³, $\mu = 5.272$ mm⁻¹, transmission factors (min/max) 0.3194/0.7459, empirical absorption correction, 2 $\theta_{max} = 55.996^{\circ}$, no. of unique data 5339, R_{int} = 0.06, R₁ (for I >2 σ (I)) = 0.0250, wR₂ (for all data) = 0.0637, final R₁ = 0.0306, goodness of fit 1.029, Δ F (max/min) = 2.21 /-1.34 e Å⁻³. CCDC 1529744 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

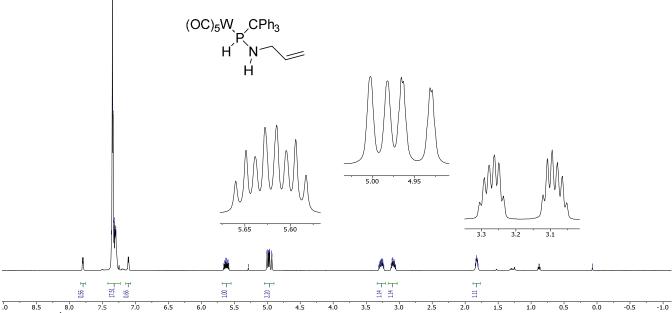
¹ Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

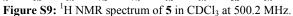




-10 ó

55.20 55.15 55.17 55.17 55.17 55.17 55.23 55.17 55.23 55.23 55.23 55.23 55.23 55.23 55.23 55.23 55.23 55.23 55.23 55.23 55.23 55.23 55.23 55.23 55.23 55.23 55.23 55.25




 $\frac{160}{440}$ $\frac{420}{40}$ $\frac{420}{30}$ $\frac{360}{360}$ $\frac{360}{360}$ $\frac{320}{30}$ $\frac{260}{260}$ $\frac{240}{20}$ $\frac{220}{20}$ $\frac{160}{160}$ $\frac{160}{10}$ $\frac{120}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{20}$ $\frac{10}{10}$ $\frac{10}{-20}$ $\frac{-40}{-60}$ $\frac{-60}{-60}$ $\frac{-100}{-120}$ $\frac{-140}{-160}$ $\frac{-180}{-20}$ $\frac{-20}{-22}$ $\frac{-20}{-20}$ $\frac{-40}{-60}$ $\frac{-60}{-60}$ $\frac{-100}{-120}$ $\frac{-140}{-160}$ $\frac{-180}{-20}$ $\frac{-20}{-20}$ $\frac{-20}{-20}$ $\frac{-40}{-60}$ $\frac{-60}{-60}$ $\frac{-100}{-120}$ $\frac{-140}{-160}$ $\frac{-180}{-20}$ $\frac{-20}{-20}$ $\frac{-20}{-20}$ $\frac{-40}{-60}$ $\frac{-60}{-60}$ $\frac{-100}{-120}$ $\frac{-140}{-160}$ $\frac{-180}{-20}$ $\frac{-20}{-20}$ $\frac{-20}{-20}$ $\frac{-40}{-20}$ $\frac{-100}{-10}$ $\frac{-120}{-10}$ $\frac{-140}{-160}$ $\frac{-180}{-20}$ $\frac{-20}{-20}$ $\frac{-20}{-20}$ $\frac{-40}{-60}$ $\frac{-100}{-10}$ $\frac{-120}{-10}$ $\frac{-140}{-10}$ $\frac{-100}{-10}$ $\frac{-100}{-10}$

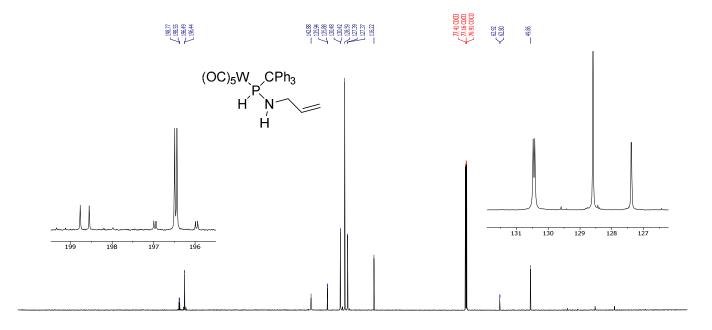
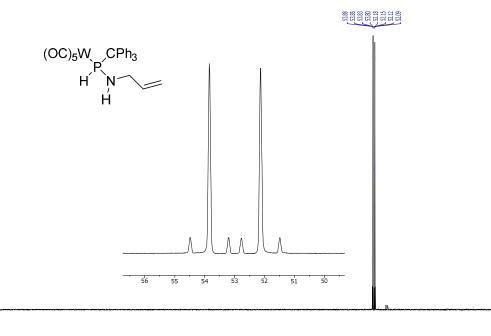
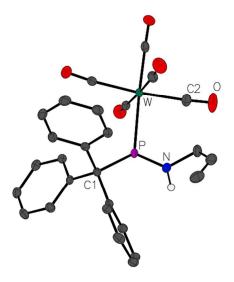
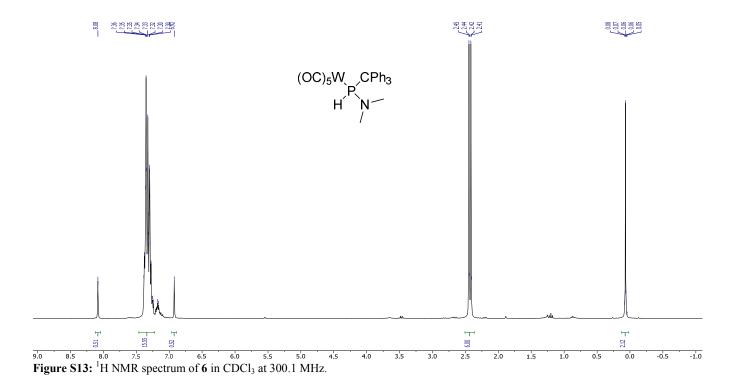
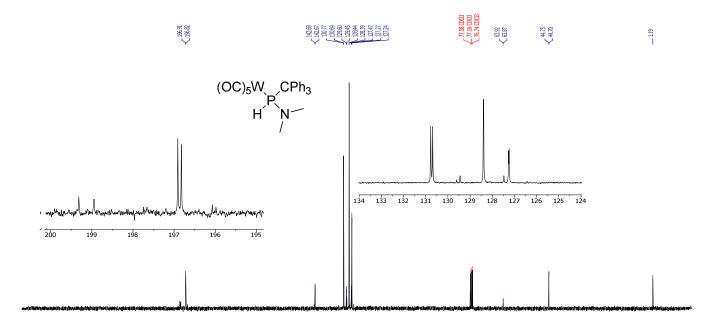


Figure S8: Crystal structure of **4**. Suitable single-crystals of **4** were obtained from a concentrated diethyl ether solution at 4 °C. Data were collected with a Bruker D8-Venture diffractometer equipped with a low-temperature device at 100 K by using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The structure was solved by intrinsic phasing methods (SHELXT 2015) and refined by full-matrix least squares on F² (SHELXL 2015)¹: C₂₆H₂₂NO₅PW, Mr = 643.26, crystal dimensions 0.24 × 0.18 × 0.16 mm³, monoclinic, space group C2/c, Z = 8, a = 11.1776(4) Å, b = 11.1777(4) Å, c = 19.2814(7) Å, $\alpha = 90^{\circ}$, $\beta = 95.4332(13)^{\circ}$, $\gamma = 90^{\circ}$, $V = 2398.19(15) Å^3$, $d_{calcd} = 1.782$ g cm⁻³, $\mu = 4.921$ mm⁻¹, transmission factors (min/max) 0.3579/0.7459, empirical absorption correction, $2\theta_{max} = 55.998^{\circ}$, no. of unique data 5774, R_{int} = 0.0421, R₁ (for I > 2 σ (I)) = 0.0180, wR₂ (for all data) = 0.0460, final R₁ = 0.0203, goodness of fit 1.078, Δ F (max/min) = 0.53 /-2.49 e Å⁻³. CCDC 1529740 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.


----0.07

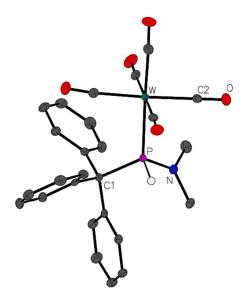


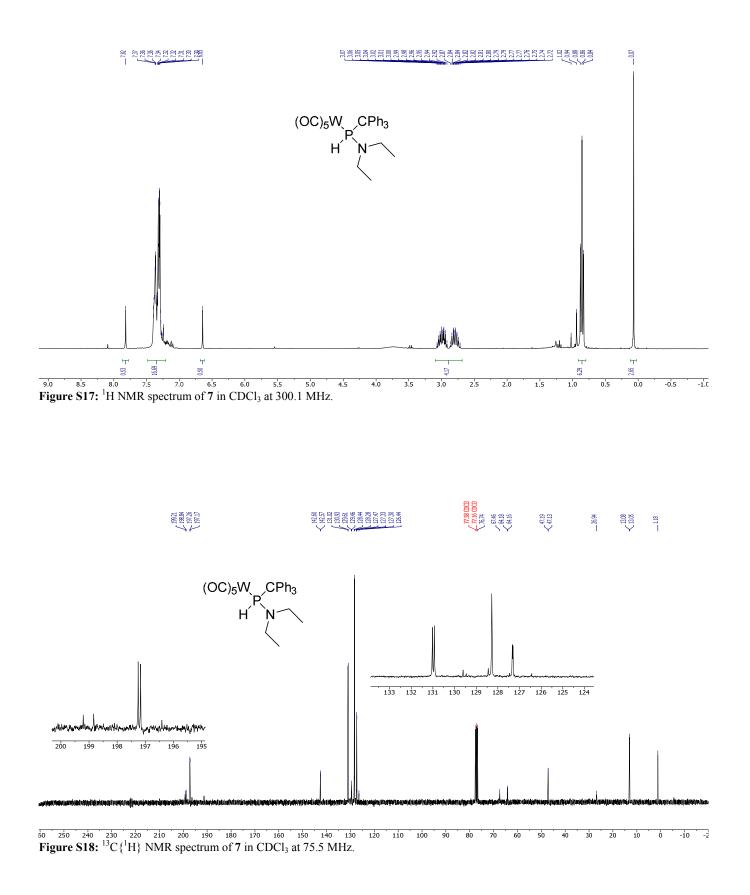

260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Figure S10: ¹³C {¹H} NMR spectrum of 5 in CDCl₃ at 125.8 MHz.

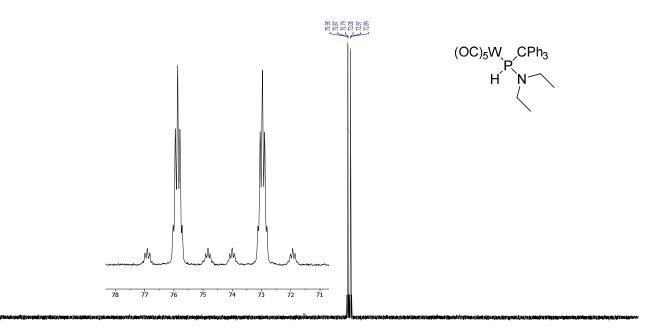


160 440 420 400 360 360 360 360 320 300 260 260 240 220 200 160 160 160 10 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -22 Figure S11: ³¹P NMR spectrum of 5 in CDCl₃ at 202.5 MHz.

Figure S12: Crystal structure of **5**. Suitable single-crystals of **5** were obtained from a concentrated diethyl ether solution at 4 °C. Data were collected with a Bruker D8-Venture diffractometer equipped with a low-temperature device at 123 K by using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The structure was solved by intrinsic phasing methods (SHELXT 2015) and refined by full-matrix least squares on F² (SHELXL 2015)¹: C₂₇H₂₂NO₅PW, Mr = 655.27, crystal dimensions 0.11 × 0.05 × 0.04 mm³, monoclinic, space group P2₁/c, Z =4, a = 10.9081(7) Å, b = 11.6721(7) Å, c = 19.6053(13) Å, $\alpha = 90^{\circ}$, $\beta = 96.509(2)^{\circ}$, $\gamma = 90^{\circ}$, V = 2480.1(3) Å³, d_{calcd} = 1.755 g cm⁻³, $\mu = 4.761 \text{ mm}^{-1}$, transmission factors (min/max) 0.5177/0.7459, empirical absorption correction, $2\theta_{max} = 55.998^{\circ}$, no. of unique data 5983, R_{int} = 0.0600, R₁ (for I >2 σ (I)) = 0.0188, wR₂ (for all data) = 0.0408, final R₁ = 0.0257, goodness of fit 1.053, Δ F (max/min) = 0.55 /-0.84 e Å⁻³. CCDC 1529742 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccde.cam.ac.uk/structures.




²⁶⁰ 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **Figure S14:** ¹³C {¹H} NMR spectrum of **6** in CDCl₃ at 75.5 MHz.



160 440 420 400 360 360 360 360 320 300 260 260 240 220 200 160 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -20 -22 Figure S15: ³¹P NMR spectrum of **6** in CDCl₃ at 121.5 MHz.

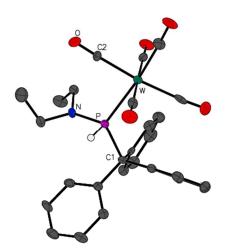
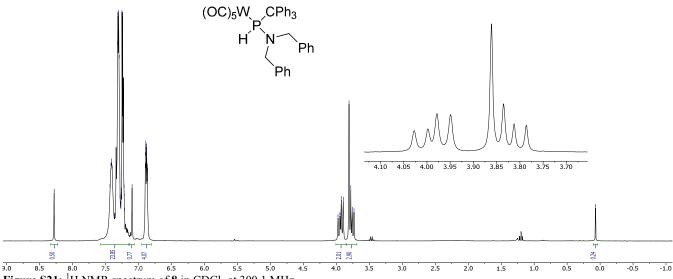
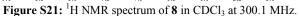
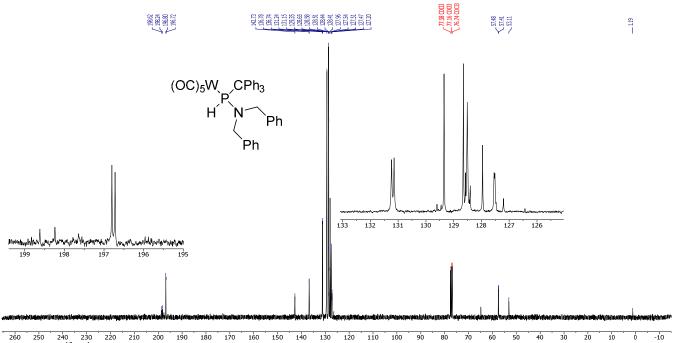
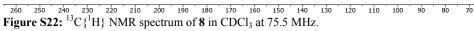


Figure S16: Crystal structure of **6**. Suitable single-crystals of **6** were obtained from a concentrated diethyl ether solution at 4 °C. Data were collected with a Bruker D8-Venture diffractometer equipped with a low-temperature device at 100 K by using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The structure was solved by intrinsic phasing methods (SHELXT 2015) and refined by full-matrix least squares on F² (SHELXL 2015)¹: C₂₆H₂₂NO₅PW, Mr = 643.26, crystal dimensions 0.24 × 0.18 × 0.16 mm³, monoclinic, space group C2/c, Z = 8, a = 31.6772(9) Å, b = 11.5478(3) Å, c = 13.5495(4) Å, $\alpha = 90^{\circ}$, $\beta = 99.2472(9)^{\circ}$, $\gamma = 90^{\circ}$, V = 4892.0(2) Å³, d_{calcd} = 1.747 g cm⁻³, $\mu = 4.825 \text{ mm}^{-1}$, transmission factors (min/max) 0.4351/0.7459, empirical absorption correction from equivalents, $2\theta_{max} = 55.996^{\circ}$, no. of unique data 5896, R_{int} = 0.0351, R₁ (for I >2 σ (I)) = 0.01498, wR₂ (for all data) = 0.0370, final R₁ = 0.0157, goodness of fit 1.141, ΔF (max/min) = 0.45 /-1.01 e Å⁻³. CCDC 1529738 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

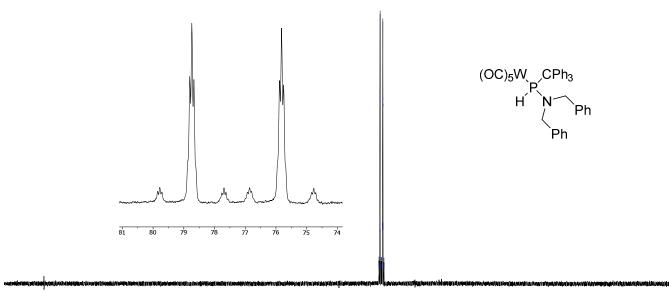


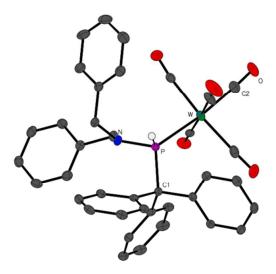

 $\frac{160}{140}$ $\frac{420}{40}$ $\frac{420}{30}$ $\frac{360}{360}$ $\frac{360}{360}$ $\frac{320}{30}$ $\frac{260}{260}$ $\frac{260}{260}$ $\frac{210}{20}$ $\frac{160}{160}$ $\frac{160}{120}$ $\frac{120}{10}$ $\frac{160}{120}$ $\frac{160$

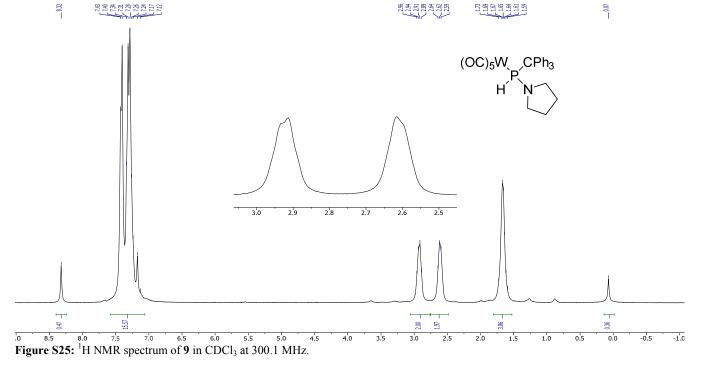


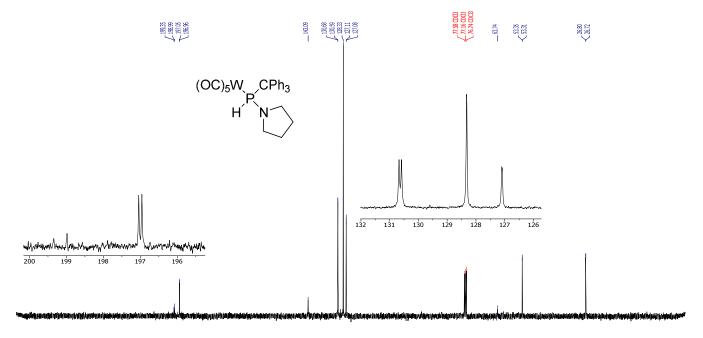

Figure S20: Crystal structure of 7. Suitable single-crystals of 7 were obtained from a concentrated diethyl ether solution at 4 °C. Data were collected with a Bruker X8-KappaApexII diffractometer equipped with a low-temperature device at 100(2) K by using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The structure was solved by intrinsic phasing methods (SHELXT 2015) and refined by full-matrix least squares on F² (SHELXL 2015)¹: C₂₈H₂₆NO₅PW, Mr = 671.32, crystal dimensions 0.35 × 0.20 × 0.10 mm³, triclinic, space group P-1, Z =4, a = 10.7367(7) Å, b = 15.6770(10) Å, c = 17.4538(10) Å, $\alpha = 104.204(3)^{\circ}$, $\beta = 98.484(3)^{\circ}$, $\gamma = 104.184(3)^{\circ}$, V = 2692.9(3) Å³, d_{caled} = 1.656 g cm⁻³, $\mu = 4.386$ mm⁻¹, transmission factors (min/max) 0.0734/0.2638, empirical absorption correction, 2 $\theta_{max} = 53.998^{\circ}$, no. of unique data 13114, R_{int} = 0.0700, R₁ (for I >2 σ (I)) = 0.0461, wR₂ (for all data) = 0.1134, final R₁ = 0.0605, goodness of fit 1.052, Δ F (max/min) = 2.50 /-2.35 e Å⁻³. CCDC 1529747 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

-----0.07






S12



 $\frac{160}{140}$ $\frac{440}{40}$ $\frac{420}{40}$ $\frac{360}{360}$ $\frac{360}{360}$ $\frac{320}{260}$ $\frac{260}{260}$ $\frac{240}{220}$ $\frac{220}{160}$ $\frac{160}{160}$ $\frac{140}{120}$ $\frac{120}{100}$ $\frac{160}{80}$ $\frac{40}{60}$ $\frac{20}{60}$ $\frac{1}{-20}$ $\frac{-40}{-60}$ $\frac{-60}{-80}$ $\frac{-100}{-120}$ $\frac{-140}{-160}$ $\frac{-180}{-180}$ $\frac{-200}{-22}$ Figure S23: ³¹P NMR spectrum of 8 in CDCl₃ at 121.5 MHz.

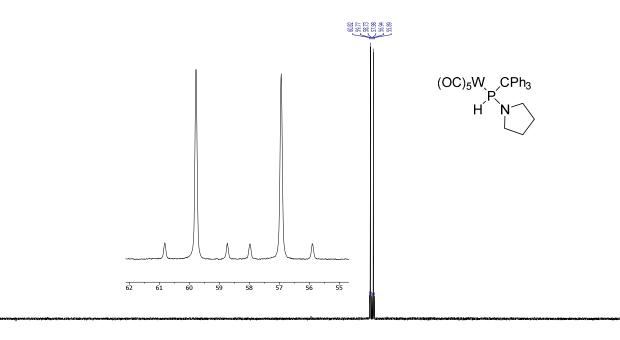
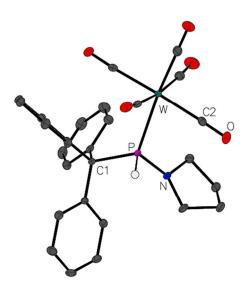
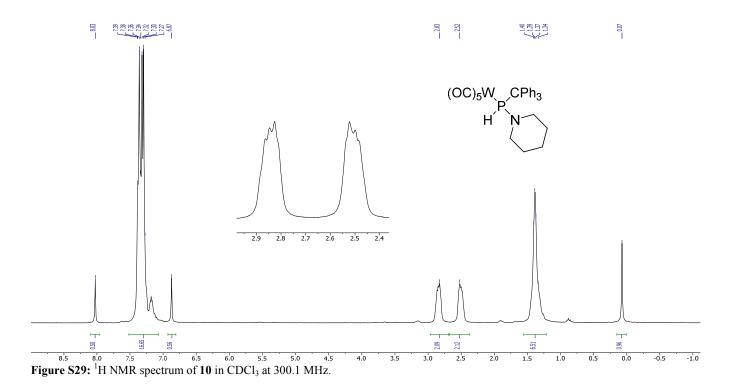
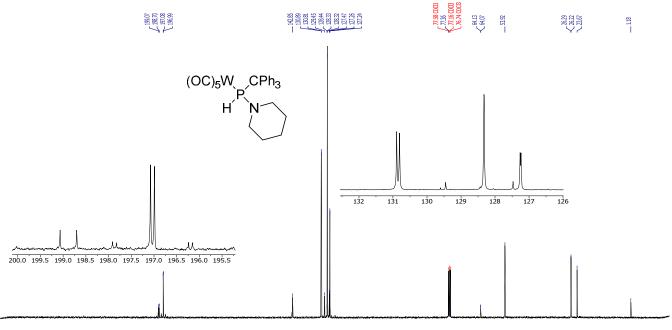


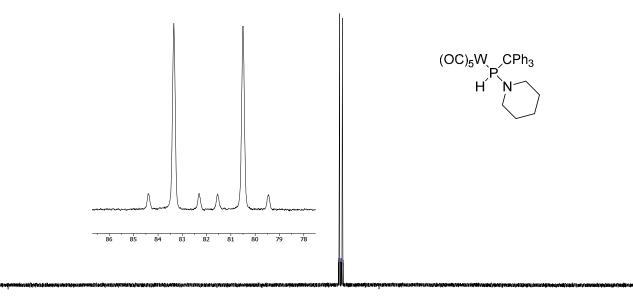
Figure S24: Crystal structure of **8**. Suitable single-crystals of **8** were obtained from a concentrated diethyl ether solution at 4 °C. Data were collected with a Bruker D8-Venture diffractometer equipped with a low-temperature device at 99.99 K by using graphite-monochromated Mo Ka radiation ($\lambda = 0.71073$ Å). The structure was solved by intrinsic phasing methods (SHELXT 2015) and refined by full-matrix least squares on F² (SHELXL 2015)¹: C₃₈H₃₀NO₅PW, Mr = 795.45, crystal dimensions $0.27 \times 0.22 \times 0.16$ mm³, triclinic, space group P1, Z =2, a = 10.419(4) Å, b = 10.508(5) Å, c = 16.971(8) Å, a = 84.29(2)°, $\beta = 78.87(2)°, \gamma = 64.441(19)°, V = 1644.5(12) Å^3, d_{calcd} = 1.606 g cm⁻³, <math>\mu = 3.606$ mm⁻¹, transmission factors (min/max) 0.4719/0.7459, empirical absorption correction, $2\theta_{max} = 55.998°$, no. of unique data 7851, R_{int} = 0.0550, R₁ (for I >2 σ (I)) = 0.0214, wR₂ (for all data) = 0.0455, final R₁ = 0.0264, goodness of fit 1.048, Δ F (max/min) = 0.83 /-1.17 e Å⁻³. CCDC 1529739 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccde.cam.ac.uk/structures.

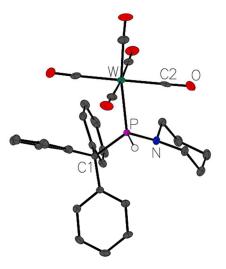



-10 ó



 $\frac{160}{140}$ $\frac{440}{40}$ $\frac{420}{40}$ $\frac{40}{360}$ $\frac{360}{360}$ $\frac{360}{20}$ $\frac{260}{260}$ $\frac{240}{220}$ $\frac{220}{180}$ $\frac{160}{160}$ $\frac{140}{120}$ $\frac{120}{100}$ $\frac{160}{80}$ $\frac{40}{60}$ $\frac{20}{60}$ $\frac{160}{-60}$ $\frac{-80}{-60}$ $\frac{-100}{-120}$ $\frac{-140}{-160}$ $\frac{-160}{-180}$ $\frac{-20}{-22}$ Figure S27: ³¹P NMR spectrum of **9** in CDCl₃ at 121.5 MHz.


Figure S28: Crystal structure of **9**. Suitable single-crystals of **9** were obtained from a concentrated diethyl ether solution at 4 °C. Data were collected with a Bruker D8-Venture diffractometer equipped with a low-temperature device at 99.99 K by using graphite-monochromated Mo Ka radiation ($\lambda = 0.71073$ Å). The structure was solved by intrinsic phasing methods (SHELXT 2015) and refined by full-matrix least squares on F² (SHELXL 2015)¹: C₂₈H₂₄NO₅PW, Mr = 669.30, crystal dimensions $0.26 \times 0.24 \times 0.2$ mm³, triclinic, space group P1, Z =2, a = 10.0227(4) Å, b = 10.6252(4) Å, c = 13.1760(5) Å, a = 76.5244(14)°, $\beta = 75.7674(14)°$, $\gamma = 75.8317(13)°$, V = 1296.22(9) Å³, d_{caled} = 1.715 g cm⁻³, $\mu = 4.556$ mm⁻¹, transmission factors (min/max) 0.4188/0.7459, empirical absorption correction, $2\theta_{max} = 55.99°$, no. of unique data 6245, R_{int} = 0.0449, R₁ (for I >2 σ (I)) = 0.0158, wR₂ (for all data) = 0.0385, final R₁ = 0.0175, goodness of fit 1.087, ΔF (max/min) = 0.49 /-1.39 e Å⁻³. CCDC 1529741 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.



 $\frac{1}{260}$ 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Figure S30: ${}^{13}C{}^{1}H$ NMR spectrum of 10 in CDCl₃ at 75.5 MHz.

160 440 420 400 380 360 360 340 320 260 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -22 Figure S31: ³¹P NMR spectrum of 10 in CDCl₃ at 121.5 MHz.

Figure S32: Crystal structure of **10**. Suitable single-crystals of **10** were obtained from a concentrated diethyl ether solution at 4 °C. Data were collected with a Bruker D8-Venture diffractometer equipped with a low-temperature device at 100 K by using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The structure was solved by intrinsic phasing methods (SHELXT 2015) and refined by full-matrix least squares on F² (SHELXL 2015)¹: C₂₉H₂₆NO₅PW, Mr = 683.33, crystal dimensions 0.15 × 0.08 × 0.06 mm³, monoclinic, space group P2₁/c, Z =8, a = 14.7592(5) Å, b = 32.0367(10) Å, c = 11.2598(4) Å, $\alpha = 90^{\circ}$, $\beta = 91.4175(12)^{\circ}$, $\gamma = 90^{\circ}$, V = 5322.4(3) Å³, d_{calcd} = 1.706 g cm⁻³, $\mu = 4.440$ mm⁻¹, transmission factors (min/max) 0.5079/0.7459, empirical absorption correction, $2\theta_{max} = 56^{\circ}$, no. of unique data 12836, R_{int} = 0.0403, R₁ (for I >2 σ (I)) = 0.0276, wR₂ (for all data) = 0.0559, final R₁ = 0.0333, goodness of fit 1.161, Δ F (max/min) = 1.30 /-2.30 e Å⁻³. CCDC 1529737 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

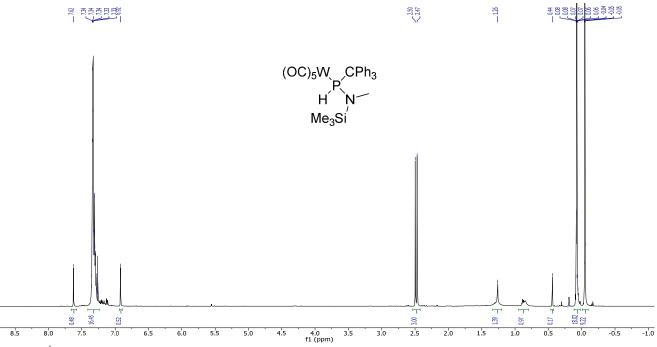
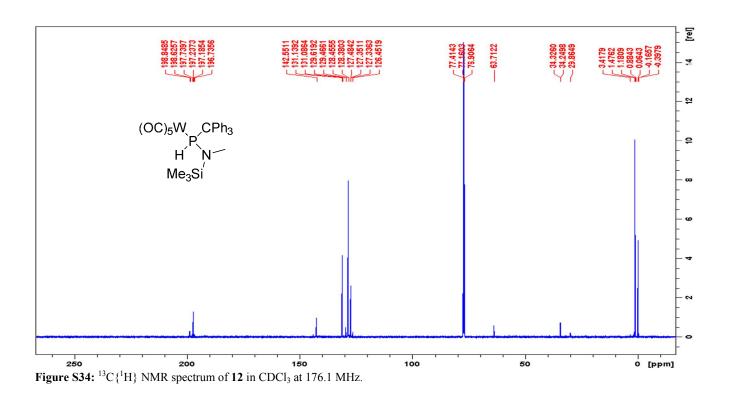
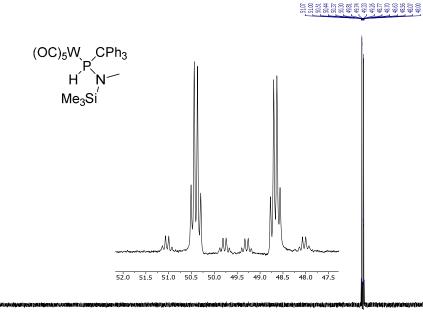
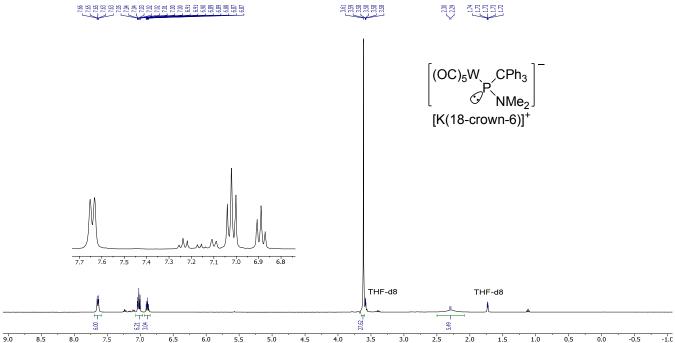
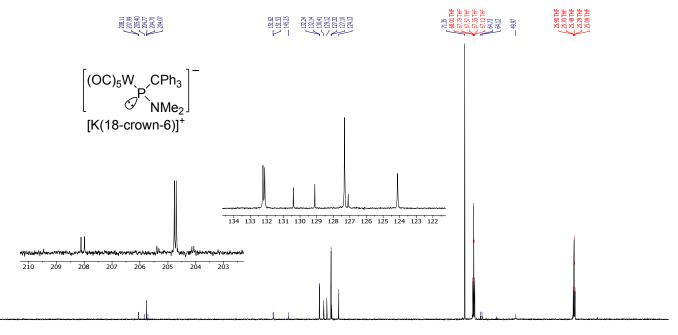
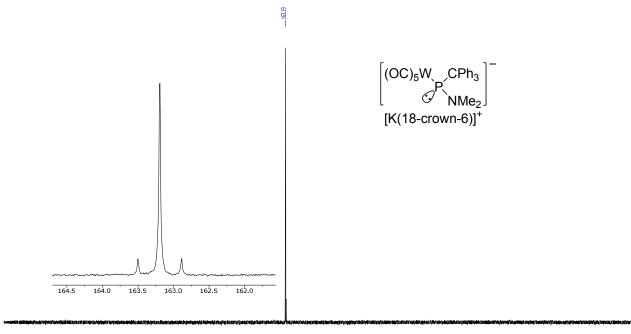
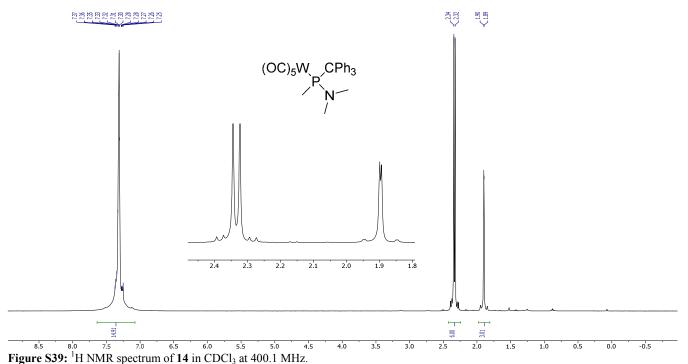
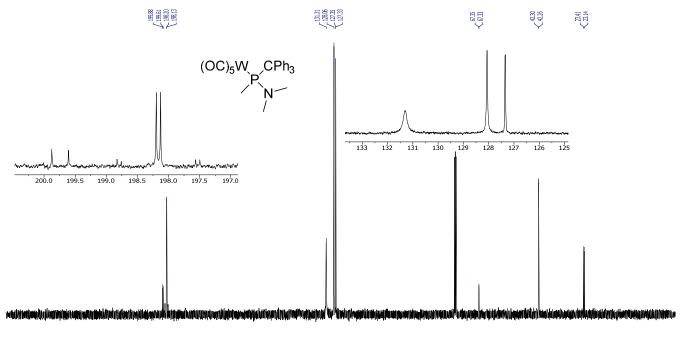




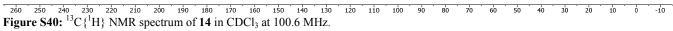
Figure S33: ¹H NMR spectrum of 12 in CDCl₃ at 500.2 MHz.

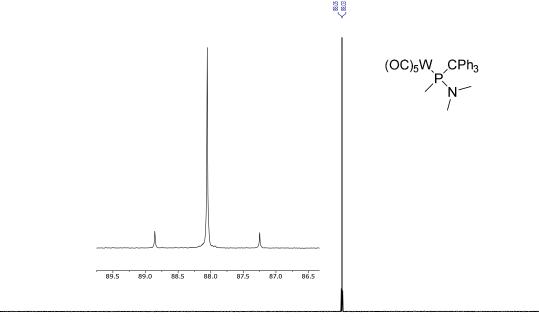
iéo 440 420 400 380 360 340 320 300 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 40 -60 -80 -100 -120 -140 -160 -180 -200 -22 **Figure S35:** ³¹P NMR spectrum of **12** in CDCl₃ at 202.5 MHz.

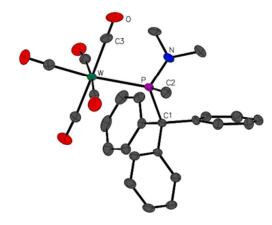




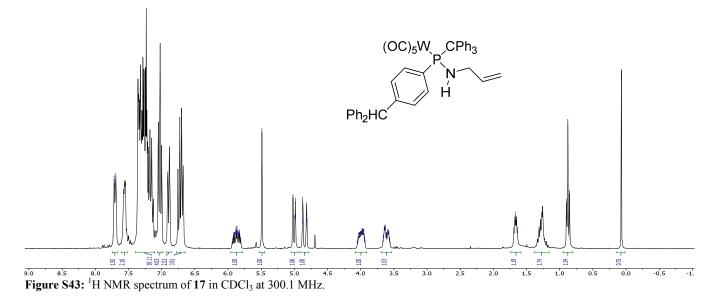

Figure S36: ¹H NMR spectrum of 13 in THF-d8 at 400.1 MHz.

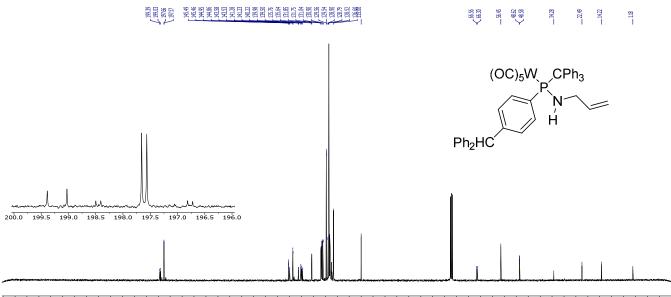

 $\frac{1}{260} \frac{1}{250} \frac{1}{240} \frac{1}{230} \frac{1}{220} \frac{1}{210} \frac{1}{200} \frac{1}{190} \frac{1}{180} \frac{1}{10} \frac{1}{150} \frac{1}{10} \frac{1}{10}$




 $_{120}^{120}$ $_{400}^{1360}$ $_{360}^{1360}$ $_{320}^{130}$ $_{280}^{1260}$ $_{240}^{120}$ $_{220}^{120}$ $_{160}^{140}$ $_{120}^{100}$ $_{80}^{160}$ $_{60}^{160}$ $_{40}^{120}$ $_{20}^{100}$ $_{-20}^{100}$ $_{-40}^{100}$ $_{-60}^{100}$ $_{-120}^{120}$ $_{-140}^{140}$ $_{-160}^{180}$ $_{-180}^{180}$ $_{-180}^{100}$







 $\frac{1}{20}$ 400 380 360 340 320 300 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 Figure S41: ${}^{31}P{}^{1}H$ NMR spectrum of 14 in CDCl₃ at 162.0 MHz.

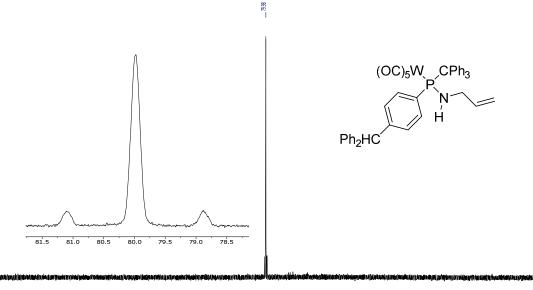
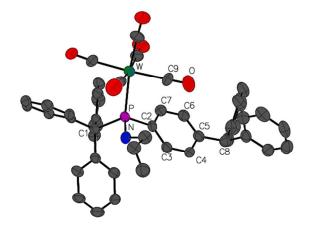
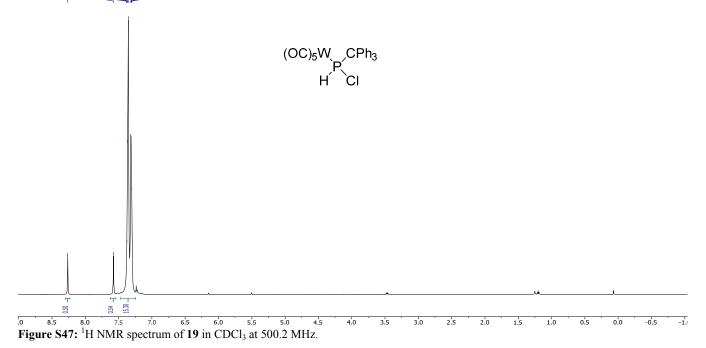
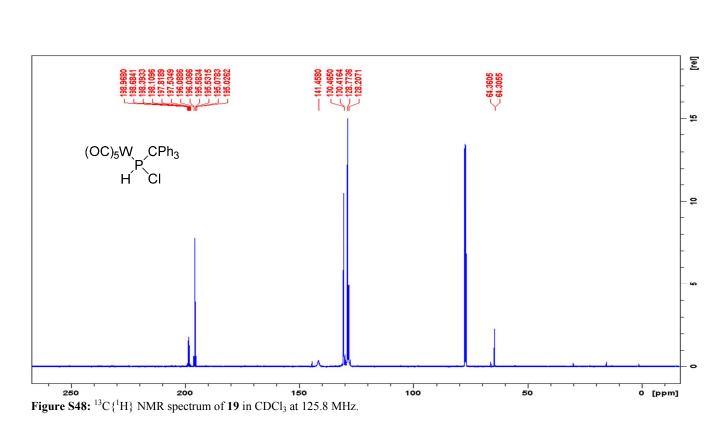


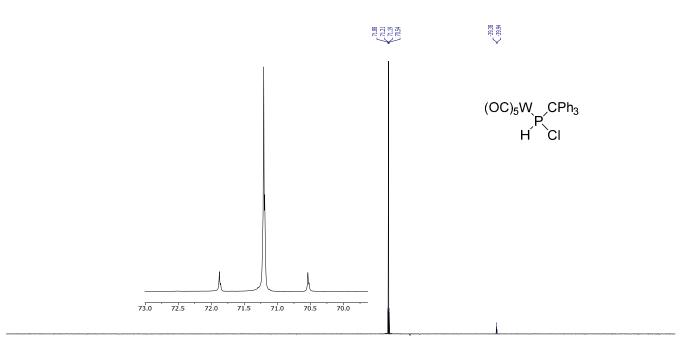
Figure S42: Crystal structure of **14**. Suitable single-crystals of **14** were obtained from a concentrated diethyl ether solution at 4 °C. Data were collected with a Bruker D8-Venture diffractometer equipped with a low-temperature device at 123 K by using graphite-monochromated Mo Ka radiation ($\lambda = 0.71073$ Å). The structure was solved by intrinsic phasing methods (SHELXT 2015) and refined by full-matrix least squares on F² (SHELXL 2015)¹: C₂₇H₂₄NO₅PW, Mr = 657.29, crystal dimensions 0.22 × 0.21 × 0.17 mm³, triclinic, space group P-1, Z =4, a = 10.5144(6) Å, b = 15.2601(10) Å, c = 16.9086(11) Å, a = 105.035(2)°, $\beta = 102.792(2)°, \gamma = 91.822(2)°, V = 2543.6(3) Å³, d_{caled} = 1.716 g cm⁻³, <math>\mu = 4.642$ mm⁻¹, transmission factors (min/max) 0.5165/0.7459, empirical absorption correction, 2 $\theta_{max} = 55.998°$, no. of unique data 12269, R_{int} = 0.0521, R₁ (for I >2 σ (I)) = 0.0182, wR₂ (for all data) = 0.0416, final R₁ = 0.0249, goodness of fit 1.099, Δ F (max/min) = 0.69 /-1.11 e Å⁻³. CCDC 1529743 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.



 $\frac{1}{260 + 250 + 240 + 230 + 220 + 210 + 200 + 190 + 180 + 170 + 160 + 150 + 140 + 130 + 120 + 110 + 100 + 90 + 80 + 70 + 60 + 50 + 40 + 30 + 20 + 10 + 0 + -10}{Figure S44: {}^{13}C{}^{1}H} NMR spectrum of 17 in CDCl₃ at 75.5 MHz.$




 $\frac{1}{160}$ $\frac{4}{160}$ $\frac{4}{20}$ $\frac{4}{20}$ $\frac{3}{20}$ $\frac{3}{20}$ $\frac{3}{20}$ $\frac{2}{20}$ $\frac{2}{20}$ $\frac{2}{20}$ $\frac{2}{20}$ $\frac{1}{20}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{20}$ $\frac{1}{10}$ $\frac{1}{20}$ $\frac{1}{10}$ $\frac{1}{20}$ $\frac{1}{10}$ $\frac{1}{10$


Figure S46: Crystal structure of **17**. Suitable single-crystals of **17** were obtained from a concentrated diethyl ether solution at 4 °C. Data were collected with a Bruker X8-KappaApexII diffractometer equipped with a low-temperature device at 100 K by using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The structure was solved by intrinsic phasing methods (SHELXT 2015) and refined by full-matrix least squares on F² (SHELXL 2015)¹: C₅₀H₄₆NO₆PW, Mr = 671.70, crystal dimensions 0.18 × 0.12 × 0.04 mm³, monoclinic, space group P2₁/n, Z =4, a = 13.3276(15) Å, b = 19.649(2) Å, c = 18.692(2) Å, $\alpha = 90^{\circ}$, $\beta = 107.734(4)^{\circ}$, $\gamma = 90^{\circ}$, V = 4662.3(9) Å³, d_{calcd} = 1.384 g cm⁻³, $\mu = 2.559$ mm⁻¹, transmission factors (min/max) 0.4106/0.6478, empirical absorption correction, $2\theta_{max} = 51.996^{\circ}$, no. of unique data 8792, R_{int} = 0.0524, R₁ (for I >2 σ (I)) = 0.0659, wR₂ (for all data) = 0.1631, final R₁ = 0.1077, goodness of fit 1.101, Δ F (max/min) = 4.33 /-2.54 e Å⁻³. CCDC 1529745 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.



S26

 $\frac{1}{60}$ 440 420 400 380 360 340 320 300 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -22 **Figure S49:** ³¹P{¹H} NMR spectrum of **19** in CDCl₃ at 202.5 MHz.

Figure S50: Crystal structure of **19**. Suitable single-crystals of **19** were obtained from a concentrated diethyl ether solution at 4 °C. Data were collected with a Nonius KappaCCD diffractometer equipped with a low-temperature device at 123 K by using graphite-monochromated Mo Ka radiation ($\lambda = 0.71073$ Å). The structure was solved by intrinsic phasing methods (SHELXT 2015) and refined by full-matrix least squares on F² (SHELXL 2015)¹: C₂₄H₁₆ClO₅PW, Mr = 634.64, crystal dimensions 0.6 × 0.6 × 0.12 mm³, triclinic, space group P-1, Z = 2, a = 9.6127(4) Å, b = 10.5143(4) Å, c = 11.6185(5) Å, a =90.087(2)°, β =97.409(1)°, γ =94.466(1)°, V = 1160.87(8) Å³, d_{caled} = 1.816 g cm⁻³, μ = 5.192 mm⁻¹, transmission factors (min/max) 0.3907/0.6478, multi-scan absorption correction, 2 θ_{max} = 55.992°, no. of unique data 5574, R_{int} = 0.0304, R₁ (for I >2 σ (I)) = 0.0259, wR₂ (for all data) = 0.0714, final R₁ = 0.0294, goodness of fit 1.052, Δ F (max/min) = 1.97 /-1.65 e Å⁻³. CCDC 1529746 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.