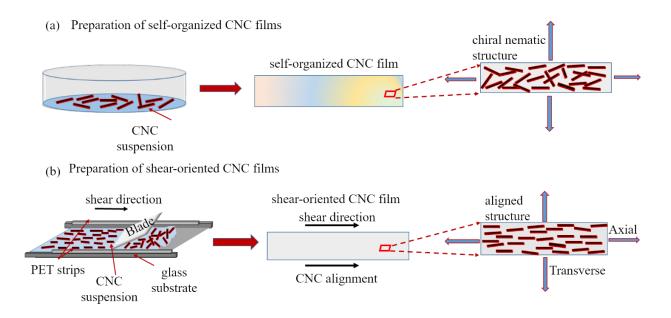
Supporting Information

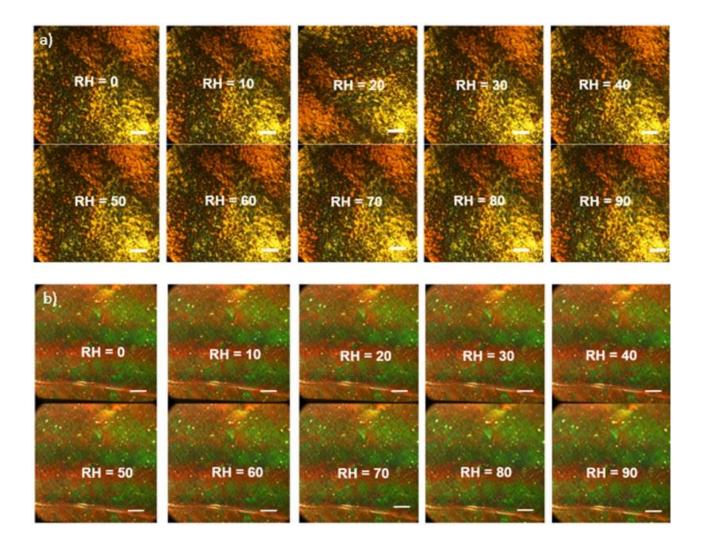
Hygroscopic Swelling Determination of Cellulose Nanocrystal (CNC) Films by Polarized Light Microscopy Digital Image Correlation

Shikha Shrestha, Jairo A. Diaz, Siavash Ghanbari and Jeffrey Youngblood*

School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, Indiana 47907, Unites States


Herman Order Parameter (S)¹

The equations used for the integration of the 2D XRD intensity (*I*) versus azimuthal angle (ϕ) was performed from 0° to 180° around (200) plane present at 2 θ for cellulose I β are given by:


$$S = \frac{3\langle \cos^2 \gamma \rangle - 1}{2} \tag{S1}$$

$$\langle \cos^2 \gamma \rangle = 1 - 2 \langle \cos^2 \phi \rangle \tag{S2}$$

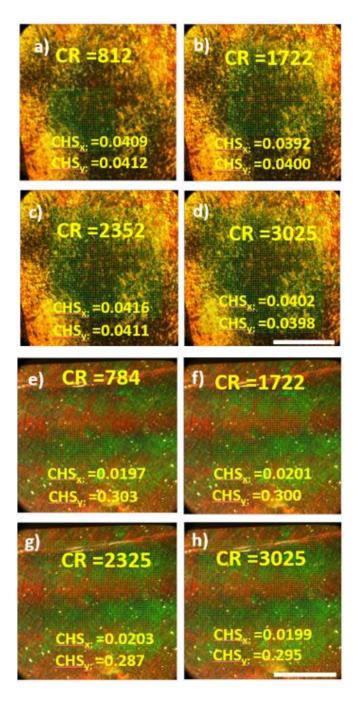

$$\langle \cos^2 \phi \rangle = \frac{\int I(\phi) \cos^2 \phi \sin \phi \, d\phi}{\int I(\phi) \sin \phi \, d\phi}$$
(S3)

Figure S1. Schematic of preparation of the CNC films by casting method for (a) self-organized and (b) shear-oriented films. The directionality of the shear cast films was defined as "axial" or "transverse" for the direction parallel to or perpendicular to the shear direction.

Figure S2. (a) self-organized CNC films (b) shear-oriented CNC films imaged under polarized light (PL) modes at different relative humidity. Scale bar 500 μm.

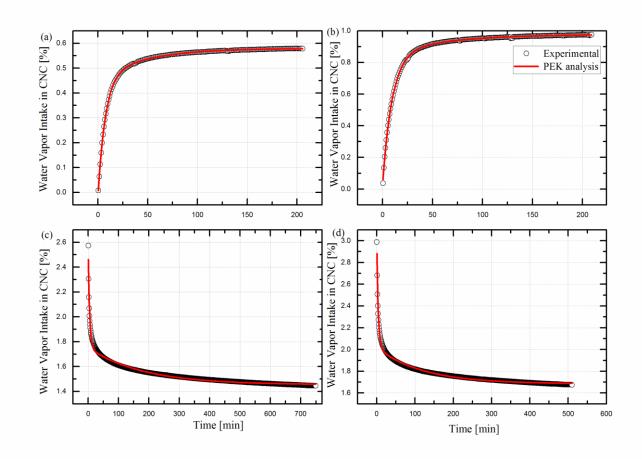


Figure S3. Image Correlation as a function of position and number of correlation points for a selforganized (a-d) and shear-oriented (e-h) CNC film. CR: Number of correlation points. CHS_x : Coefficient of hygroscopic swelling in axial direction. CHS_y : Coefficient of hygroscopic swelling in the transverse direction. Scale bar 1 mm. ($CHS_x = CHS_{axial}$ and $CHS_y = CHS_{trans}$)

CNC film	Sample ¹	ROI	CHS	Cpcorr Size	Grid Spa.	Corr. Pts
			[%strain/ %C]			
	S1-1-x	A1	0.0409	60	30 x 30	2352
	S2-2-x	B1	0.0392	60	30 x 30	1722
Self-organized	S2-3-y	C1	0.0412	60	30 x 30	1722
	S3-1-y	D1	0.0400	60	30 x 30	812
	S1-2-y	E1	0.0416	60	30 x 30	3025
	S1-1-x	A2	0.0203	60	30 x 30	2304
	S1-2-x	B2	0.0202	60	30 x 30	1722
	S1-3-x	C2	0.0201	60	30 x 30	1722
	S2-1-x	D2	0.0197	60	30 x 30	784
Shear-oriented	S3-2-x	E2	0.0199	60	30 x 30	3025
	S1-1-y	A3	0.287	90	30 x 30	2304
	S3-3-у	B3	0.310	60	30 x 30	1764
	S2-1-y	C3	0.298	60	30 x 30	1764
	S1-2-y	D2	0.303	30	30 x 30	784
	S3-3-у	E3	0.295	60	30 x 30	3080

Table S1. DIC parameters used in CHS determination of self-organized and shear-oriented CNC films.

¹ Sample#-Run#-direction

Figure S4. PEK simulation of experimental data of adsorption-desorption for self-organized (a) and (c) and shear-oriented (b) and (d) CNC films 30% RH and 23°C.

		Crystallinity	W _m	W_m^{Corr}			
CNC Films		(%)	(g/g)	(g/g)	C_G	Κ	Ref.
self- organized	adsorption	72 ²	0.033	0.124	6.518	0.912	
	desorption		0.052	0.186	5.129	0.867	
shear- oriented	adsorption	72 ²	0.035	0.125	6.004	0.913	this work
	desorption	12	0.048	0.172	5.896	0.882	

Table S2. Computed values of GAB parameters and correlation coefficients obtained from analysis of moisture sorption isotherms of CNC films.

Table S3. Amount of water sorbed by various celluloses at the monolayer corrected for degree of

crystallinity.³

Crystallinity	W_m	W_m^{Corr}	
(%)	(g/g)	(g/g)	Ref.
70	0.032	0.107	4
70	0.059	0.098	5
63	0.036	0.096	6
40	0.066	0.107	4
	(%) 70 70 63	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(%) (g/g) (g/g) 70 0.032 0.107 70 0.059 0.098 63 0.036 0.096

Table S4. Computed values of PEK's model parameters M_1 , M_2 , τ_1 and τ_2 , corresponding to fast (1) and slow (2) kinetics for lower RH of 30%.

Relative Humidity 30%							
CNC Films	<i>M</i> ₁	τ_1	<i>M</i> ₂	τ ₂	<i>R</i> ²		
self-organized	0.782 ± 0.00128	59.7 ± 0.570	0.131 ± 0.00121	8.92 ± 0.0347	0.997		
shear-oriented	0.825 ± 0.00324	60.97 ± 2.12	0.132 ± 0.00293	9.06 ± 0.0631	0.999		

Table S5. Computed values of PEK's model parameters M_1 , M_2 , τ_1 and τ_2 , corresponding to fast (1) and slow (2) kinetics for higher RH of 90%.

Relative Humidity 90%							
CNC Films	<i>M</i> ₁	τ ₁	<i>M</i> ₂	τ ₂	<i>R</i> ²		
self-organized	0.972 ± 0.0061	14.8 ± 0.085	5.04 ± 0.0151	245.8 ± 3.34	0.999		
shear-oriented	0.946 ± 0.0054	14.5 ± 0.061	5.31 ± 0.0177	240.7 ± 2.76	0.998		

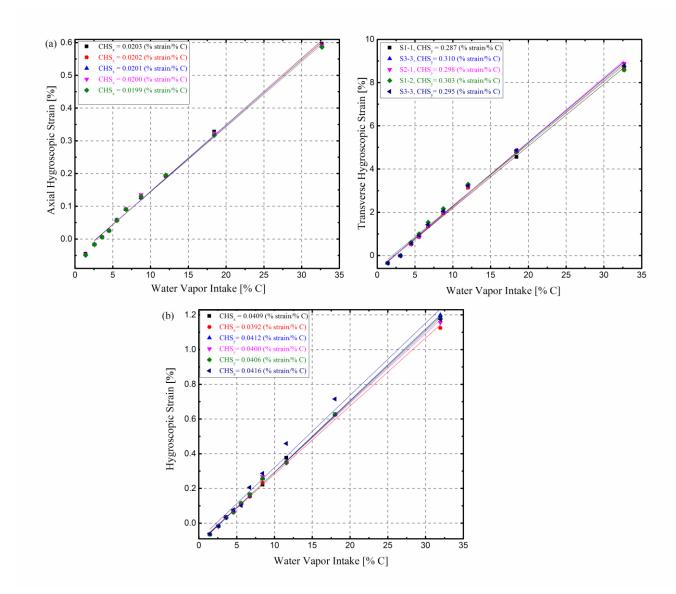
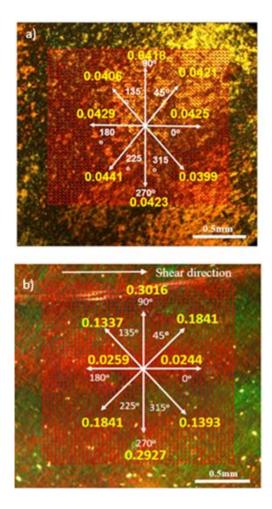



Figure S5. Determination of Coefficient of hygroscopic swelling in (a) shear-oriented (b) selforganized CNC films with different direction. ($CHS_x = CHS_{axial}$ and $CHS_y = CHS_{trans}$).

Figure S6. In-plane coefficient of hygroscopic swelling values for (a) self-organized and (b) shearoriented CNC films at an angular increment of 45°. The CHS of self-organized film is isotropic whereas that of shear-oriented is anisotropic.

REFERENCES

- (1) Hermans, P. H.; Hermans, J. J.; Vermaas, D.; Weidinger, A. Recl. des Trav. Chim. des Pays-Bas 2010, 63, 44–45.
- (2) Yoo, Y.; Youngblood, J. P. ACS Sustain. Chem. Eng. 2016, 4, 3927–3938.
- (3) Zografi, G.; Kontny, M. J. Pharm. Res. 1986, 3, 187–194.
- (4) Nakao, Y.; Fukuoka, E.; Nakajima, S.; Hasegawa, J. *Chem. Pharm. Bull. (Tokyo).* 1977, 25, 96–101.

- (5) Agrawal, A. M.; Manek, R. V.; Kolling, W. M.; Neau, S. H. J. Pharm. Sci. 2004, 93, 1766– 1779.
- (6) Locke, E. G. Sci. AAAS **1965**, 147, 595–596.