Supporting Information

Control of Multilevel Resistance in Vanadium Dioxide by Electric Field using Hybrid Dielectrics

Kaleem Abbas¹, Jaeseok Hwang¹, Garam Bae¹, Hongsoo Choi² and Dae Joon Kang^{1,*}

¹Department of Physics and Energy Science, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Gyeoggi-do, Republic of Korea

*djkang@skku.edu

²Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 711-873, Daegu, Republic of Korea

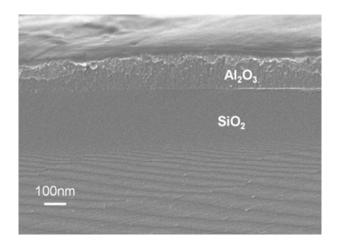


Figure S1, Cross-sectional SEM image of SiO2 and Al2O3 hybrid dielectric layer. SEM image shows that Al2O3 of 200 nm thickness was deposited on SiO2 layer of 300 nm. Then VO2 film was doposited and FET-VO2 device was fabricated on hybrid dielectric of 500 nm thickness. Cross-sectional image shows a good interface quality between the two dielectric layers.

No	Device structure	VO2 thickness ~(nm)	Dielectric layer	Dielectric thickness ~(nm)	leakage
1	VO₂/SiO₂/Si ⁺	100	SiO ₂	100	High
2	VO ₂ /SiO ₂ /Si ⁺	100	SiO ₂	200	High
3	VO ₂ /SiO ₂ /Si ⁺	100	SiO ₂	300	small
4	$VO_2/AI_2O_3/SiO_2/S^+$	100	Al ₂ O ₃ /SiO ₂	200/300	Very small

Table S1; Summary of VO2 devices fabricated of different dielectric layer thickness.

It should be noted that the thickness of the VO₂ film was kept constant (~100nm) for all devices. Instead, we vary the thickness of the dielectric layer as shown in the Table S1. The main purpose of varying the thickness of the dielectric layer was to choose the optimized layer thickness in order to minimize the leakage current while observing a clear gate effect on VO₂ devices as evident in Figure 5b. We found that both 100 nm and 200 nm thick SiO₂ dielectric layers showed a very high leakage current. Further, we showed that the SiO₂ layer of 300 nm thickness and Al_2O_3/SiO_2 hybrid dielectric layer of 200/300 nm thickness were thick enough to show pronounced gate effects on VO₂ devices. We believe that further increase in the thickness would not change its electrical transport characteristics much especially in the case of hybrid dielectric layer.