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TIGHT BINDING SIMULATIONS

Overview

In the main text, we have shown a transmission map as
a function of left and right carrier density, calculated using
the real-space Green’s function method based on the scalable
tight-binding model [1]. The considered graphene ribbon of
width W = 1 µm is subject to a model density function de-
scribing an ideal pn junction with smoothness 50nm. The full
map is repeated here in Fig. S1(a), with a white box marking
the region plotted in Fig. S1(b).

In this Supporting Information, we show more numerical
results in order to demonstrate that the observed oscillation
is independent of the smoothness of the pn junction and the
width of the graphene ribbon, and is not related the current
along the pn junction. Instead, the oscillation is shown by the
last numerical test to be closely related to the Landau levels
away from the pn junction.

For quantitative and systematic comparisons, we will focus
on the density range shown in Fig. S1(b) and the line cut on
it along the dashed line shown in Fig. S1(c). All calculations
shown in the following consider the same density range and
resolution as Figs. S1(b) and (c), which can be regarded as the
reference panels of this Supporting Information. In particu-
lar, the line cut of Fig. S1(c) will be repeatedly shown in the
following results.

Smoothness dependence

Figure S2(a) presents the transmission map with smooth-
ness of 25nm, showing a similar pattern seen in Fig. S1(b)
where the junction smoothness is 50nm. A more quantitative
comparison is shown in Fig. S2(b) for the line cuts of the two
cases. Despite a slightly higher T obtained for the sharper
junction due to the Klein collimation [2], i.e., the sharper the
pn junction, the wider the finite transmission probability of
the angle distribution and hence the conductance, the gen-
eral trend of the oscillation is shown to be independent of the
smoothness.

In the rest of the numerical results, the smoothness will be
fixed to 50nm.

Width dependence

Figure S3 presents the transmission map based on a
graphene ribbon with W = 0.9 µm shown in its panel (a) and
W = 0.8 µm shown in its panel (b). Comparing the line cuts
in Fig. S3(c), along with the reference line of Fig. S1(c) for
the case of W = 1 µm, the feature of the oscillation is clearly
shown to be width-independent. On the other hand, the oscil-
lation amplitude decreasing with the reduced graphene width
implies that the oscillation may be closely related to the Lan-
dau levels in the bulk away from the pn junction, since the
wider the graphene ribbon the better the Landau levels can
develop.

In the rest of the numerical results, the graphene width will
be fixed as W = 1 µm.

Strong lattice defects

Next we show that the oscillation is not related to the cur-
rent along the pn junction. To this end, we consider large-area
lattice defects located in the vicinity of the pn junction. The
basic idea is that if the oscillation came from any interference
due to the current along the pn junction, such as the snake
state [3], a large-area lattice defect at the pn interface or in
the vicinity of it would act as a strong scatterer, destroying the
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FIG. S1. (a) Transmission map T (nR,nL) same as Fig. 5(a) in the
main text (smoothness 50nm and graphene width W = 1 µm); white
dashed box marks the region shown in (b), where a black dashed line
indicates the line cut of T (nL) at fixed nR ≈−2×1012 cm−2 shown
in (c).
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FIG. S2. (a) Transmission map T (nR,nL) similar to Fig. S1(b) but
with smoothness 25nm of the pn junction. The red dashed line indi-
cates the line cut shown as a red line in (b), where the black line is
the reference line identical to Fig. S1(c) for the case with smoothness
50nm.
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FIG. S3. Transmission maps T (nR,nL) similar to Fig. S1(b) with
the same smoothness of 50nm but with (a) W = 0.9 µm and (b) W =
0.8 µm. Line cuts along the red/blue dashed line marked in (a)/(b) are
compared in (c) together with the reference line (black) of Fig. S1(c)
for the case of W = 1 µm.

interference and hence suppressing the oscillation. Contrarily,
if the oscillation survives the introduced large defects, the cur-
rent along the pn junction will then be ruled out from possible
origins of the oscillation.

We first consider a 50× 400nm2 defect in Figs. S4(a) and
(b); the defect is placed in front of the pn junction (at a dis-
tance 150nm) in the former, and exactly on the pn junction in
the latter. Despite an additional modulating pattern observed
in Fig. S4(a), the fine oscillation patterns remain visible in
both cases. By increasing the defect area to 300× 300nm2,
the transmission map shown in Fig. S4(c) still exhibits the
same oscillation pattern. A quantitative comparison of the line
cuts summarized in Fig. S4(d) together with the reference line
from Fig. S1(c) clearly shows that the oscillations observed
in Figs. S4(a)–(c) belong to the same type as all those shown
previously.

The fact that the strong defect introduced in the vicinity of
the pn junction cannot suppress the oscillation clearly indi-
cates that any possible interference effect due to the current
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FIG. S4. (a)–(c) Transmission maps T (nR,nL) similar to Fig. S1(b)
with the same smoothness of 50nm and width W = 1 µm, but with
a large-area defect represented by the black rectangle shown in the
individual inset to the right of each panel, where the color back-
ground depicts the y-independent model function n(x,y) describing
the density variation of the pn junction. The size of the defect is
50×400nm2 in (a,b) and 300×300nm2 in (c). Line cuts along the
red/blue/purple dashed line marked in (a)/(b)/(c) are compared in (d)
together with the reference line (black) of Fig. S1(c) for the case
without the defect.

along the pn junction cannot be the origin causing the oscilla-
tion. Instead, the oscillation seems to depend only on the Lan-
dau levels that are well developed in the semi-infinite leads.

Fixed leads

So far, all the presented calculations are based on an infinite
graphene ribbon with a pn junction in the middle, as described
in the main text. Technically, this is achieved in numerics by
considering a scattering region of size L×W attached to two
leads from the left and right, both floating with the density
profiles at the attaching edge of the scattering region. As long
as L is much longer than the smoothness of pn junction (L =
400nm has been adopted in all the presented calculations),
the density values at the left and right edges of the scattering
region will saturate to a constant, and the entire open quantum
system of the finite-size scattering region attached to the two
floating semi-infinite leads will resemble an ideal pn junction
in the middle of an infinitely long graphene ribbon, exhibiting
an L-independent transmission behavior.

As a final and conclusive numerical test, we now fix the
Fermi energies in the two semi-infinite leads at 0.1eV, and
consider the same range and parameters as the reference panel
of Fig. S1(b). The calculated transmission map is shown
in Fig. S5(a), which no longer exhibits the fine oscillation.
The line cuts of fixed leads vs. floating leads compared in
Fig. S5(b) clearly show that the oscillation completely van-
ishes in the present case of fixed leads.

The vanishing oscillation is consistent with what we have
speculated from the previously shown tests that the oscillation
originates from the resonance between Landau levels well de-
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FIG. S5. (a) Transmission map T (nR,nL) with the same range and
parameters considered in Fig. S1(b) but with the two leads fixed at
energy E = 0.1eV. The red dashed line indicates the line cut shown
as a red line in (b), where the black line is the reference line identical
to Fig. S1(c) for the case with floating leads.

veloped in the far left and far right in the semi-infinite leads.
The present case shown in Fig. S5 considers fixed Fermi ener-
gies in the leads that no longer float with the densities nR and
nL. Together with the fact that the length L = 400nm �W of
the scattering region is too short for the Landau levels to form,
the vanishing oscillation is therefore reasonably expected. By
increasing the length of the scattering region to at least L≈W ,
revival of the oscillation is expected for the case of fixed leads.

Note that the situation of fixed leads is actually closer to the
experiment, because the densities in graphene regions close to
the contacts are rather pinned by the contact doping. However,
the samples in our experiments (summarized in Table I in the
main text) are long enough (several microns in all samples)
for the Landau levels to develop well (with level spacing not
far enough compared to disorder broadening in the magnetic
field range we focus on) due to their cleanness and therefore
exhibit the oscillation. Our numerical results based on floating
leads correspond to the ideal case of infinitely long samples
and therefore exhibit optimized oscillation.

MAGNETORESISTANCE OSCILLATIONS IN SAMPLES
B-F

Figures S6-S10 show magnetoresistance oscillations of
samples B-F, which look similar to the ones observed in sam-
ple A (see Fig. 3 of main text). The periodicity of the oscilla-
tions is the same for all samples.

4-terminal measurements in sample D

The device layout of sample D is schematically shown in
Fig. S11. A DC voltage of 100mV was applied to the sample
with a R = 10 MΩ resistor in series. This led to a constant
current of I = 10 nA flowing from contact 1 to contact 4. The

voltage drop between contact pairs (1,2), (2,3) and (3,4) where
measured. To calculate the conductance a contact resistance
was subtracted where appropriate. As is shown in Fig. S11b-
d, the oscillatory magnetoresistance is only observed when a
p-n interface is present (i.e. in between contacts (2,3)).

-12 -6 0 6 12
dG/dV TG (e2/h V−1)

-10 -8 -6 -4
V TG (V)

0

10

20

30

40

V
B

G
(V

)

sample B
B = 0.5 T

-200 -150 -100 -50
νDG

120

160

200

ν S
G

∆
ν

=
-3

32

∆
ν

=
-3

16

∆
ν

=
-3

00

∆
ν

=
-2

84

∆
ν

=
-2

68

∆
ν

=
-2

52

-2.5 -2.0 -1.5 -1.0 -0.5
nDG (× 1012 cm−2)

1.6

2.0

2.4

n S
G

(×
10

12
cm
−

2
)

(a)

(b)

FIG. S6. (a) Transconductance dG/dVTG of sample B at B = 0.5 T.
(b) Transconductance as a function of filling factor in the single and
double gated region.
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FIG. S7. a) Transconductance dG/dVTG of sample C at B =
0.8 T. (b) Transconductance as a function of filling factor in the
single and double gated region.
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FIG. S8. (a) Transconductance dG/dVTG of sample D at B =
0.4 T. (b) Transconductance as a function of filling factor in the
single and double gated region.
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FIG. S9. (a) Transconductance dG/dVTG of sample E at B =
0.5 T. (b) Transconductance as a function of filling factor in the
single and double gated region.
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FIG. S10. (a) Transconductance dG/dVTG of sample F at B =
0.8 T. (b) Transconductance as a function of filling factor in the
single and double gated region.
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FIG. S11. (a) Schematic drawing of sample D. Contacts are labelled
1-4. (b) Transconductance between contacts (1,2) at B = 0.4 T. (c)
Transconductance between contacts (2,3) showing an oscillatory pat-
tern in the p-n regime. (d) Transconductance between contacts (3,4).


