ELECTRONIC SUPPLEMENTARY INFORMATION

Exploring the coordination capabilities of a family of flexible benzotriazole-based ligands using Cobalt (II) sources

Edward Loukopoulos, ${ }^{a}$ Nicholas F. Chilton, ${ }^{\text {b }}$ Alaa Abdul-Sada, ${ }^{\text {a }}$ and George E. Kostakis*a
${ }^{a}$ Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1
9QJ, United Kingdom. E-mail: G.Kostakis@sussex.ac.uk
${ }^{\mathrm{b}}$ School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom

Table of contents	Page
Tables S1 and S2. Crystal data and structure refinement for 1-10.	S2-S3
Table S3. $\pi-\pi$ stacking distances (\AA) and angles (${ }^{\circ}$) in compound 1.	S4
Figure S1. Part of the supramolecular architecture of compound 1	S4
Table S4. $\pi-\pi$ stacking distances (\AA) and angles (${ }^{\circ}$) in compound 3.	S5
Figure S2. Part of the supramolecular architecture of compound $\mathbf{3}$	S5
Table S5. $\pi-\pi$ stacking distances (\AA) and angles (${ }^{\circ}$) in compound 4.	S6
Figure S3. Part of the supramolecular architecture of compound 4.	S6
Table S6. $\pi-\pi$ stacking distances (\AA) and angles (${ }^{\circ}$) in compound 8.	S7
Figure S4. The intramolecular and intermolecular $\pi \cdots \pi$ interactions in compound 8.	S7
Figures S5 and S6. Experimental and fitted reduced magnetization for $\mathbf{7}$ and 9 at 2 and 4 K .	S9
Figure S7. Simulated $\chi_{\mathrm{M}} T$ in an 0.5 T field for $J>0$ and $J<0$ using the $S=1 / 2$ model used to simulate the EPR spectra of compound 4.	S10
Figures S8-S10. The powder XRD pattern of compounds 7, 8, 9.	$\begin{aligned} & \hline \mathrm{S} 10- \\ & \mathrm{S} 11 \end{aligned}$
Figure S11. ESI-MS graphs for compounds 4 and 10.	S12

Figure S12-S14. TGA graphs and analysis for compounds 1, 5, 7.	S13-
	S14

Table S1. Crystal data and structure refinement for 1-5.

Compound	$1 \cdot 2 \mathrm{MeCN}$	2	3-MeCN	4	5.2MeCN
Empirical formula	$\mathrm{C}_{44} \mathrm{H}_{38} \mathrm{Cl}_{4} \mathrm{Co}_{2} \mathrm{~N}_{14}$	$\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{Br}_{4} \mathrm{Co}_{2} \mathrm{~N}_{12}$	$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{CoN}_{7}$	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{CoN}_{6}$	$\mathrm{C}_{44} \mathrm{H}_{38} \mathrm{Br}_{4} \mathrm{Co}_{2} \mathrm{~N}_{14}$
Formula weight	1022.54	1118.27	511.27	470.22	1200.38
Temperature/K	173.0	293(2)	173.0	173	173.0
Crystal system	triclinic	triclinic	triclinic	monoclinic	triclinic
Space group	P-1	P-1	P-1	$\mathrm{P} 21 / \mathrm{c}$	P-1
a/ \AA	9.2872(6)	$9.4548(5)$	10.3450(9)	10.1342(8)	10.4914(10)
b/Å	11.0385(9)	10.7016(8)	10.6249(10)	21.3347(15)	10.8202(10)
c/ \AA	13.0562(8)	10.7793(9)	12.4219(11)	$9.7278(11)$	12.3408(11)
$\alpha{ }^{\circ}$	67.511(7)	68.392(7)	79.192(7)	90	79.793(8)
$\beta /{ }^{\circ}$	84.255(5)	81.206(6)	72.669(8)	109.334(10)	73.864(8)
γ°	79.656(6)	83.475(5)	72.588(8)	90	72.821 (9)
Volume/ $/{ }^{3}$	1215.87(15)	1000.14(13)	1236.4(2)	1984.7(3)	1278.8(2)
Z	1	1	2	4	1
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.397	1.857	1.373	1.574	1.559
μ / mm^{1}	7.744	4.873	0.933	1.154	3.818
$\mathrm{F}(000)$	522.0	550.0	522.0	956.0	594.0
Crystal size $/ \mathrm{mm}^{3}$	$0.08 \times 0.06 \times 0.03$	$\begin{aligned} & 0.093 \times 0.055 \times \\ & 0.031 \end{aligned}$	$0.28 \times 0.2 \times 0.18$	$\begin{aligned} & 0.38 \times 0.29 \times \\ & 0.25 \end{aligned}$	$0.26 \times 0.2 \times 0.1$
Radiation	$\begin{aligned} & \mathrm{CuK} \alpha \\ & 1.54184) \end{aligned} \quad(\lambda=$	$\begin{aligned} &= \operatorname{MoK} \alpha(\lambda= \\ &0.71073) \end{aligned}$	$\begin{aligned} & \operatorname{MoK} \alpha(\lambda= \\ & 0.71073) \end{aligned}$	$\begin{aligned} & \operatorname{MoK} \alpha(\lambda= \\ & 0.71073) \end{aligned}$	$\begin{aligned} & \operatorname{Mo~K~} \alpha(\lambda= \\ & 0.71073) \end{aligned}$
2Θ range for data collection $/{ }^{\circ}$	8.774 to 142.54	5.616 to 52.744	6.912 to 58.188	7.14 to 59.038	7.604 to 52.742
Index ranges	$\begin{aligned} & -9 \leq \mathrm{h} \leq 11,-13 \leq \\ & \mathrm{k} \leq 13,-11 \leq 1 \leq \\ & 16 \end{aligned}$	$\begin{aligned} & -11 \leq \mathrm{h} \leq 10,-13 \leq \\ & \mathrm{k} \leq 13,-13 \leq 1 \leq 13 \end{aligned}$	$\begin{aligned} & -12 \leq \mathrm{h} \leq 13,-13 \\ & \leq \mathrm{k} \leq 9,-16 \leq 1 \leq \\ & 16 \end{aligned}$	$\begin{aligned} & -12 \leq \mathrm{h} \leq 12,-27 \\ & \leq \mathrm{k} \leq 27,-13 \leq 1 \\ & \leq 12 \end{aligned}$	$\begin{aligned} & -13 \leq h \leq 12,-13 \leq \\ & k \leq 14,-7 \leq 1 \leq 16 \end{aligned}$
Reflections collected	4518	11760	8046	8647	5739
Independent reflections	$\begin{array}{ll} 4518 & {\left[\mathrm{R}_{\text {int }}=\right.} \\ 0.0571, & \mathrm{R}_{\text {sigma }}= \\ 0.0893] & \end{array}$	$\begin{aligned} &= 4014\left[\mathrm{R}_{\text {int }}=\right. \\ &= 0.1146, \mathrm{R}_{\text {sigma }}= \\ &0.0833] \end{aligned}$	$\begin{aligned} & 5498\left[\mathrm{R}_{\text {int }}=\right. \\ & 0.0248, \mathrm{R}_{\text {sigma }}= \\ & 0.0516] \end{aligned}$	$\begin{aligned} & 4428\left[\mathrm{R}_{\text {int }}=\right. \\ & 0.0812, \mathrm{R}_{\text {sigma }}= \\ & 0.1051] \end{aligned}$	$\begin{aligned} & 3973\left[\mathrm{R}_{\text {int }}=\right. \\ & 0.0222, \mathrm{R}_{\text {sigma }}= \\ & 0.0514] \end{aligned}$
Data/restraints/parameters	4518/1/290	4014/0/262	5498/24/290	4428/0/262	3973/13/290
Goodness-of-fit on F^{2}	1.019	1.385	1.012	1.013	1.026
Final R indexes $[\mathrm{I}>=2 \sigma$ (I)]	$\begin{aligned} & \mathrm{R}_{1}=0.0717, \mathrm{wR}_{2} \\ & =0.1813 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0719, \mathrm{wR}_{2} \\ & =0.1873 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0385, \mathrm{wR}_{2} \\ & =0.0888 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0753, \mathrm{wR}_{2} \\ & =0.1787 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0424, \mathrm{wR}_{2} \\ & =0.1019 \end{aligned}$
Final R indexes [all data]	$\begin{aligned} & \mathrm{R}_{1}=0.0895, \mathrm{wR}_{2} \\ & =0.2011 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0938, \mathrm{wR}_{2} \\ & =0.1995 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0495, \mathrm{wR}_{2} \\ & =0.0954 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.1242, \mathrm{wR}_{2} \\ & =0.2174 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0562, \mathrm{wR}_{2} \\ & =0.1100 \end{aligned}$
$\underset{\AA^{-3}}{\text { Largest diff. peak/hole / e }}$	1.26/-0.52	1.67/-0.82	0.43/-0.48	1.08/-1.31	0.53/-0.41

Table S2. Crystal data and structure refinement for 6-10.

Compound	6.2MeCN	7-2MeCN	8	9	10
Empirical formula	$\mathrm{C}_{44} \mathrm{H}_{38} \mathrm{CoN}_{16} \mathrm{O}_{6}$	$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{CoN}_{7}$	$\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{Cl}_{4} \mathrm{Co}_{2} \mathrm{~N}_{12}$	$\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{~N}_{12} \mathrm{Co}_{2} \mathrm{Br}_{4}$	$\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{CoN}_{14} \mathrm{O}_{6}$
Formula weight	945.83	511.27	940.43	1118.27	863.72
Temperature/K	173.0	173	173.0	173.0	173.0
Crystal system	monoclinic	monoclinic	triclinic	triclinic	triclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$	$\mathrm{P} 21 / \mathrm{c}$			
a / \AA	10.3683(6)	12.7902(11)	10.0907(18)	10.1947(9)	9.8734(7)
b / \AA	24.1547(10)	8.7966(8)	10.4778(13)	10.5735(11)	10.0969(7)
c / \AA	$9.1109(4)$	20.363(2)	11.011(2)	11.0714(12)	10.6672(9)
$\alpha /{ }^{\circ}$	90	90	83.817(13)	81.303(9)	96.504(6)
$\beta /{ }^{\circ}$	110.136(6)	100.365(10)	77.419(16)	77.374(8)	112.290(7)
$\gamma /{ }^{\circ}$	90	90	63.231(16)	62.179(10)	99.774(6)
Volume/ \AA^{3}	2142.29(19)	2253.6(4)	1014.4(3)	1028.3(2)	951.10(13)
Z	2	4	1	1	1
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.466	1.507	1.540	1.806	1.508
μ / mm^{1}	3.732	1.024	1.129	4.739	4.128
$\mathrm{F}(000)$	978.0	1044.0	478.0	550.0	445.0
Crystal size/ $/ \mathrm{mm}^{3}$	$0.2 \times 0.1 \times 0.08$	$\begin{aligned} & 0.12 \times 0.09 \times \\ & 0.06 \end{aligned}$	$0.12 \times 0.08 \times 0.04$	$0.36 \times 0.24 \times 0.18$	$0.4 \times 0.28 \times 0.14$
Radiation	$\begin{aligned} & \operatorname{CuK} \alpha(\lambda= \\ & 1.54184) \end{aligned}$	$\begin{aligned} & \operatorname{MoK} \alpha(\lambda= \\ & 0.71073) \end{aligned}$	$\begin{aligned} & \operatorname{MoK} \alpha(\lambda= \\ & 0.71073) \end{aligned}$	$\begin{aligned} & \operatorname{MoK} \alpha(\lambda= \\ & 0.71073) \end{aligned}$	$\begin{aligned} & \operatorname{CuK} \alpha(\lambda= \\ & 1.54184) \end{aligned}$
2Θ range for data collection $/{ }^{\circ}$	10.972 to 140.372	7.296 to 57.968	7.584 to 58.59	7.556 to 58.686	9.062 to 142.056
Index ranges	$\begin{aligned} & -7 \leq \mathrm{h} \leq 12,-25 \leq \\ & \mathrm{k} \leq 29,-11 \leq 1 \leq \\ & 10 \end{aligned}$	$\begin{aligned} & -17 \leq \mathrm{h} \leq 17,-7 \leq \\ & \mathrm{k} \leq 11,-26 \leq 1 \leq \\ & 15 \end{aligned}$	$\begin{aligned} & -12 \leq \mathrm{h} \leq 13,-9 \leq \\ & \mathrm{k} \leq 14,-11 \leq 1 \leq 14 \end{aligned}$	$\begin{aligned} & -13 \leq \mathrm{h} \leq 13,-13 \leq \\ & \mathrm{k} \leq 12,-15 \leq 1 \leq 15 \end{aligned}$	$\begin{aligned} & -8 \leq \mathrm{h} \leq 12,-12 \leq \\ & \mathrm{k} \leq 12,-13 \leq 1 \leq \\ & 13 \end{aligned}$
Reflections collected	6575	8556	6761	7075	5125
Independent reflections	$\begin{aligned} & 3936\left[\mathrm{R}_{\text {int }}=\right. \\ & 0.0254, \mathrm{R}_{\text {sigma }}= \\ & 0.0421] \end{aligned}$	$\begin{aligned} & 5048\left[\mathrm{R}_{\text {int }}=\right. \\ & 0.0326, \mathrm{R}_{\text {sigma }}= \\ & 0.0548] \end{aligned}$	$\begin{aligned} & 4567\left[\mathrm{R}_{\text {int }}=\right. \\ & 0.0436, \mathrm{R}_{\text {sigma }}= \\ & 0.1116] \end{aligned}$	$\begin{aligned} & 4605\left[\mathrm{R}_{\text {int }}=\right. \\ & 0.0352, \mathrm{R}_{\text {sigma }}= \\ & 0.0697] \end{aligned}$	$\begin{aligned} & 3503\left[\mathrm{R}_{\text {int }}=\right. \\ & 0.0455, \mathrm{R}_{\text {sigma }}= \\ & 0.0624] \end{aligned}$
Data/restraints/parameters	3936/0/305	5048/0/290	4567/0/262	4605/0/262	3503/0/277
Goodness-of-fit on F^{2}	1.030	1.040	1.033	1.007	1.043
Final R indexes $[\mathrm{I}>=2 \sigma$ (I)]	$\begin{aligned} & \mathrm{R}_{1}=0.0389, \mathrm{wR}_{2} \\ & =0.0960 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0478, \mathrm{wR}_{2} \\ & =0.0996 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0611, \mathrm{wR}_{2} \\ & =0.1014 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0427, \mathrm{wR}_{2}= \\ & 0.0813 \end{aligned}$	$\begin{aligned} & =\mathrm{R}_{1}=0.0584, \mathrm{wR}_{2} \\ & =0.1562 \end{aligned}$
Final R indexes [all data]	$\begin{aligned} & \mathrm{R}_{1}=0.0473, \mathrm{wR}_{2} \\ & =0.1014 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0742, \mathrm{wR}_{2} \\ & =0.1175 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.1082, \mathrm{wR}_{2} \\ & =0.1274 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0625, \mathrm{wR}_{2}= \\ & 0.0904 \end{aligned}$	$\begin{aligned} & =\mathrm{R}_{1}=0.0643, \mathrm{wR}_{2} \\ & =0.1677 \end{aligned}$
Largest diff. peak/hole / e \AA^{-3}	0.42/-0.32	0.33/-0.36	0.58/-0.52	0.69/-0.84	0.43/-0.70

Table S3. $\pi-\pi$ stacking distances (\AA) and angles $\left({ }^{\circ}\right)$ in compound $\mathbf{1}$.

Rings	Distance between ring centroids (\AA)	Perpendicular distance between ring planes (\AA)	Centroid offset (\AA)	Dihedral angle between ring mean-planes $\left({ }^{\circ}\right)$
$\mathrm{A}-\mathrm{A}^{\mathrm{i}}$	$3.708(3)$	$3.433(2)$	$1.400(2)$	0.0
$\mathrm{~A}-\mathrm{B}^{\mathrm{i}}$	$3.596(3)$	$3.436(2)$	$1.400(2)$	$0.8(3)$
C^{ii}	$3.755(3)$	$3.472(2)$	$1.430(2)$	0.0

Rings: A: C15-C16-N4-N5-N6. B: C15-C16-C17-C18-C19-C20. C: C2-C3-C4-C5-C6-C7.
Symmetry codes: ${ }^{\text {i }}: 2-\mathrm{x},-\mathrm{y}, 1-\mathrm{z}$. ii $^{\text {ii }}: 1-\mathrm{x}, 1-\mathrm{y}, 2-\mathrm{z}$.

Figure S1. Part of the supramolecular architecture of compound 1, stabilised by intermolecular $\pi \cdots \pi$ interactions (brown, green and red dashed lines), as described in Table

S3. Solvent molecules and hydrogen atoms have been omitted. Color code Co (blue), Cl (green), C (grey), N (light blue).

Table S4. $\pi-\pi$ stacking distances (\AA) and angles $\left({ }^{\circ}\right)$ in compound $\mathbf{3}$.

Rings	Distance between ring centroids (\AA)	Perpendicular distance between ring planes (\AA)	Centroid offset (\AA)	Dihedral angle between ring mean-planes ($\left.{ }^{\circ}\right)$
$\mathrm{A}-\mathrm{A}^{\mathrm{i}}$	$3.6485(13)$	$3.3288(9)$	$1.413(8)$	$0.00(13)$
$\mathrm{A}-\mathrm{B}^{\mathrm{i}}$	$3.4601(13)$	$3.3291(9)$	$0.938(8)$	$0.08(12)$

[^0]Symmetry codes: ${ }^{\mathrm{i}}: 2-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$.

Figure S2. Part of the supramolecular architecture of compound 3, stabilised by intermolecular $\pi^{\cdots} \pi$ interactions (green and red dashed lines), as described in Table S4.

Solvent molecules and hydrogen atoms have been omitted. Color code Co (blue), Cl (green), C (grey), N (light blue).

Table S5. $\pi-\pi$ stacking distances (\AA) and angles $\left({ }^{\circ}\right)$ in compound 4.

Rings	Distance between ring centroids (\AA)	Perpendicular distance between ring planes (\AA)	Centroid offset (\AA)	Dihedral angle between ring mean-planes ($\left.{ }^{\circ}\right)$
$\mathrm{A}-\mathrm{A}^{\mathrm{i}}$	$3.641(3)$	$3.2927(17)$	$1.554(2)$	$0.0(2)$
$\mathrm{A}-\mathrm{B}^{\mathrm{i}}$	$3.801(3)$	$3.3155(17)$	$1.902(2)$	$0.8(2)$

[^1]Symmetry codes: ${ }^{\mathrm{i}}:-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}$.

Figure S3. Part of the supramolecular architecture of compound 4, in which the intermolecular $\pi \cdots \pi$ interactions (described in Table S5, noted with brown and red dashed
lines), further stabilise the 2D framework. Hydrogen atoms have been omitted. Color code Co (blue), Cl (green), C (grey), N (light blue).

Table S6. $\pi-\pi$ stacking distances (\AA) and angles $\left({ }^{\circ}\right)$ in compound 8.

Rings	Distance between ring centroids (\AA)	Perpendicular distance between ring planes (\AA)	Centroid offset (\AA)	Dihedral angle between ring mean-planes ($\left.{ }^{\circ}\right)$
$\mathrm{A}-\mathrm{B}^{\mathrm{i}}$	$3.782(3)$	$3.3773(17)$	$1.661(3)$	$0.9(2)$
$\mathrm{C}^{\mathrm{iii}}$	$3.688(3)$	$3.2972(18)$	$1.651(3)$	$0.0(2)$

Rings: A: C1-C6-N1-N2-N3. B: C1-C2-C3-C4-C5-C6. C: C15-C16-C17-C18-C19-C20.
Symmetry codes: ${ }^{\text {i. }}:-x, 1-y, 1-z .{ }^{\text {ii }}: 1-\mathrm{x},-\mathrm{y}, 2-\mathrm{z}$.

Figure S4. (upper) The intramolecular $\pi \cdots \pi$ interactions observed in compound $\mathbf{8}$, noted with red dashed lines. (lower) Part of the supramolecular architecture of the compound 8, stabilised by the intermolecular $\pi \cdots \pi$ interactions (noted with green dashed lines). Hydrogen atoms have been omitted. Color code Co (blue), Cl (green), C (grey), N (light blue).

Figure S5. Experimental (black circles and squares) and fitted (purple and green lines, parameters in text) reduced magnetization for 7 at 2 and 4 K . (inset) Experimental (black
circles and squares) and fitted (purple and green lines, parameters in text) magnetization for 7 at 2 and 4 K .

Figure S6. Experimental (black circles and squares) and fitted (purple and green lines) reduced magnetization for 9 at 2 and 4 K .

Figure S7. Simulated $\chi_{\mathrm{M}} T$ in an 0.5 T field for $J>0$ and $J<0$ using the $S=1 / 2$ model used to simulate the EPR spectra of compound 4.

- experimental
simulated

Figure S8. The powder XRD pattern of compound 7 (experimental and simulated from the crystal structure).

- experimental simulated

Figure S9. The powder XRD pattern of compound $\mathbf{8}$ (experimental and simulated from the crystal structure).

_- simulated experimental

Figure S10. The powder XRD pattern of compound 9 (experimental and simulated from the crystal structure).

Figure S11. Representative ESI-MS graphs for compounds 4 (upper) and $\mathbf{1 0}$ (lower).

Figure S12. TGA graph for compound 1. $1^{\text {st }}$ mass loss: 9.02% calc. for two MeCN solvents. $2^{\text {nd }}$ mass loss: 13.87% for four Cl atoms. $3^{\text {rd }}$ mass loss: 63.45% calc. for framework decomposition.

Figure S13. TGA graph for compound 5. $1^{\text {st }}$ mass loss: 33.47% calc. for two MeCN solvents and four Br atoms. $2^{\text {nd }}$ mass loss: 54.03% obs., 54.04% calc. for framework decomposition.

Figure S14. TGA graph for compound 7. $1^{\text {st }}$ mass loss: 22.09% calc. for one MeCN solvent and two Cl atoms. $2^{\text {nd }}$ mass loss: 63.25% calc. for framework decomposition.

[^0]: Rings: A: C1-C6-N1-N2-N3. B: C1-C2-C3-C4-C5-C6.

[^1]: Rings: A: C1-C2-C3-C4-C5-C6. B: C1-C6-N1-N2-N3.

