Supporting Information

2-Aminopyrimidin Derivatives as New Selective Fibroblast Growth

Factor Receptor 4 (FGFR4) Inhibitors

Cheng Mo,^{a,b} Zhang Zhang,^c Christopher P. Guise,^{e,d} Xueqiang Li,^{a,b} Jinfeng Luo,^a Zhengchao Tu,^a Yong Xu,^a Adam V. Patterson,^{e,d} Jeff B. Smaill,^{e,d*} Xiaomei Ren,^{c*} Xiaoyun Lu,^{c*} Ke Ding^{c*}

^a State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Avenue, Guangzhou 510530, China

^b University of Chinese Academy of Sciences, #19 Yuquan Road, Beijing 100049, China

^c School of Pharmacy, Jinan University, # 601 Huangpu Avenue West, Guangzhou 510632, China.

^dAuckland Cancer Society Research Centre, University of Auckland, #92019 Private Bag, Auckland 1142, New Zealand

^e Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, #92019 Private Bag, Auckland 1142, New Zealand

Contents:

Figure S1. Chemical structure of BLU554	S2
Table S1. Kinase inhibitory activities of compound 3a	S2
Abbreviations	S2
General methods for chemistry	S2
Synthetic procedures and compound characterization	S3-S17
Computational study	S18
Materials and methods for biological assays	S18-S19
Table S2. Matrix of compound screen for inhibitor 2n	S20-S23
Table S3. S-score Table for 2n	S23
Figure S2. Compound 2n induces apoptosis in MDA-MB-453 cells	S24
¹ H NMR and ¹³ C NMR spectra of compound 2a-2z	S25-S50

Figure S1. The chemical structure of BLU554.

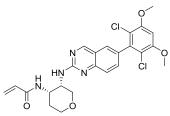
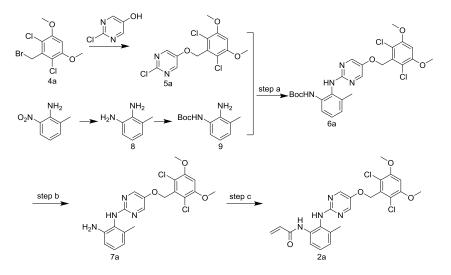



Table S1. Kinase inhibitory activities of compound 3a


	Kinase activity (IC_{50} , nM)				
	FGFR1	FGFR2	FGFR3	FGFR4	
3 a	>10,000	2920	756	6.3	

Abbreviations. ERK, extracellular signal-regulated kinase; FRS2, fibroblast growth factor substrate 2; IC₅₀, the half maximal (50%) inhibitory concentration (IC) of a substance; SD, standard deviation; TFA, trifluoroacetic acid; DCM, dichloromethane; THF, tetrahydrofuran; DMF, N,N-dimethylformamde; EA, ethylacetate; PE, petroleum ether; Boc₂O, Di-tert-butyl dicarbonate; DIEA, ethyldiisopropylamine;

General Methods for Chemistry. All reagents and solvents were used directly as purchased from commercial sources. Flash chromatography was performed using silica gel (200-300 mesh). All reactions were monitored by TLC, using silica gel plates with fluorescence GF254 and UV light visualization. ¹H NMR and ¹³C NMR spectra were recorded on a AV-400 spectrometer at 400 MHz and AV-500 spectrometer at 125 MHz. Coupling constants (*J*) are expressed in hertz (Hz). Chemical shifts (δ) of NMR are reported in parts per million (ppm) units relative to an internal control (TMS). High resolution ESI-MS on an Applied Biosystems Q-STAR Elite ESI-LC-MS/MS mass spectrometer. The purity of compounds was determined by reverse-phase high performance liquid chromatography (HPLC) analysis to be >95%. HPLC instrument, Dionex Summit HPLC (column: Diamonsil C18, 5.0 µM, 4.6 × 250 mm (Dikma Technologies); detector, PDA-100 photodiode array; injector, ASI-100 autoinjector; pump, p-680A). A flow rate of 1.0 ml/min was used with a mobile phase of MeOH in H₂O with a 0.1% modifier (ammonia or trifluoroacetate, v/v).

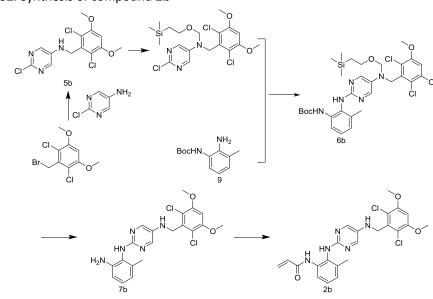
Synthetic procedures and compound characterization.

Scheme S1. Synthesis of compound 2a

2-chloro-5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidine (5a): A mixture of 3-(bromomethyl)-2,4-dichloro-1,5-dimethoxybenzene(6.3g, 21mmol, 1.05eq) (preparation according to WO 2014182829), 2-chloropyrimidin-5-ol(2.61g, 20mmol, 1.0eq), $Bu_4N^+ \cdot I(1.48g,$ 4mmol, 0.2eq) and K₂CO₃(5.53g, 40mmol, 2.0eq) in DMF(80ml, 4ml/mmol) was stirred at 60° C for 2h. The resulting mixture was poured into ice and stirred. Then the mixture was filtered, and the filter cake was washed with water for several times and dried in vacuo at 50 $^{\circ}$ C (6.31g, yield: 90.25%). ¹H NMR (400 MHz, DMSO-d₆): δ(ppm) 8.68 (s, 2H), 7.02 (s, 1H), 5.42 (s, 2H), 3.95 (s, 6H). 3-methylbenzene-1,2-diamine (8): To a solution of 2-methyl-6-nitroaniline (5g, 2.86mmol) in MeOH (50ml) was added 10% Pd/C (0.25g). The mixture was degassed and purged with hydrogen and stirred at room temperature overnight. The solution was filtered and concentrated. Purification by column chromatography (DCM/MeOH) through silica gel afforded the intermediate (1.83g, yield: 45.68%). ¹H NMR (400 MHz, DMSO-d₆): δ(ppm) 6.41-6.39 (m, 1H), 6.31-6.28 (m, 2H), 4.36 (brs, 2H), 4.13 (brs, 2H), 2.03 (s, 3H).

tert-butyl (2-amino-3-methylphenyl)carbamate(9): To a solution of compound 8 (1.83g, 15.01mmol, 1.0eq) in dry THF (11.26ml) containing triethylamine (2.19ml, 1.05eq) was added Boc₂O (3.28g, 1.0eq) drop-wise at 0°C. Then the mixture was stirred at room temperature overnight. The reaction was diluted with EA and washed with water, brine, dried and concentrated. Purification by column chromatography (PE/EA) through silica gel afforded the intermediate (1.91g, yield: 57.42%). ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 8.25 (m, 1H), 7.02 (d, J = 8.0 Hz 1H), 6.77 (d, J = 7.2 Hz 1H), 6.46 (t, J = 7.6 Hz, 1H), 4.52 (s, 2H), 2.08 (s, 3H), 1.45 (s, 9H).

tert-butyl(2-((5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)-3-methylphenyl) carbamate (6a):


To a solution of compound 5a(349mg, 1.0mmol, 1.0eq) in 1,4-dioxane (10ml, 10ml/mmol) were added compound 9 (244mg, 1.1mmol, 1.1eq), Pd(OAc)₂ (22mg, 0.1mmol, 0.1eq), XantPhos (115mg, 0.2mmol, 0.2eq) and $Cs_2CO_3(651mg, 2mmol, 2.0eq)$. The mixture was degassed and purged again with argon, then heated at 100 °C overnight. After cooling, the solvent was evaporated under reduced pressure. The residue was dissolved in DCM and filtered. The filtrate was concentrated. Purification by column chromatography (PE/EA) through silica gel afforded the intermediate (246mg, yield: 45.95%). ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 8.21 (s, 3H), 8.12 (s,

1H), 7.55 (d, J = 7.9 Hz, 1H), 7.10 (t, J = 7.8 Hz, 1H), 6.99 (s, 1H), 6.95 (d, J = 7.5 Hz, 1H), 5.23 (s, 2H), 3.94 (s, 6H), 2.07 (s, 3H), 1.43 (s, 9H).

N¹-(5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)-6-methylbenzene-1,2-diamine (7a): compound 6a (246mg, 0.4596mmol) was dissolved in DCM/TFA (2:1 volume/volume, 18ml), and the mixture was stirred at room temperature overnight. The solvent was evaporated under reduced pressure. The residue was dissolved in DCM and washed with saturated aqueous NaHCO₃, brine, dried, and concentrated. Purification by column chromatography (DCM/MeOH) through silica gel afforded the desired product(158mg, 0.363mmol, yield: 78.98%). ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 8.16 (s, 2H), 8.03 (s, 1H), 6.99 (s, 1H), 6.83 (t, *J* = 7.7 Hz, 1H), 6.56 (d, *J* = 7.8 Hz, 1H), 6.42 (d, *J* = 7.3 Hz, 1H), 5.21 (s, 2H), 4.65 (s, 2H), 3.94 (s, 6H), 2.00 (s, 3H).

N-(2-((5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)-3-methylphenyl) acrylamide (2a):

To a solution of compound 7a (158mg, 0.363mmol, 1.0eq) in dry DCM(3ml, 8ml/mmol) containing DIEA(70mg, 0.545mmol, 1.5eq) was added acryloyl chloride(39mg, 0.4356mmol, 1.2eq) drop-wise at 0°C. The mixture was stirred at 0°C for 3h. Then water was added and diluted with DCM. The organic layer was wash with brine, dried and concentrated. Purification by column chromatography (DCM/MeOH) through silica gel afforded the desired product (122mg, yield: 68.53%). ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 9.48 (s, 1H), 8.19 (s, 2H), 8.10 (s, 1H), 7.65 (d, J = 7.7 Hz, 1H), 7.14 (t, J = 7.8 Hz, 1H), 7.06 (d, J = 7.3 Hz, 1H), 6.99 (s, 1H), 6.50 (dd, J = 17.0, 10.2 Hz, 1H), 6.21 (dd, J = 17.0, 1.7 Hz, 1H), 5.70 (dd, J = 10.2, 1.6 Hz, 1H), 5.22 (s, 2H), 3.94 (s, 6H), 2.10 (s, 3H). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm) 163.39, 157.02, 154.37, 146.48, 146.26, 136.72, 134.75, 132.35, 131.84, 130.70, 126.73, 126.47, 125.62, 120.70, 114.74, 99.14, 67.14, 56.76, 18.40. HRMS (ESI) calcd for C23H22Cl2N4O4 [M+H]+ : 489.10909; found 489.10929. HPLC purity=97.86%, Rt 7.26 min.

Scheme S2. Synthesis of compound 2b

2-chloro-N-(2,6-dichloro-3,5-dimethoxybenzyl)pyrimidin-5-amine(5b): the title compound was synthesized following the procedure for compound 5a with 2-chloropyrimidin-5-amine and 3-(bromomethyl)-2,4-dichloro-1,5-dimethoxybenzene. ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 8.18 (s, 2H), 6.95 (s, 1H), 6.99 (s, 1H), 6.51 (t, *J* = 4.8 Hz, 1H), 4.45 (d, *J* = 4.8Hz, 3H), 3.93 (s, 1H). 2-chloro-N-(2,6-dichloro-3,5-dimethoxybenzyl)-N-((2-(trimethylsilyl)ethoxy)methyl)pyrimidin-5-a

mine: A mixture compound 5b (174mg, 0.5mmol, 1.0eq) and K₂CO₃(138mg, 1mmol, 2.0eq) was taken in DMF(2ml, 4ml/mmol) and 2-(trimethylsily) ethoxymethyl chloride(125mg, 0.75mmol, 1.5eq) was added drop wise. The reaction mixture was stirred at room temperature for 5h, diluted with water. The aqueous layer was extracted with EA. The organic layer was washed with brine, dried and concentrated. The residue was purified by column chromatography to obtain 2-chloro-N-(2,6-dichloro-3,5-dimethoxybenzyl)-N-((2-(trimethylsilyl)ethoxy)methyl)pyrimidin-5-a mine (100mg, yield: 41.76%). ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 8.53 (s, 2H), 6.96 (s, 1H), 4.81 (s, 2H), 4.56 (s, 2H), 3.93 (s, 6H), 3.20 (t, *J* =8 Hz, 2H), 0.69 (t, *J* =8 Hz, 2H), -0.11 (s, 9H).

tert-butyl(2-((5-((2,6-dichloro-3,5-dimethoxybenzyl)((2-(trimethylsilyl)ethoxy)methyl)amino) pyrimidin-2-yl)amino) -**3-methylphenyl)carbamate(6b):** the title compound was synthesized following the procedure for compound of 6a, but used directly for the next step.

 N^2 -(2-amino-6-methylphenyl)- N^5 -(2,6-dichloro-3,5-dimethoxybenzyl)pyrimidine-2,5-diamine(7b): the crude of 6b was dissolved in DCM/TFA (2:1 volume/volume), and the mixture was stirred at room temperature overnight. The solvent was evaporated under reduced pressure. The residue was dissolved in DCM and washed with saturated aqueous NaHCO₃, brine, dried, and concentrated. Purification by column chromatography (DCM/MeOH) through silica gel afforded the desired product. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 7.90 (s, 2H), 7.54 (s, 1H), 6.90 (s, 1H), 6.81 (t, *J* = 7.7 Hz, 1H), 6.54 (d, *J* = 7.8 Hz, 1H), 6.41 (d, *J* = 7.3 Hz, 1H), 5.11 (t, *J* = 5.7 Hz, 1H), 4.59 (s, 2H), 4.34 (d, *J* = 5.8 Hz, 2H), 3.92 (s, 6H), 1.99 (s, 3H).

N-(2-((5-((2,6-dichloro-3,5-dimethoxybenzyl)amino)pyrimidin-2-yl)amino)-3-methylphenyl)acry lamide(2b):

The title compound was synthesized following the procedure for compound 2a.

¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 9.48 (s, 1H), 7.92 (s, 2H), 7.66 (s, 1H), 7.62 (d, *J* = 7.7 Hz, 1H), 7.10 (t, *J* = 7.7 Hz, 1H), 7.04 (d, *J* = 7.2 Hz, 1H), 6.91 (s, 1H), 6.47 (dd, *J* = 17.0, 10.2 Hz, 1H), 6.20 (dd, *J* = 17.0, 1.7 Hz, 1H), 5.69 (dd, *J* = 17.0, 1.7 Hz, 1H), 5.25 (t, *J* = 5.6 Hz, 1H), 4.34 (d, *J* = 5.6 Hz, 2H), 3.92 (s, 6H), 2.09 (s, 3H). ¹³C NMR (500 MHz, DMSO-d₆): δ (ppm) 163.35, 154.83, 154.26, 143.33, 136.60, 135.68, 135.22, 134.53, 131.67 (d, *J* = 216 Hz, 1C), 126.65, 126.49, 125.12, 120.60, 114.22, 97.84, 56.65, 44.03, 18.50. ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm) 163.35, 154.83, 154.26, 143.33, 136.60, 135.68, 135.22, 134.53, 131.88, 131.44, 126.65, 126.49, 125.12, 120.60, 114.22, 97.84, 56.65, 44.03, 18.50. HRMS (ESI) calcd for C23H23Cl2N5O3 [M+H]+ : 488.12507; found 488.12494. HPLC purity=96.30%, Rt 6.50 min.

N-(2-((5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)-6-methylphenyl)acryla mide (2c) was synthesized following the approach outlined in Scheme S1(Example 2a) substituting tert-butyl (2-amino-3-methylphenyl)carbamate with tert-butyl (2-amino-6-methylphenyl)carbamate (prepared by the method outlined below).

¹H NMR (400 MHz, DMSO-d6): δ (ppm) 9.57 (s, 1H), 8.33 (s, 2H), 8.00 (s, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.16 (t, J = 7.9 Hz, 1H), 7.00 (s, 1H), 6.95 (d, J = 7.4 Hz, 1H), 6.51 (dd, J = 17.1, 10.2 Hz, 1H), 6.26 (dd, J = 17.1, 1.8 Hz, 1H), 5.78 (dd, J = 10.2, 1.8 Hz, 1H), 5.29 (s, 2H), 3.94 (s, 6H), 2.18 (s, 3H). ¹³C NMR (500 MHz, DMSO-d6): δ (ppm) 163.81, 155.39, 154.39, 146.83, 146.30, 136.07, 135.07, 132.26, 131.12, 126.88, 126.43, 126.41, 124.05, 119.06, 114.74, 99.17, 67.12, 56.77, 18.29. HRMS (ESI) calcd for C23H22Cl2N4O4 [M+H]+ : 489.10909; found 489.10929. HPLC purity=99.08%, Rt 7.83 min.

Preparation of tert-butyl (2-amino-6-methylphenyl)carbamate.

a. tert-butyl (2-methyl-6-nitrophenyl)carbamate

To a solution of 2-methyl-6-nitroaniline(1.826g, 12mmol, 1.0eq) in anhydrous THF(120ml, 10ml/mmol) was added Boc₂O(7.857g, 36mmol, 3.0eq) followed by DMAP(0.151g, 1.2mmol, 0.1eq). The mixture was stirred at reflux for 3h then cooled to ambient temperature. The solvent was evaporated. The residue was dissolved in MeOH (100ml) followed by K₂CO₃(4.975g, 3.0eq). The mixture was stirred at reflux for 3h. The mixture was cooled to ambient temperature and concentrated. The residue was dissolved in EA and washed with water, brine, dried and concentrated. Purification by column chromatography (PE/EA) through silica gel afforded the intermediate (0.7g, yield: 35.84%). ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 9.10 (s, 1H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.56 (d, *J* = 7.6 Hz, 1H), 7.32 (t, *J* = 7.9 Hz, 1H), 2.27 (d, *J* = 11.0 Hz, 3H), 1.37 (d, *J* = 44.5 Hz, 9H).

b. tert-butyl (2-amino-6-methylphenyl)carbamate

The title compound was synthesized following the procedure of compound 8 in Scheme S1 substituting tert-butyl (2-methyl-6-nitrophenyl)carbamate. ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 8.01 (s, 1H), 6.83 (t, *J* = 7.7 Hz, 1H), 6.53 (d, *J* = 7.8 Hz, 1H), 6.41 (d, *J* = 7.3 Hz, 1H), 4.65 (s, 2H), 2.06 (s, 3H), 1.44 (s, 9H).

N-(2-((5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)-5-methylphenyl)

Acrylamide (2d) was synthesized following the approach outlined in Scheme S1 (Example2a) substituting tert-butyl (2-amino-5-methylphenyl)carbamate (prepared by the method outlined below).

¹H NMR (400 MHz, DMSO-d₆): δ(ppm) 9.75 (s, 1H), 8.33 (s, 1H), 8.28 (s, 2H), 7.63 (d, J = 8.3 Hz, 1H), 7.34 (s, 1H), 6.99 (m, 2H), 6.49 (dd, J = 17.0, 10.2 Hz, 1H), 6.26 (dd, J = 17.0, 1.8 Hz, 1H), 5.76 (d, J = 17.0, 1.8 Hz, 1H), 5.27 (s, 2H), 3.94 (s, 6H), 2.28 (s, 3H). ¹³C NMR (500 MHz, DMSO-d₆): δ(ppm) 163.64, 156.03, 154.38, 146.68, 146.37, 132.31, 132.24, 131.55, 130.49, 129.32, 126.92, 125.82, 124.77, 123.51, 114.76, 99.09, 67.18, 56.73, 20.45. HRMS (ESI) calcd for C23H22Cl2N4O4 [M+H]+ : 489.10909; found 489.10929. HPLC purity=99.18%, Rt 8.44 min.

Preparation of tert-butyl (2-amino-5-methylphenyl)carbamate.

a. tert-butyl (5-methyl-2-nitrophenyl)carbamate

A solution of NaH (1.76g, 2.2eq) in dry THF(27.7ml, 0.63ml/mmol) at 0°C was slowly treated with a solution of 5-methyl-2-nitroaniline (3.043g, 20mmol, 1.0eq) in dry THF(27.6ml, 1.38ml/mmol). The mixture was stirred for 10 min at 0°C, and then at room temperature for 30 min. A solution of Boc₂O(4.801g, 22mmol, 1.1eq) in dry THF(5.5ml, 0.25ml/mmol) was added to the reaction mixture and stirred at room temperature onvernight. Water was slowly added and the reaction mixture was extracted with EA. The organic phase was wash with brine, dried and concentrated. Purification by column chromatography(PE/EA) through silica gel afforded the intermediate(2.55g, yield: 50.56%). ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 9.55 (s, 1H), 7.89 (d, *J* = 8.4 Hz, 1H), 7.59 (s, 1H), 7.08 (dd, *J* = 8.5, 1.2 Hz, 1H), 2.37 (s, 3H), 1.45 (s, 9H).

b. tert-butyl (2-amino-5-methylphenyl)carbamate

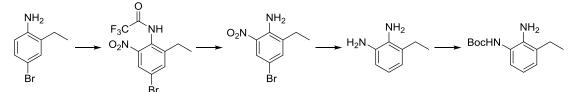
The title compound was synthesized following the procedure of compound 8 in Scheme S1 substituting tert-butyl (5-methyl-2-nitrophenyl)carbamate. ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 8.22 (s, 1H), 7.03 (s, 1H), 6.65 (dd, J = 8.0, 1.3 Hz, 1H), 6.58 (d, J = 8.0 Hz, 1H), 4.60 (s, 2H), 2.12 (s, 3H), 1.45 (s, 9H).

N-(2-((5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)-4-methylphenyl) acrylamide (2e) was synthesized following the approach outlined in Scheme S1 (Example 2a) substituting tert-butyl (2-amino-4-methylphenyl)carbamate (prepared by the method of

corresponding intermediate of 2d).

¹H NMR (400 MHz, DMSO-d₆): δ(ppm) 9.77 (s, 1H), 8.37 (s, 1H), 8.32 (s, 2H), 7.63 (s, 1H), 7.35 (d, J = 8.1 Hz, 1H), 7.00 (s, 1H), 6.88 (d, J = 8.1 Hz, 1H), 6.48 (dd, J = 17.0, 10.1 Hz, 1H), 6.25 (dd, J = 17.0, 1.8 Hz, 1H), 5.76 (d, J = 10.4, 1H), 5.28 (s, 2H), 3.94 (s, 6H), 2.28 (s, 3H). ¹³C NMR (500 MHz, DMSO-d₆): δ(ppm) 163.70, 155.75, 154.39, 146.80, 146.31, 134.53, 133.09, 132.30, 131.50, 126.86, 126.56, 124.56, 123.60, 123.32, 114.76, 99.15, 67.12, 56.77, 20.81. HRMS (ESI) calcd for

C23H22Cl2N4O4 [M+H]+ : 489.10909; found 489.10929. HPLC purity=97.69%, Rt 8.46 min.


N-(2-((5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)phenyl)acrylamide (2f) was synthesized following the approach outlined in Scheme S1(Example 2a) substituting tert-butyl (2-amino-3-methylphenyl)carbamate with tert-butyl (2-aminophenyl)carbamate (prepared by the method of compound 9 in Scheme S1 with benzene-1,2-diamine).

¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 9.83 (s, 1H), 8.44 (s, 1H), 8.31 (s, 2H), 7.80 (d, J = 7.1 Hz, 1H), 7.51 (d, J = 7.6 Hz, 1H), 7.17 (td, J = 8.4, 1.4 Hz, 1H), 7.06 (td, J = 7.8, 1.4 Hz, 1H), 7.00 (s, 1H), 6.50 (dd, J = 17.0, 10.1 Hz, 1H), 6.27 (dd, J = 17.0, 1.9 Hz, 1H), 5.77 (dd, J = 10.2, 1.8 Hz, 1H), 5.28 (s, 2H), 3.94 (s, 6H). ¹³C NMR (500 MHz, DMSO-d₆): δ (ppm) 163.71, 155.74, 154.38, 146.84, 146.31, 133.14, 132.28, 131.49, 129.15, 127.02, 125.23, 124.62, 123.16, 122.91, 114.73, 99.16, 67.13, 56.76. HRMS (ESI) calcd for C22H20Cl2N4O4 [M+H]+ : 475.09344; found 475.09299. HPLC purity=96.86%, Rt 7.82 min.

N-(2-((5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)-3-ethylphenyl)acrylami de (2g) was synthesized following the approach outlined in Scheme S1(Example 2a) substituting tert-butyl (2-amino-3-methylphenyl)carbamate with tert-butyl (2-amino-3-ethylphenyl)carbamate (prepared by the method outlined below).

¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 9.39 (s, 1H), 8.18 (s, 2H), 8.07 (s, 1H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.20 (t, *J* = 7.8 Hz, 1H), 7.08 (d, *J* = 7.2 Hz, 1H), 6.99 (s, 1H), 6.49 (dd, *J* = 17.0, 10.2 Hz, 1H), 6.19 (dd, *J* = 17.0, 1.9 Hz, 1H), 5.68 (dd, *J* = 10.2, 1.9 Hz, 1H), 5.21 (s, 2H), 3.93 (s, 6H), 2.49 (q, *J* = 7.5 Hz, 2H), 1.05 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (500 MHz, DMSO-d₆): δ (ppm) 163.34, 157.48, 154.36, 146.52, 146.24, 142.42, 135.16, 132.34, 131.91, 130.08, 126.60, 126.04, 124.53, 120.66, 114.75, 99.09, 67.17, 56.74, 24.27, 14.00. HRMS (ESI) calcd for C24H24Cl2N4O4 [M+H]+ : 503.12474; found 503.12469. HPLC purity=99.06%, Rt 7.92 min.

Preparation of tert-butyl (2-amino-3-ethylphenyl)carbamate

N-(4-bromo-2-ethyl-6-nitrophenyl)-2,2,2-trifluoroacetamide: a. То trifluoroacetic anhydride(20.85ml, 150mmol, 10.0eq) stirring at 2 ℃ was slowly added 4-bromo-2-ethylaniline(3.0g, 15mmol, 1.0eq) drop-wise followed anhydrous by 2-methyltetrahydrofuran(1.8ml, 0.12ml/mmol). The cold bath was removed and ammonium nitrate(1.56g, 19.5mmol, 1.3eq) was added. A cold water bath was used to control the temperature below 40 °C. After 30 min, the cold bath was the removed and stirring continued for another 40 min. Crushed ice was slowly added to the reaction, and the mixture was extracted with EA. The organic layer was washed with brine, dried and concentrated. Purification by column chromatography (PE/EA) through silica gel afforded the intermediate (1.046g, yield: 20.44%). ¹H NMR (500 MHz, DMSO-d₆): δ(ppm) 11.54 (s, 1H), 8.16 (d, *J* = 2.2 Hz, 1H), 8.00 (d, *J* = 2.2 Hz, 1H), 2.64 (q, *J* = 7.5 Hz, 2H), 1.13 (t, *J* = 7.5 Hz, 3H).

b. 4-bromo-2-ethyl-6-nitroaniline: N-(4-bromo-2-ethyl-6-nitrophenyl)-2,2,2-trifluoroacetamide (1.0232g, 3mmol, 1.0eq) was dissolved in 1,4-dioxane(3.6ml, 1.2ml/mmol) and added aqu eous 6M NaOH(1.5ml, 0.5ml/mmol). The reaction mixture was stirred at reflux for 2 days. The mixture was allowed to cool, diluted with EA, and washed with water, saturated aq ueous NH₄Cl, water, brine, dried and concentrated. Purification by column chromatograph y(PE/EA) through silica gel afforded the intermediate (0.703g, yield: 95.61%). ¹H NMR (50 0 MHz, DMSO-d₆): δ (ppm) 8.00 (d, *J* = 2.2 Hz, 1H), 7.44 (s, 1H), 7.32 (s, 2H), 2.60 (q, *J* = 7.3 Hz, 2H), 1.15 (t, *J* = 7.4 Hz, 3H).

c. 3-ethylbenzene-1,2-diamine: To a solution of 4-bromo-2-ethyl-6-nitroaniline (0.703g, 2.8683mmol, 1.0eq) in MeOH/THF(4:1 volume/volume 35ml) was added 10% Pd/C (0.050g) followed by KOH(0.177g, 3.1551mmol, 1.1eq). The mixture was degassed and purged with hydrogen and stirred at rt overnight. The solution was filtered and concentrated. Purification by column chromatography (DCM/MeOH) through silica gel afforded the intermediate (0.365g, 2.1885mmol, yield:76.30%.¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 6.41 (dd, *J* = 7.3, 1.4 Hz, 1H), 6.33 (m, 2H), 4.25 (s, 4H), 2.43 (q, *J* = 7.5 Hz, 2H), 1.10 (t, *J* = 7.5 Hz, 3H).

d. tert-butyl (2-amino-3-ethylphenyl)carbamate : the title compound was synthesized following the procedure of compound 9. Yield: 59.38%. ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 8.23 (s, 1H), 7.01 (d, *J* = 7.7 Hz, 1H), 6.78 (d, *J* = 7.4 Hz, 1H), 6.50 (t, *J* = 7.7 Hz, 1H), 4.53 (s, 2H), 2.47 (q, *J* = 7.5 Hz, 2H), 1.45 (s, 9H), 1.12 (t, *J* = 7.5 Hz, 3H).

N-(2-((5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)-3-fluorophenyl)

acrylamide (2k) was synthesized following the approach outlined in Scheme S1(Example 2 a)substituting 2-methyl-6-nitroaniline with 2-fluoro-6-nitroaniline.

¹H NMR (400 MHz, DMSO-d₆): δ(ppm) 9.70 (s, 1H), 8.25 (s, 2H), 8.24 (s, 1H), 7.71 (d, J = 8.3 Hz, 1H), 7.23 (td, J = 8.3, 6.1 Hz, 1H), 7.03 (dd, J = 13.5, 4.9 Hz, 1H), 7.00 (s, 1H), 6.56 (dd, J = 17.0, 10.2 Hz, 1H), 6.26 (dd, J = 17.0, 1.9 Hz, 1H), 5.75 (dd, J = 10.2, 1.9 Hz, 1H), 5.25 (s, 2H), 3.94 (s, 6H). ¹³C NMR (125 MHz, DMSO-d₆): δ(ppm) 163.60, 159.29, 157.33, 156.45, 154.38, 146.83, 146.15, 135.74, 135.71, 132.32, 131.57, 127.31, 125.96, 125.88, 120.21, 120.09, 118.53, 114.74, 111.67, 111.51, 99.14, 67.03, 56.76. HRMS (ESI) calcd for C22H19Cl2FN4O4 [M+H]⁺ : 493.08402; found 493.08402. HPLC purity=99.11%, Rt 6.51 min.

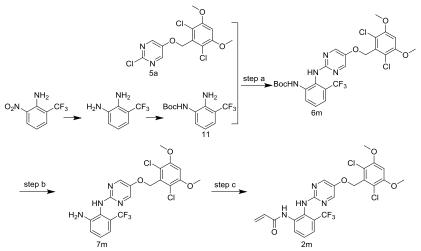
N-(3-chloro-2-((5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)phenyl)

acrylamide (2I) was synthesized following the approach outlined in Scheme S1(Example 2 a)substituting tert-butyl (2-amino-3-methylphenyl)carbamate with tert-butyl (2-amino-3-chlor ophenyl)carbamate (prepared by the method outlined below).

¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 9.59 (s, 1H), 8.32 (s, 1H), 8.23 (s, 2H), 8.00 – 7.83 (m, 1H), 7.30 – 7.23 (m, 2H), 6.99 (s, 1H), 6.57 (dd, *J* = 17.0, 10.2 Hz, 1H), 6.24 (dd, *J* = 17.0, 1.9 Hz, 1H), 5.73 (dd, *J* = 10.2, 1.8 Hz, 1H), 5.24 (s, 2H), 3.92 (d, *J* = 12.5 Hz, 6H). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm) 163.58, 156.69, 154.38, 146.68, 146.16, 137.03, 133.07, 132.30, 131.66, 129.21, 127.24, 126.79, 125.25, 121.51, 114.75, 99.14, 66.99, 56.76. HRMS (ESI) calcd for C22H19Cl3N4O4 [M+H]⁺ : 509.05446; found 509.05487. HPLC purity=98.22%, Rt 7.45 min.

Preparation of tert-butyl (2-amino-3-chlorophenyl)carbamate

a. 3-chlorobenzene-1,2-diamine


A mixture of 3-chloro-2-nitroaniline (1.51g, 8.75mmol, 1.0eq), iron powder(1.9547g, 35mmol,

4.0eq) and ammonium chloride(2.8082g, 52.5mmol, 6.0eq) in MeOH/water(3;1 volume/volume, 3:1, 100ml) was heated at reflux temperature for 3h. After cooling, the catalyst was removed and the filtrate was concentrated. The residue was dissolved with EA and washed with water, brine, dried and concentrated. Purification by column chromatography (PE/EA) through silica gel afforded the intermediate (0.8557g, yield: 68.59%).¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 6.51-6.46 (m, 2H), 6.38 (t, *J* = 7.8 Hz, 1H), 4.80 (s, 2H), 4.60 (s, 2H).

b. tert-butyl (2-amino-3-chlorophenyl)carbamate (compound 10)

The title compound was synthesized following the procedure of compound 9 in Scheme S1 substituting 3-chlorobenzene-1,2-diamine. ¹H NMR (400 MHz, DMSO-d₆): δ (ppm)8.47 (s, 1H), 7.20 (d, *J* = 7.8 Hz, 1H), 7.03 (dd, *J* = 8.0, 1.2 Hz, 1H), 6.56 (t, *J* = 8.0 Hz, 1H), 5.00 (s, 2H), 1.46 (s, 9H).

Scheme S3. Synthesis of compound 2m

Preparation of tert-butyl (2-amino-3-(trifluoromethyl)phenyl)carbamate (11):

a. 3-(trifluoromethyl)benzene-1,2-diamine

the title compound was synthesized following the procedure of compound 8 in Scheme S1 substituting 2-methyl-6-nitroaniline with 2-nitro-6-(trifluoromethyl)aniline. ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 6.74 (d, *J* = 7.6 Hz, 1H), 6.67 (dd, *J* = 7.9, 1.1 Hz, 1H), 6.49 (t, *J* = 7.8 Hz, 1H), 4.90 (s, 2H), 4.79 (s, 2H).

b. tert-butyl (2-amino-3-(trifluoromethyl)phenyl)carbamate (compound 11)

To a solution of 3-(trifluoromethyl)benzene-1,2-diamine (0.1761g, 1.0mmol, 1.0eq) dry THF(2.8ml, 2.8ml/mmol) containing DIEA(0.1258g, 1.0mmol, 1.0eq) was added Boc₂O (0.2162g, 1.0mmol, 1.0eq) and the mixture was heated to reflux overnight. The solution was then cooled, concentrated under reduced pressure, diluted with saturated aqueous EA, and washed brine, dried and concentrated. Purification by column chromatography (PE/EA) through silica gel afforded the intermediate (0.21g, yield: 76.05%). ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 8.49 (s, 1H), 7.40 (d, *J* = 7.8 Hz, 1H), 7.21 (d, *J* = 7.7 Hz, 1H), 6.67 (t, *J* = 7.9 Hz, 1H), 5.16 (s, 2H), 1.46 (s, 9H).

tert-butyl (2-((5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)-3-(trifluoromet hyl)phenyl)carbamate (6m):

To a solution of compound 11 (0.0607g, 0.22mmol, 1.1eq), compound 5a (0.070g, 1.0mmol, 1.0eq) and Na_2CO_3 (0.0848g, 0.8mmol, 4.0eq) in tert-amyl alcohol (0.2ml, 10ml/mmol), was

added tris-dibenzylamino dipalladium(0.0274g, 0.03mmol, 0.15eq) and Dave Phos(0.0236g, 0.06mmol, 0.3eq). The mixture was degassed and purged again with argon, then heated at 100 °C overnight. After cooling, the solvent was evaporated under reduced pressure. The residue was dissolved in DCM and filtered. The filtrate was concentrated. Purification by column chromatography(PE/EA) through silica gel afforded the intermediate (0.0280g, yield: 22.76%). ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 8.22 (s, 1H), 8.13 (s, 1H), 8.12 (s, 1H), 8.04-8.02 (m, 1H), 7.47-7.45 (m, 2H), 6.99 (m, 1H), 5.23 (s, 2H), 3.94 (s, 6H), 1.40 (s, 9H).

N¹-(5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)-6-(trifluoromethyl)benzene-1,2-di amine (7m):

The title compound was synthesized following the procedure of 7a in Scheme S1 substituting 6a with 6m. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 8.18 (s, 2H), 8.15 (s, 1H), 7.14 (t, *J* = 7.9 Hz, 1H), 7.00 (d, *J* = 6.3 Hz, 2H), 6.85 (d, *J* = 7.2 Hz, 1H), 5.21 (s, 2H), 3.96 (s, 6H).

N-(2-((5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)-3-(trifluoromethyl)phen yl)acrylamide (2m):

The title compound was synthesized following the procedure of 2a in Scheme S1 substituting 7a with 7m.

¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 9.45 (s, 1H), 8.23 (d, *J* = 7.6 Hz, 1H), 8.19 (s, 2H), 8.09 (s, 1H), 7.55-7.47 (m, 2H), 6.99 (s, 1H), 6.50 (dd, *J* = 17.0, 10.2 Hz, 1H), 6.19 (dd, *J* = 17.0, 1.8 Hz, 1H), 5.70 (dd, *J* = 10.2, 1.8 Hz, 1H), 5.22 (s, 2H), 3.94 (s, 6H). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm) 163.57, 157.49, 154.38, 146.67, 146.08, 138.11, 132.29, 131.53, 129.81, 128.59, 128.36, 127.27, 127.10, 124.66, 122.49, 122.26, 114.74, 99.16, 66.95, 56.76. HRMS (ESI) calcd for C23H19Cl2F3N4O4 [M+H]+ : 543.08082; found 543.08068. HPLC purity=96.34%, Rt 7.06 min.

N-(3-chloro-2-((5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)-5-fluorophenyl)acrylamide (2n) was synthesized following the approach outlined in Scheme S3 substituting compound 11 with tert-butyl (2-amino-3-chloro-5-fluorophenyl)carbamate (prepared according to the procedure of compound 10 with 2-chloro-4-fluoro-6-nitroaniline which was prepared by the method outlined below).

¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 9.63 (s, 1H), 8.34 (s, 1H), 8.24 (s, 2H), 8.02 (dd, J = 11.1, 2.8 Hz, 1H), 7.25 (dd, J = 8.2, 2.9 Hz, 1H), 7.00 (s, 1H), 6.65 (dd, J = 16.9, 10.2 Hz, 1H), 6.25 (dd, J = 17.0, 1.5 Hz, 1H), 5.75 (dd, J = 17.0, 1.5 Hz, 1H), 5.24 (s, 2H), 3.94 (s, 6H). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm) 163.84, 160.20, 158.27, 156.94, 154.38, 146.74, 146.15, 138.71, 138.60, 134.15, 134.05, 132.29, 131.58, 127.72, 125.07, 114.76, 111.79, 111.58, 107.56, 107.35, 99.17, 66.96, 56.76. HRMS (ESI) calcd for C22H18Cl3FN4O4 [M+H]+ : 527.04504; found 527.04544. HPLC purity=99.02%, Rt 8.90 min.

Preparation of 2-chloro-4-fluoro-6-nitroaniline

a. N-(2-chloro-4-fluorophenyl)acetamide

Acetic anhydride (20ml) was slowly added to 2-chloro-4-fluoroaniline (4.2212g, 29mmol) at 0° C. The mixture was then stirred at 100° C for 1h. After that, the reaction was poured into ice

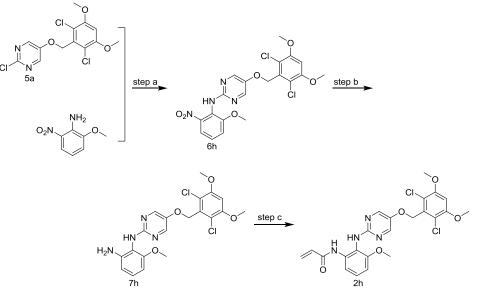
water and extracted with EA. The organic phase was concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel eluting with EA/PE afforded the desired product (2.801g, yield: 43.29%). ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 8.68 (s, 2H), 7.02 (s, 1H), 5.42 (s, 2H), 3.95 (s, 6H).

b. N-(2-chloro-4-fluoro-6-nitrophenyl)acetamide

To a solution of N-(2-chloro-4-fluorophenyl)acetamide (2.801g, 14.9339mmol) in acetic acid (2.9ml) and conc. H₂SO₄ (9.8ml) was drop-wise added a mixture of nitric acid (fuming, 1.31ml) and acetic acid (0.33ml) at 0 °C. The mixture was stirred at 0 °C for 1.5h. After that, the mixture was poured into ice water and stirred. Then, the mixture was filtered, and the cake was washed with water for several times (2.58g, yield: 74.39%) ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 10.19 (s, 1H), 7.99 (dd, J = 19.3, 7.4 Hz, 2H), 2.05 (s, 3H).

c. 2-chloro-4-fluoro-6-nitroaniline

Conc. HCl (30ml) was slowly added to b. N-(2-chloro-4-fluoro-6-nitrophenyl)acetamide (2.58g, 11.11 mmol) at room temperature. The mixture was then stirred at 120 °C for 1.25h. After that, the reaction was poured into ice water and extracted with EA. The organic phase was concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel eluting with EA/PE afforded the desired product (1.9404g, yield: 90.0%). ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 7.88 (s, 1H), 7.86 (s, 1H), 7.21 (s, 2H).


N-(3,5-dichloro-2-((5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)phenyl)acry lamide (20) was synthesized following the approach outlined in Scheme S3 substituting compound 11 with tert-butyl (2-amino-3,5-dichlorophenyl)carbamate (prepared according to the procedure of tert-butyl (2-amino-3-chlorophenyl)carbamate in compound 21 with 3,5-dichlorobenzene-1,2-diamine).

¹H NMR (400 MHz, DMSO-d₆): δ(ppm) 9.65 (s, 1H), 8.44 (s, 1H), 8.24 (s, 2H), 8.17 (d, J = 2.4 Hz, 1H), 7.42 (d, J = 2.4 Hz, 1H), 6.99 (s, 1H), 6.62 (dd, J = 17.0, 10.2 Hz, 1H), 6.25 (dd, J = 17.0, 1.8 Hz, 1H), 5.76 (dd, J = 10.4, 1.8 Hz,1H), 5.24 (s, 2H), 3.94 (s, 6H). ¹³C NMR (125 MHz, DMSO-d₆): δ(ppm) 163.82, 156.60, 154.38, 146.83, 146.13, 138.22, 134.10, 132.28, 131.46, 130.35, 127.88, 127.79, 124.18, 120.54, 114.75, 99.15, 66.96, 56.77.HRMS (ESI) calcd for C22H18Cl4N4O4 [M+H]+ : 545.01281; found 545.01328. HPLC purity=95.94%, Rt 10.93 min.

N-(3-chloro-2-((5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)-5-(trifluoromet hyl)phenyl)acrylamide (2p) was synthesized following the approach outlined in Scheme S3 substituting 3-(trifluoromethyl)benzene-1,2-diamine in with 3-chloro-5-(trifluoromethyl)benzene-1,2-diamine).

¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 9.81 (s, 1H), 8.72 (s, 1H), 8.43 (s, 1H), 8.27 (s, 2H), 7.67 (s, 1H), 7.00 (s, 1H), 6.62 (dd, *J* = 17.0, 10.2 Hz, 1H), 6.27 (d, *J* = 17.0 Hz, 1H), 5.78 (d, *J* = 10.4 Hz, 1H), 5.25 (s, 2H), 3.94 (s, 6H). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm) 164.01, 156.11, 154.39, 147.04, 146.13, 137.61, 133.77, 132.55, 132.24, 131.37, 127.93, 126.98, 126.72, 124.46, 122.29, 121.52, 117.66, 114.75, 99.16, 66.97, 56.77. HRMS (ESI) calcd for C23H18³⁵Cl3F3N4O4 [M+H]+ : 577.04185; found 577.04228. HPLC purity=96.74%, Rt 10.46 min.

Scheme S4. Synthesis of compound 2h

5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)-N-(2-methoxy-6-nitrophenyl)pyrimidin-2-amine (6h):

The title compound was synthesized following the procedure of 6a in Scheme S1 with compound 5a and 2-methoxy-6-nitroaniline. ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 8.70 (s, 1H), 8.23 (s, 2H), 7.50 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.39 (dd, *J* = 8.3, 1.2 Hz, 1H), 7.31 (t, *J* = 8.2 Hz, 1H), 6.99 (s, 1H), 5.25 (s, 2H), 3.94 (s, 6H), 3.85 (s, 3H).

N¹-(5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)-6-methoxybenzene-1,2-diamine (7h): To a solution of compound 6h (0.4144g, 0.8611mmol, 1.0eq) and NiCl₂ • 6H₂O(0.3070g, 1.2965mmol, 1.5eq) in MeOH/DCM(1:4, volume/volume, 7ml) was added NaBH₄(0.0831g, 2.1527mmol, 2.5eq) in portions at 0°C. The ice-bath was removed, and the resulting mixture was stirred at room temperature for 1.5h. The mixture was filtered, and the filtrate was evaporated to dryness under reduced pressure. The crude product was purified by flash column chromatography on silica gel eluting with DCM/MeOH afforded the desired product (0.1930g, yield: 49.65%). ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 8.14 (s, 2H), 7.66 (s, 1H), 6.99 (s, 1H), 6.89 (t, *J* = 8.1 Hz, 1H), 6.35 (d, *J* = 7.4 Hz, 1H), 6.22 (d, *J* = 7.6 Hz, 1H), 5.22 (s, 2H), 4.71 (s, 2H), 3.95 (s, 6H), 3.60 (s, 3H).

N-(2-((5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)-3-methoxyphenyl)acryl amide (2h): the title compound was synthesized following the procedure of 2a in Scheme S1 with compound 7h.

¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 9.42 (s, 1H), 8.17 (s, 2H), 7.80 (s, 1H), 7.52 (d, *J* = 8.1 Hz, 1H), 7.18 (t, *J* = 8.3 Hz, 1H), 6.98 (s, 1H), 6.85 (d, *J* = 8.4 Hz, 1H), 6.53 (dd, *J* = 17.0, 10.2 Hz, 1H), 6.21 (dd, *J* = 17.0, 1.9 Hz, 1H), 5.70 (dd, *J* = 10.2, 1.9 Hz, 1H), 5.23 (s, 2H), 3.93 (s, 6H), 3.67 (s, 3H). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm) 163.33, 157.33, 155.69, 154.37, 146.35, 146.22, 135.53, 132.39, 131.95, 126.76, 125.94, 120.62, 114.74, 107.96, 99.11, 67.15, 56.76, 55.62. HRMS (ESI) calcd for C23H22Cl2N4O5 [M+H]+ : 505.10400; found 505.10433. HPLC purity=95.27%, Rt 6.63 min. **N-(2-((5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)-3-ethoxyphenyl)**

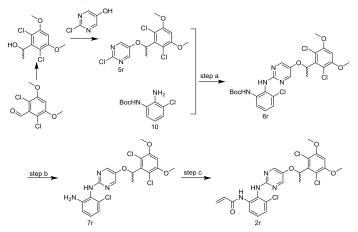
acrylamide (2i) was synthesized following the approach outlined in Scheme S4 substituting 2-methoxy-6-nitroaniline with 2-ethoxy-6-nitroaniline (prepared by the method outlined below.). ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 9.46 (s, 1H), 8.18 (s, 2H), 7.74 (s, 1H), 7.49 (d, *J* = 8.1 Hz,

1H), 7.14 (t, J = 8.2 Hz, 1H), 6.99 (s, 1H), 6.81 (d, J = 7.7 Hz, 1H), 6.55 (dd, J = 16.9, 10.2 Hz, 1H), 6.22 (dd, J = 17.0, 1.9 Hz, 1H), 5.71 (dd, J = 10.2, 1.8 Hz, 1H), 5.24 (s, 2H), 3.98 – 3.82 (m, 8H), 1.05 (t, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm) 163.31, 157.40, 154.83, 154.36, 146.39, 146.16, 135.28, 132.42, 131.95, 126.75, 125.69, 121.05, 114.69, 109.03, 99.07, 67.27, 63.53, 56.74, 14.43. HRMS (ESI) calcd for C24H24Cl2N4O5 [M+H]+ : 519.11965; found 519.12003. HPLC purity=97.02%, Rt 7.48 min.

Preparation of 2-ethoxy-6-nitroaniline

To a solution of 2-amino-3-nitrophenol(1.2329g, 8mmol, 1.0eq) in DMF(6.4ml, 0.8ml/mmol) at room temperature was added K₂CO₃(1.2162g, 8.8mmol, 1.1eq) and iodoethane (1.3728g, 8.8mmol, 1.1eq). The reaction mixture was stirred overnight, then the solvent was removed in vacuo. The residue was diluted with NH₄Cl (saturated) and extract EA, and the extract was washed water, brine and dried and concentrated. Purification by column chromatography (PE/EA) through silica gel afforded the intermediate (1.2752g, yield: 87.5%). ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 7.63 – 7.53 (m, 1H), 7.07 (d, *J* = 7.7 Hz, 1H), 6.99 (s, 2H), 6.65 – 6.52 (m, 1H), 4.11 (q, *J* = 6.9 Hz, 2H), 1.39 (t, *J* = 7.0 Hz, 3H).

N-(2-((5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)-3-isopropoxyphenyl)acr ylamide (2j) was synthesized following the approach outlined in Scheme S4 substituting 2-methoxy-6-nitroaniline with 2-isopropoxy-6-nitroaniline (prepared according to the procedure of 2-ethoxy-6-nitroaniline).


¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 9.43 (s, 1H), 8.17 (s, 2H), 7.67 (s, 1H), 7.50 (d, J = 8.1 Hz, 1H), 7.13 (t, J = 8.2 Hz, 1H), 6.98 (s, 1H), 6.80 (d, J = 7.9 Hz, 1H), 6.56 (dd, J = 17.0, 10.2 Hz, 1H), 6.22 (dd, J = 17.0, 1.8 Hz, 1H), 5.70 (dd, J = 10.2, 1.8 Hz, 1H), 5.24 (s, 2H), 4.49-4.44 (m, 1H), 3.93 (s, 6H), 1.04 (d, J = 6.0 Hz, 6H). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm) 163.28, 157.58, 154.35, 153.73, 146.38, 146.24, 135.70, 132.43, 132.00, 126.69, 125.66, 121.68, 114.68, 114.35, 110.14, 99.03, 69.75, 67.35, 56.72, 21.68. HRMS (ESI) calcd for C25H26Cl2N4O5 [M+H]+ : 533.13530; found 533.13497. HPLC purity=95.98%, Rt 8.40 min.

N-(3-chloro-2-((5-(1-(2,6-dichloro-3,5-dimethoxyphenyl)ethoxy)pyrimidin-2-yl)amino)phenyl) Propionamide (2q):

To a solution of compound 6l (see compound 2l) (0.3645g, 0.7998mmol, 1.0eq) in dry DCM(6.4ml, 8ml/mmol) containing DIEA(0.1547g, 1.2mmol, 1.5eq) was added propionyl chloride (0.0884g, 0.96mmol, 1.2eq) drop-wise at 0 $^{\circ}$ C. The mixture was stirred at 0 $^{\circ}$ C for 3h. Then water was added and diluted with DCM. The organic layer was wash with brine, dried and concentrated. Purification by column chromatography (DCM/MeOH) through silica gel afforded the desired product (0.2g, yield: 48.85%).

¹H NMR (400 MHz, DMSO-d₆): δ (ppm): 9.31 (s, 1H), 8.29 (s, 1H), 8.23 (s, 2H), 7.81 (d, *J* = 7.0 Hz, 1H), 7.34 – 7.15 (m, 2H), 6.99 (s, 1H), 5.24 (s, 2H), 3.94 (s, 6H), 2.31 (q, *J* = 7.5 Hz, 2H), 1.00 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm): 172.39, 156.64, 154.39, 146.66, 146.24, 137.14, 132.92, 132.31, 129.00, 126.70, 124.88, 121.48, 114.75, 99.11, 67.04, 56.76, 29.27, 9.60. ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm) 172.39, 156.64, 154.39, 146.66, 146.24, 137.14, 132.92, 132.31, 129.00, 126.70, 124.88, 121.48, 114.75, 99.11, 67.04, 56.76, 29.27, 9.60. ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm) 172.39, 156.64, 154.39, 146.66, 146.24, 137.14, 132.92, 132.31, 129.00, 126.70, 124.88, 121.48, 114.75, 99.11, 67.04, 56.76, 29.27, 9.60. HRMS (ESI) calcd for C22H21Cl3N4O4 [M+H]+ : 511.07012; found 511.07033. HPLC purity=99.06%, Rt 7.92min.

Scheme S5. Synthesis of compound 2r

Preparation of 2-chloro-5-(1-(2,6-dichloro-3,5-dimethoxyphenyl)ethoxy)pyrimidine (5r): a. 1-(2,6-dichloro-3,5-dimethoxyphenyl)ethan-1-ol

Under an atmosphere of argon, a solution of methylmagnesium bromide(1.3ml, 1.5eq, 1M) was added to a solution of 2,6-dichloro-3,5-dimethoxybenzaldehyde (prepared according to the procedure reported in Synthetic Communication, 30(12), 2133-2141; 2000) (0.2077g, 0.8838mmol, 1.0eq) in anhydrous THF(1.5ml, 1.7ml/mmol) at 0 °C. The ice bath was removed, and the reaction was stirred for 2h. The reaction was quenched with a solution of saturated aqueous ammonium chloride. The organic layer were washed with brine, dried over Na₂SO₄, and filtered. The solvent was removed in vacuo. Column chromatography (PE/EA) afforded the intermediate alcohol (0.171g, yield: 77.08%). ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 6.82 (s, 1H), 5.50 (qd, *J* = 6.8, 4.8 Hz, 1H), 5.24 (d, *J* = 4.7 Hz, 1H), 3.90 (d, *J* = 7.1 Hz, 6H), 1.44 (d, *J* = 6.8 Hz, 3H).

b. 2-chloro-5-(1-(2,6-dichloro-3,5-dimethoxyphenyl)ethoxy)pyrimidine (5r)

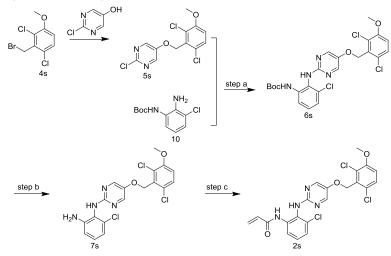
To a solution of triphenylphosphine(1.0765g, 4.104mmol, 6.0eq) in dry THF(13.5ml, 3.3ml/mmol) at 0°C was added drop-wise DIAD(0.8298g, 4.104mmol, 6.0eq). The suspension was stirred at 0 °C for 15 min. A solution of 1-(2,6-dichloro-3,5-dimethoxyphenyl)ethan-1-ol (0.171g, 0.6840mmol, 1.0eq) in THF(3.67ml, 5.36ml/mmol) was added drop-wise , followed by 2-chloropyrimidin-5-ol (0.3571g, 2.736mmol, 4.0eq) as a solid. The ice-bath was removed and the mixture stirred at rt overnight. 1M NaOH(2.8ml) and water(6ml) were added and the mixture was extracted with ethyl acetate. The organic phase was washed with brine, dried, and concentrated. Purification by column chromatography (PE/EA) through silica gel afforded the desired product (0.1271g, yield: 51.12%). ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 8.29 (s, 2H), 6.89 (s, 1H), 6.25 (q, J = 6.6 Hz, 1H), 3.89 (s, 6H), 1.74 (d, J = 6.6 Hz, 3H).

tert-butyl (3-chloro-2-((5-(1-(2,6-dichloro-3,5-dimethoxyphenyl)ethoxy)pyrimidin-2-yl)amino) phenyl)carbamate (6r):

The title compound was synthesized following the procedure of compound 6a in Scheme S1 with compound 5r and compound 10. ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 8.32 (s, 1H), 8.30 (s, 1H), 7.94 (s, 2H), 7.71 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.28 – 7.07 (m, 2H), 6.86 (s, 1H), 6.01 (q, *J* = 6.6 Hz, 1H), 3.88 (s, 6H), 1.69 (d, *J* = 6.6 Hz, 3H), 1.40 (s, 9H).

6-chloro-N1-(5-(1-(2,6-dichloro-3,5-dimethoxyphenyl)ethoxy)pyrimidin-2-yl)benzene-1,2-diami ne(7r):

The title compound was synthesized following the procedure of compound 7a in Scheme S1 with


compound 6r. ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 8.13 (s, 1H), 7.91 (s, 2H), 6.91 (t, *J* = 8.0 Hz, 1H), 6.86 (s, 1H), 6.63 (dd, *J* = 8.1, 1.2 Hz, 1H), 6.58 (dd, *J* = 7.9, 1.2 Hz, 1H), 5.99 (q, *J* = 6.6 Hz, 1H), 5.03 (s, 2H), 3.89 (s, 6H), 1.68 (d, *J* = 6.6 Hz, 3H).

N-(3-chloro-2-((5-(1-(2,6-dichloro-3,5-dimethoxyphenyl)ethoxy)pyrimidin-2-yl)amino)phenyl) Acrylamide (2r):

The title compound was synthesized following the procedure of compound 2a in Scheme S1 with compound 7r.

¹H NMR (400 MHz, DMSO-d₆): δ(ppm) 9.55 (s, 1H), 8.28 (s, 1H), 7.94 (s, 2H), 7.89 (dd, J = 7.2, 1.9 Hz, 1H), 7.29 – 7.13 (m, 2H), 6.86 (s, 1H), 6.52 (dd, J = 17.0, 10.2 Hz, 1H), 6.20 (dd, J = 17.0, 1.8 Hz, 1H), 6.01 (q, J = 6.5 Hz, 1H), 5.69 (dd, J = 10.2, 1.7 Hz, 1H), 3.89 (s, 6H), 1.69 (d, J = 6.6 Hz, 3H). ¹³C NMR (125 MHz, DMSO-d₆): δ(ppm) 163.55, 156.37, 154.57, 145.95, 144.99, 136.91, 135.38, 132.83, 131.63, 129.08, 127.10, 126.69, 125.23, 121.55, 112.39, 98.08, 74.02, 56.63. HRMS (ESI) calcd for C23H21Cl3N4O4 [M+H]+ : 523.07012; found 523.06996. HPLC purity=98.79%, Rt 9.72min.

Scheme S6. Synthesis of compound 2s

2-chloro-5-((2,6-dichloro-3-methoxybenzyl)oxy)pyrimidine (5s):

The title compound was synthesized following the procedure of compound 5a in Scheme S1 substituting 2-(bromomethyl)-1,3-dichloro-4-methoxybenzene (prepared by the according to the procedure in WO 2006049952).

¹H NMR (400 MHz, DMSO-d₆): δ(ppm) 8.70 (s, 2H), 7.55 (d, J = 9.0 Hz, 1H), 7.30 (d, J = 9.0 Hz, 1H), 5.42 (s, 2H), 3.90 (s, 3H).

tert-butyl (2-((5-((2,6-dichloro-3-methoxybenzyl)oxy)pyrimidin-2-yl)amino)-3-methylphenyl) carbamate (6s):

The title compound was synthesized following the procedure of compound 6a in Scheme S1 with compound 10 and compound 5s.

¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 8.40 (s, 1H), 8.34 (s, 1H), 8.26 (s, 2H), 7.76 (dd, J = 7.6, 1.9 Hz, 1H), 7.51 (d, J = 9.0 Hz, 1H), 7.26 (d, J = 9.0 Hz, 1H), 7.23-7.18 (m, 2H), 5.24 (s, 2H), 3.89 (s, 3H), 1.44 (s, 9H).

6-chloro-N¹-(5-((2,6-dichloro-3-methoxybenzyl)oxy)pyrimidin-2-yl)benzene-1,2-diamine (7s):

The title compound was synthesized following the procedure of compound 7a in Scheme S1 with compound 6s.

¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 8.21 (d, J = 4.3 Hz, 3H), 7.51 (d, J = 9.0 Hz, 1H), 7.25 (d, J = 1.3 Hz, 3H), 7.51 (d, J = 9.0 Hz, 1H), 7.25 (d, J = 1.3 Hz, 3H), 7.51 (d, J = 1.3 Hz

9.0 Hz, 1H), 6.93 (t, *J* = 8.0 Hz, 1H), 6.67 (dd, *J* = 8.1, 1.3 Hz, 1H), 6.62 (dd, *J* = 7.9, 1.3 Hz, 1H), 5.22 (s, 2H), 5.08 (s, 2H), 3.89 (s, 3H).

N-(3-chloro-2-((5-((2,6-dichloro-3-methoxybenzyl)oxy)pyrimidin-2-yl)amino)phenyl)acrylamide (2s):

The title compound was synthesized following the procedure of compound 2a in Scheme S1 with compound 7s.

¹H NMR (400 MHz, DMSO-d₆): δ(ppm) 9.61 (s, 1H), 8.35 (s, 1H), 8.25 (s, 2H), 7.93 (dd, J = 7.7, 1.7 Hz, 1H), 7.51 (d, J = 9.0 Hz, 1H), 7.35 – 7.20 (m, 3H), 6.58 (dd, J = 17.0, 10.2 Hz, 1H), 6.24 (dd, J = 17.0, 1.9 Hz, 1H), 5.73 (dd, J = 10.2, 1.9 Hz, 1H), 5.23 (s, 2H), 3.89 (s, 3H). ¹³C NMR (125 MHz, DMSO-d₆): δ(ppm) 163.57, 156.71, 154.04, 146.66, 146.19, 137.02, 133.07, 132.05, 131.66, 129.20, 128.56, 127.24, 126.80, 126.33, 125.25, 124.21, 121.51, 114.33, 67.02, 56.64.HRMS (ESI) calcd for C21H17Cl3N4O3 [M+H]+ : 479.04390; found 479.04415. HPLC purity=95.61%, Rt 7.52 min.

N-(3-chloro-2-((5-((2-chloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)phenyl)acrylamide (2t) was synthesized following the approach outlined in Scheme S6 (example 2s) with modified procedure of step b (as shown below) starting with 1-(bromomethyl)-2-chloro-3,5-dimethoxybenzene (prepared according to the procedure reported in Journal of Chemistry, 78 (9), 420-4626; 2013).

¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 9.59 (s, 1H), 8.30 (s, 1H), 8.22 (s, 2H), 7.92 (d, J = 7.3 Hz, 1H), 7.32 – 7.15 (m, 2H), 6.76 (d, J = 2.6 Hz, 1H), 6.72 (d, J = 2.6 Hz, 1H), 6.56 (dd, J = 17.0, 10.2 Hz, 1H), 6.23 (dd, J = 17.0, 1.7 Hz, 1H), 5.73 (dd, J = 10.2, 1.6 Hz, 1H), 5.10 (s, 2H), 3.86 (s, 3H), 3.78 (s, 3H). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm) 163.57, 158.79, 156.52, 155.56, 146.43, 146.08, 137.00, 135.53, 133.03, 131.65, 129.23, 127.24, 126.77, 125.26, 121.52, 112.22, 106.53, 99.66, 68.82, 56.30, 55.57. HRMS (ESI) calcd for C22H20Cl2N4O4 [M+H]+ : 475.09344; found 475.09355. HPLC purity=97.23%, Rt 7.80 min.

Modified procedure of step b:

Tothesolutionoftert-butyl(3-chloro-2-((5-((2-chloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)phenyl)carbamate(6r)(0.4974g, 0.9534mmol, 1.0eq) in toluene(2ml, 40ml/g) was added silica gel(0.05728g, 9.534mmol,10eq) (100-200 mesh), the mixture was refluxed overnight. The solution was evaporated underreduced pressure and purified by silica gel column chromatography (DCM/MeOH) (0.1305g, yield:28.79%).

¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 8.18 (s, 3H), 6.93 (t, *J* = 8.0 Hz, 1H), 6.76 (d, *J* = 2.6 Hz, 1H), 6.71 (d, *J* = 2.6 Hz, 1H), 6.66 (d, *J* = 8.2 Hz, 1H), 6.61 (d, *J* = 7.9 Hz, 1H), 3.86 (s, 3H), 3.78 (s, 3H), 3.37 (s, 1H).

N-(3-chloro-2-((5-((2,6-dichlorobenzyl)oxy)pyrimidin-2-yl)amino)phenyl)acrylamide (2u) was synthesized following the approach outlined in Scheme S6 (example 2s) starting with 2-(bromomethyl)-1,3-dichlorobenzene.

¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 9.60 (s, 1H), 8.34 (s, 1H), 8.26 (s, 2H), 7.92 (d, J = 7.7 Hz, 1H), 7.55 (d, J = 7.8 Hz, 2H), 7.47 (dd, J = 8.7, 7.4 Hz, 1H), 7.24 – 7.30 (m, 2H), 6.57 (dd, J = 17.0, 10.2 Hz, 1H), 6.24 (dd, J = 17.0, 1.6 Hz, 1H), 5.74 (dd, J = 10.2, 1.8 Hz, 1H), 5.24 (s, 2H). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm) 163.57, 156.74, 146.63, 146.23, 137.03, 136.03, 133.07, 131.70, 131.66, 131.30, 129.19, 128.77, 127.25, 126.81, 125.25, 121.52, 66.74. HRMS (ESI) calcd for C20H15Cl3N4O2 [M+H]+ : 449.03334; found 449.03365. HPLC purity=97.84%, Rt 8.16 min.

Compounds **2v-2z** were synthesize according to procedures for compound **2t** with corresponding substituted benzyl bromides.

N-(3-chloro-2-((5-((2-chloro-3-methoxybenzyl)oxy)pyrimidin-2-yl)amino)phenyl)acrylamide (2v):

¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 9.60 (s, 1H), 8.30 (s, 1H), 8.22 (s, 2H), 7.92 (d, *J* = 7.5 Hz, 1H), 7.34 (t, *J* = 8.0 Hz, 1H), 7.29-7.24 (m, 2H), 7.18-7.15 (m, 2H), 6.56 (dd, *J* = 17.0, 10.2 Hz, 1H), 6.23 (dd, *J* = 17.0, 1.7 Hz, 1H), 5.73 (dd, *J* = 10.2, 1.6 Hz, 1H), 5.14 (s, 2H), 3.87 (s, 3H). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm) 163.57, 156.50, 154.79, 146.47, 146.01, 136.98, 135.23, 133.04, 131.65, 129.24, 127.69, 127.24, 126.76, 125.26, 121.59, 121.52, 120.71, 112.56, 68.74, 56.23. HRMS (ESI) calcd for C21H18Cl2N4O3 [M+H]+ : 445.08287; found 445.08328. HPLC purity=98.52%, Rt 7.04 min.

N-(3-chloro-2-((5-((2-chloro-5-methoxybenzyl)oxy)pyrimidin-2-yl)amino)phenyl)acrylamide (2w):

¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 9.59 (s, 1H), 8.31 (s, 1H), 8.24 (s, 2H), 7.92 (d, *J* = 7.7 Hz, 1H), 7.40 (d, *J* = 8.8 Hz, 1H), 7.32 – 7.19 (m, 2H), 7.17 (d, *J* = 3.0 Hz, 1H), 6.97 (dd, *J* = 8.8, 3.1 Hz, 1H), 6.56 (dd, *J* = 17.0, 10.2 Hz, 1H), 6.23 (dd, *J* = 17.0, 1.7 Hz, 1H), 5.73 (dd, *J* = 10.2, 1.7 Hz, 1H), 5.10 (s, 2H), 3.76 (s, 3H). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm) 163.59, 158.20, 156.56, 146.43, 146.11, 137.02, 134.84, 133.05, 131.65, 130.19, 129.24, 127.24, 126.77, 125.26, 123.79, 121.52, 115.99, 115.29, 68.72, 55.50. HRMS (ESI) calcd for C21H18Cl2N4O3 [M+H]+ : 445.08287; found 445.08328. HPLC purity=98.52%, Rt 7.04 min.

N-(3-chloro-2-((5-((3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)phenyl)acrylamide (2x):

¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 9.60 (s, 1H), 8.26 (s, 1H), 8.19 (s, 2H), 7.92 (d, J = 6.9 Hz, 1H), 7.35 – 7.16 (m, 2H), 6.64 – 6.49 (m, 3H), 6.45 (s, 1H), 6.23 (dd, J = 17.0, 1.8 Hz, 1H), 5.72 (dd, J = 10.2, 1.7 Hz, 1H), 5.03 (s, 2H), 3.73 (s, 6H). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm) 163.57, 160.53, 156.32, 146.40, 145.90, 138.88, 136.98, 133.03, 131.65, 129.28, 127.24, 126.74, 125.25, 121.49, 105.60, 99.69, 70.62, 55.18. HRMS (ESI) calcd for C22H21CIN4O4 [M+H]+ : 441.13241; found 441.13218. HPLC purity=96.52%, Rt 6.80 min.

N-(3-chloro-2-((5-((2-chlorobenzyl)oxy)pyrimidin-2-yl)amino)phenyl)acrylamide (2y):

¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 9.60 (s, 1H), 8.31 (s, 1H), 8.24 (s, 2H), 7.92 (dd, J = 7.6, 1.7 Hz, 1H), 7.67 – 7.56 (m, 1H), 7.56 – 7.46 (m, 1H), 7.46 – 7.33 (m, 2H), 7.32 – 7.17 (m, 2H), 6.56 (dd, J = 17.0, 10.2 Hz, 1H), 6.24 (dd, J = 17.0, 1.9 Hz, 1H), 5.73 (dd, J = 10.0, 1.9 Hz, 1H), 5.15 (s, 2H). ¹³C NMR (125 MHz, DMSO-d₆): δ (ppm) 163.57, 156.53, 146.47, 146.05, 136.99, 133.87, 133.05, 132.82, 131.64, 130.51, 130.11, 129.41, 129.24, 127.33, 127.24, 126.77, 125.26, 121.52, 68.69. HRMS (ESI) calcd for C20H16Cl2N4O2 [M+H]+ : 415.07231; found 415.07259. HPLC purity=99.08%, Rt 7.66 min.

N-(3-chloro-2-((5-((3-methoxybenzyl)oxy)pyrimidin-2-yl)amino)phenyl)acrylamide (2z):

¹H NMR (500 MHz, DMSO-d₆): δ(ppm) 9.60 (s, 1H), 8.27 (s, 1H), 8.20 (s, 2H), 7.92 (d, J = 7.4 Hz, 1H), 7.31-7.23 (m, 3H), 6.99 (s, 2H), 6.90 (dd, J = 8.1, 1.7 Hz, 1H), 6.56 (dd, J = 17.0, 10.2 Hz, 1H), 6.23 (dd, J = 17.0, 1.7 Hz, 1H), 5.72 (dd, J = 10.2, 1.7 Hz, 1H), 5.07 (s, 2H), 3.75 (s, 3H). ¹³C NMR (125 MHz, DMSO-d₆): δ(ppm) 163.58, 159.34, 156.32, 146.46, 145.90, 138.12, 136.99, 133.05, 131.66, 129.56, 129.30, 127.25, 126.74, 125.27, 121.51, 119.92, 113.53, 113.30. HRMS (ESI) calcd for C21H19CIN4O3 [M+H]+ : 411.12184; found 411.12159. HPLC purity=96.82%, Rt 6.44 min.

Computational Study. All the procedure was performed in Maestro 9.9 (Schrodinger LLC). The crystal structures of FGFR4 and FGFR1 were taken from PDB ID 4XCU and 3TT0, respectively. The covalent bond between the inhibitor (BLU9931) and the protein (FGFR4, PDB ID: 4XCU) was delete, Then, the protein was processed using the "Protein Preparation Wizard" workflow in Maestro 9.9 (Schrodinger LLC) to adding bond orders and add hydrogens. All hetatm residues and crystal water molecules beyond 5A from het group were removed. 2a were built by in LigPrep module using OPLS-2005 force field. Glide module (Covalent Docking) was used as docking program. Michael Addition was chose as the reaction type. CYS552 was chose as the reactive residue. The docking box was placed on the centroid of the binding ligand in the optimized crystal structure as described above. Covalent docking approach of Glide was adopted to dock 2a to FGFR4 with the default parameters.

In Vitro Enzymatic Activity Assay. FGFR^{WT} (FGFR1, PV3146; FGFR2, PV3368; FGFR3, PV3145; FGFR4, P3054) and the Z'-Lyte Kinase Assay Kit were purchased from Invitrogen. The experiments were performed according to the instructions of the manufacturer. The concentrations of kinases were determined by optimization experiments and the respective concentration was: FGFR 0.22 μ g/ μ L. First, the compounds were diluted three-fold from 5.1×10^{-9} M to 1×10^{-4} M in DMSO and a 400 μ M compound solution was prepared (4 μ L compound dissolved in 96 μ L water). Second, a 100 μ L ATP solution in 1.33×Kinase Buffer was prepared. Third, a kinase/peptide mixture containing 2×kinase and 4 µM Tyr 4 peptide (Invitrogen, PV3193) was prepared right before use. The final 10 μ L reaction consists of 0.002 ng of FGFR, 2 μ M Tyr4 peptide in 1×kinase buffer. For each assay, 10 μ L kinase reactions were made at first (including 2.5 μ L compound solution, 5 μ L Kinase/Peptide Mixture, and 2.5 µL ATP solution). Mixed the plate thoroughly and incubated for one hour at room temperature. Then 5 μ L development solution was added to each well and the plate was incubated for 1h at room temperature; the nonphosphopeptides were cleaved at this time. In the end, 5 μ L stop reagent was loaded to stop the reaction. For the control setting, 5 μ L phospho-peptide solution instead of kinase/peptide mixture was used as 100% phosphorylation control. 2.5 µL 1.33×Kinase Buffer instead of ATP solution was used as 100% inhibition control, and 2.5 µL 4% DMSO instead of compound solution was used as the 0% inhibitor control. The plate was measured on an EnVision Multilabel Reader (Perkin-Elmer). Curve fitting and data presentations were performed using Graph Pad Prism, version 5.0. Every experiment was repeated at least 3 times.

Cell Culture. The human breast cancer cell lines MDA-MB-453, MDA-MB-231 and MCF-7 were purchased from American type culture collection (ATCC). MDA-MB-453 and MDA-MB-231 cells were maintained in RPMI-1640, and MCF-7 cells were maintained in DMEM. They all were supplemented with 10% FBS, 100 U/mL penicillin, 50 mg/mL streptomycin, and 2 mmol/L glutamine in a humidified CO₂ incubator at 37°C. All cells were passaged for less than 3 months before renewal from frozen, early-passage stocks obtained from the indicated sources.

Cell Proliferation Assay. Tumor cells were seeded (2,500 cells per well) in 96-well plates in complete medium and cultured overnight, and then were treated with a dilution series of test compounds for 72 h. Cell proliferation was evaluated by Cell Counting Kit 8(CCK8, CK04, Dojindo laboratories, Japan). IC50 values were calculated by concentration-response cure fitting using GraphPad Prism 5.0 software. Each IC50 value was expressed as mean±SD.

Western Blot Analysis. The western blot analysis was carried out by following the protocol described before. Briefly, after the indicated treatment, cell lysates were collected dissolving cells in 1×SDS sample lysis buffer (CST recommended). After being sonicated and boiled, the supernatant of cell lysate were used for western blot analysis. Cell lysates were loaded to 8-12% SDS-PAGE and separated by electrophoresis. Separated proteins were then electrically transferred to a PVDF film. After being blocked with 1×TBS containing 0.5% Tween-20 and 5% non-fat milk, the film was incubated with corresponding primary antibody followed by HRP-conjugated secondary antibody. And the protein lanes were visualized using ECL Western Blotting Detection Kit (Thermo Scientific, USA).

KINOMEscanTM: kinase-tagged T7 phase strains were prepared in an E. coli host derived from the BL21 strain. E. coil were grown to log-phase and infected with T7 phage and incubated with shaking at 32° C until lysis. The lysates were centrifuged and filtered to remove cell debris. The remaining kinases were produced in HEK-293 cells and subsequently tagged with DNA for qPCR detection. Streptavidin-coated magnetic beads were treated with blocking buffer (SeaBlock (Pierce), 1% BSA, 0.05% Tween 20, 1mM DTT) to remove unbound ligand and to reduce non-specific binding. Binding reactions were assembled by combining kinases, liganded affinity beads, and test compounds in 1x binding buffer (20% SeaBlock (Pierce), 0.17x BSA, 0.05% Tween 20, 1mM DTT). All reactions were performed in polystyrene 96-well plates in a final volume of 0.135 ml. The assay plates were incubated at room temperature with shaking for 1 hour and the affinity beads were washed with wash buffer (1x PBS, 0.05% Tween 20, 0.5 μ M non-biotinylated affinity ligand) and incubated at room temperature with shaking for 30 minutes. The kinase concentration in the eluates was measured by qPCR.

For Kd determination, an 11-point 3-fold serial dilution of compound 2n was prepared in 100% DMSO at 100x final test concentration and subsequently diluted to 1x in the assay (final DMSO concentration = 1%). Binding constants (Kds) were calculated with a standard dose-response curve using the Hill equation.

For primary screening, compound 2n was screened at the concentration of 1μ M/L, and the results are reported as '% Ctrl'.

Table S2. Matrix of Compound Screen for inhibitor 2n

Gene Symbol	%Ctrl @ 1000nM	Gene Symbol	%Ctrl @ 1000nM	Gene Symbol	%Ctrl @ 1000nM
BRK	100	AAK1	100	CSNK1G2	100
BRSK1	100	ABL1(E255K)-phosphorylated	100	CSNK1G3	96
BRSK2	99	ABL1(F317I)-nonphosphorylated	100	CSNK2A1	99
BTK	100	ABL1(F317I)-phosphorylated	100	CSNK2A2	100
BUB1	93	ABL1(F317L)-nonphosphorylated	100	СТК	100
CAMK1	100	ABL1(F317L)-phosphorylated	100	DAPK1	87
CAMK1B	100	ABL1(H396P)-nonphosphorylated	100	DAPK2	91
CAMK1D	5.3	ABL1(H396P)-phosphorylated	100	DAPK3	83
CAMK1G	100	ABL1(M351T)-phosphorylated	100	DCAMKL1	82
CAMK2A	91	ABL1(Q252H)-nonphosphorylated	100	DCAMKL2	94
CAMK2B	97	ABL1(Q252H)-phosphorylated	100	DCAMKL3	86
CAMK2D	100	ABL1(T315I)-nonphosphorylated	100	DDR1	100
CAMK2G	100	ABL1(T315I)-phosphorylated	96	DDR2	96
CAMK4	86	ABL1(Y253F)-phosphorylated	100	DLK	100
CAMKK1	98	ABL1-nonphosphorylated	87	DMPK	89
CAMKK2	99	ABL1-phosphorylated	97	DMPK2	100
CASK	95	ABL2	100	DRAK1	100
CDC2L1	100	ACVR1	100	DRAK2	100
CDC2L2	100	ACVR1B	82	DYRK1A	88
CDC2L5	100	ACVR2A	100	DYRK1B	37
CDK11	92	ACVR2B	99	DYRK2	98
CDK2	98	ACVRL1	76	EGFR	87
CDK3	92	ADCK3	100	EGFR(E746-A750del)	96
CDK4	100	ADCK4	100	EGFR(G719C)	96
CDK4-cyclinD1	96	AKT1	100	EGFR(G719S)	80
CDK4-cyclinD3	100	AKT2	97	EGFR(L747-E749del, A750P)	89
CDK5	89	AKT3	80	EGFR(L747-S752del, P753S)	100
CDK7	100	ALK	90	EGFR(L747-T751del,Sins)	64
CDK8	63	ALK(C1156Y)	100	EGFR(L858R)	97
CDK9	100	ALK(L1196M)	92	EGFR(L858R,T790M)	100
CDKL1	91	AMPK-alpha1	96	EGFR(L861Q)	88
CDKL2	93	AMPK-alpha2	100	EGFR(S752-I759del)	93
CDKL3	94	ANKK1	100	EGFR(T790M)	100
CDKL5	100	ARK5	100	EIF2AK1	100
CHEK1	100	ASK1	98	EPHA1	100
CHEK2	100	ASK2	92	EPHA2	100
CIT	86	AURKA	100	EPHA3	100
CLK1	99	AURKB	90	EPHA4	100
CLK2	94	AURKC	90	EPHA5	88
CLK3	100	AXL	100	EPHA6	100
CLK4	99	BIKE	89	EPHA7	92
CSF1R	100	BLK	100	EPHA8	99
CSF1R-autoinhibited	100	BMPR1A	100	EPHB1	100
CSK	100	BMPR1B	100	EPHB2	100
CSNK1A1	100	BMPR2	97	EPHB3	100
CSNK1A1L	100	BMX	100	EPHB4	100
CSNK1D	96	BRAF	100	EPHB6	100
CSNK1E	100	BRAF(V600E)	100	ERBB2	83
CSNK1G1	100			ERBB3	55

Gene Symbol	%Ctrl @ 1000nM	Gene Symbol	%Ctrl @ 1000nM	Gene Symbol	%Ctrl @ 1000nM
ERBB4	100	ICK	100	MAPKAPK2	70
ERK1	99	IGF1R	87	MAPKAPK5	100
ERK2	82	IKK-alpha	91	MARK1	98
ERK3	100	IKK-beta	90	MARK2	81
ERK4	92	IKK-epsilon	100	MARK3	100
ERK5	100	INSR	100	MARK4	100
ERK8	94	INSRR	100	MAST1	61
ERN1	100	IRAK1	100	MEK1	100
FAK	96	IRAK3	100	MEK2	92
FER	95	IRAK4	100	MEK3	100
FES	100	ІТК	100	MEK4	100
FGFR1	100	JAK1(JH1domain-catalytic)	100	MEK5	92
FGFR2	100	JAK1(JH2domain-pseudokinase)	100	MEK6	100
FGFR3	100	JAK2(JH1domain-catalytic)	89	MELK	100
FGFR3(G697C)	96	JAK3(JH1domain-catalytic)	49	MERTK	100
FGFR4	0.5	JNK1	100	MET	100
FGR	98	JNK2	100	MET(M1250T)	77
FLT1	92	JNK3	100	MET(Y1235D)	99
FLT3	81	КІТ	100	MINK	100
FLT3(D835H)	84	KIT(A829P)	100	MKK7	97
FLT3(D835V)	95	KIT(D816H)	100	MKNK1	100
FLT3(D835Y)	100	KIT(D816V)	99	MKNK2	100
FLT3(ITD)	91	KIT(L576P)	99	MLCK	100
FLT3(ITD,D835V)	100	KIT(V559D)	100	MLK1	100
FLT3(ITD,F691L)	100	KIT(V559D,T670I)	100	MLK2	100
FLT3(K663Q)	100	KIT(V559D,V654A)	100	MLK3	97
FLT3(N841I)	62	KIT-autoinhibited	100	MRCKA	100
FLT3(R834Q)	100	LATS1	94	MRCKB	100
FLT3-autoinhibited	100	LATS2	100	MST1	100
FLT4	94	LCK	96	MST1R	97
FRK	100	LIMK1	100	MST2	91
FYN	93	LIMK2	100	MST3	99
GAK	100	LKB1	86	MST4	100
GCN2(Kin.Dom.2,S808G)	88	LOK	91	MTOR	54
GRK1	100	LRRK2	100	MUSK	100
GRK2	100	LRRK2(G2019S)	100	MYLK	89
GRK3	100	LTK	98	MYLK2	93
GRK4	7.8	LYN	100	MYLK4	100
GRK7	100	LZK	98	MYO3A	100
GSK3A	98	MAK	97	MYO3B	93
GSK3B	83	MAP3K1	91	NDR1	98
HASPIN	90	MAP3K15	100	NDR2	100
HCK	90	MAP3K2	90	NEK1	100
HIPK1	85	МАРЗКЗ	100	NEK10	100
HIPK2	100	MAP3K4	100	NEK11	100
HIPK3	99	MAP4K2	100	NEK2	100
HIPK4	100	MAP4K3	100	NEK3	79
HPK1	92	MAP4K4	100	NEK4	95
HUNK	100	MAP4K5	100	NEK5	100

Gene Symbol	%Ctrl @ 1000nM	Gene Symbol	%Ctrl @ 1000nM
NEK6	77	PIP5K1A	100
NEK7	100	PIP5K1C	68
NEK9	81	PIP5K2B	90
NIK	100	PIP5K2C	88
NIM1	100	PKAC-alpha	82
NLK	94	PKAC-beta	58
OSR1	100	PKMYT1	98
p38-alpha	100	PKN1	100
p38-beta	96	PKN2	92
p38-delta	100	PKNB(M.tuberculosis)	95
p38-gamma	92	PLK1	100
PAK1	100	PLK2	100
PAK2	100	PLK3	88
PAK3	99	PLK4	100
PAK4	100	PRKCD	100
PAK6	100	PRKCE	64
PAK7	100	PRKCH	98
PCTK1	100	PRKCI	100
PCTK2	100	PRKCQ	71
PCTK3	100	PRKD1	98
PDGFRA	100	PRKD2	100
PDGFRB	100	PRKD3	99
PDPK1	100	PRKG1	66
PFCDPK1(P.falciparum)	76	PRKG2	100
PFPK5(P.falciparum)	100	PRKR	99
PFTAIRE2	96	PRKX	100
PFTK1	100	PRP4	100
PHKG1	100	PYK2	100
PHKG2	86	QSK	81
PIK3C2B	100	RAF1	100
PIK3C2G	100	RET	100
PIK3CA	100	RET(M918T)	100
PIK3CA(C420R)	100	RET(V804L)	99
PIK3CA(E542K)	99	RET(V804M)	100
PIK3CA(E545A)	99	RIOK1	99
PIK3CA(E545K)	63	RIOK2	100
PIK3CA(H1047L)	100	RIOK3	97
PIK3CA(H1047Y)	100	RIPK1	99
PIK3CA(I800L)	93	RIPK2	100
PIK3CA(M1043I)	100	RIPK4	98
PIK3CA(Q546K)	100	RIPK5	88
PIK3CB	100	ROCK1	100
PIK3CD	100	ROCK2	100
PIK3CG	96	ROS1	94
PIK4CB	99	RPS6KA4(Kin.Dom.1-N-terminal)	66
PIKFYVE	66	RPS6KA4(Kin.Dom.2-C-terminal)	100
PIM1	94	RPS6KA5(Kin.Dom.1-N-terminal)	100
PIM2	97	RPS6KA5(Kin.Dom.2-C-terminal)	100
PIM3	100	RSK1(Kin.Dom.1-N-terminal)	100
		•	

Gene Symbol	%Ctrl @ 1000nM	Gene Symbol	%Ctrl @ 1000nM
RSK1(Kin.Dom.2-C-terminal)	100	TRPM6	100
RSK2(Kin.Dom.1-N-terminal)	98	TSSK1B	100
RSK2(Kin.Dom.2-C-terminal)	100	TSSK3	58
RSK3(Kin.Dom.1-N-terminal)	96	ттк	65
RSK3(Kin.Dom.2-C-terminal)	95	тхк	100
RSK4(Kin.Dom.1-N-terminal)	97	TYK2(JH1domain-catalytic)	100
RSK4(Kin.Dom.2-C-terminal)	90	TYK2(JH2domain-pseudokinase)	100
S6K1	98	TYRO3	100
SBK1	100	ULK1	100
SGK	100	ULK2	99
SgK110	100	ULK3	100
SGK2	89	VEGFR2	100
SGK3	100	VPS34	100
SIK	86	VRK2	100
SIK2	100	WEE1	95
SLK	97	WEE2	100
SNARK	100	WNK1	100
SNRK	91	WNK2	100
SRC	75	WNK3	100
SRMS	100	WNK4	100
SRPK1	100	YANK1	100
SRPK2	100	YANK2	100
SRPK3	12	YANK3	100
STK16	100	YES	97
STK33	97	YSK1	100
STK35	100	YSK4	100
STK36	100	ZAK	100
STK39	72	ZAP70	91
SYK	97		
TAK1	100		
TAOK1	100		
TAOK2	100		
TAOK3	100		
TBK1	92		
TEC	100		
TESK1	100		
TGFBR1	100		
TGFBR2	86		
TIE1	100		
TIE2	94		
TLK1	100		
TLK2	100		
TNIK	94		
TNK1	100		
71000	100		

Table S3. S-score Table for 2n

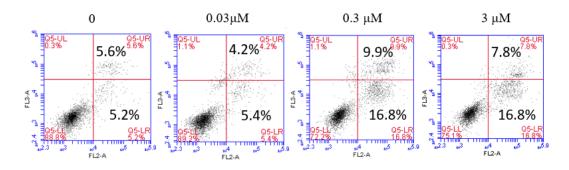
100 100

100

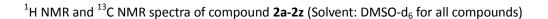
100

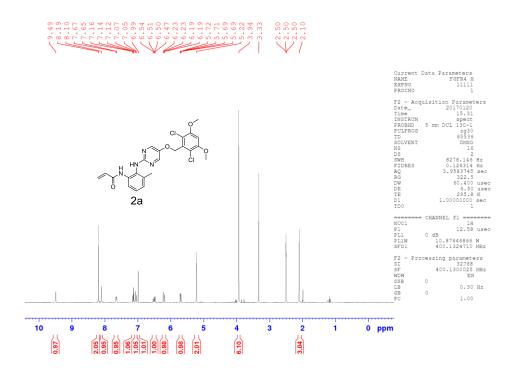
100

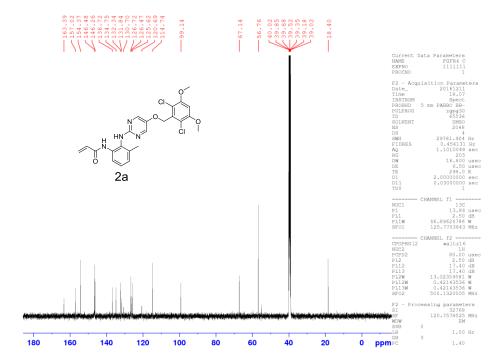
TNK2 TNNI3K

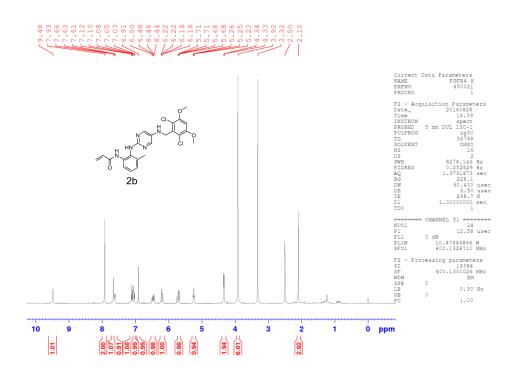

TRKA

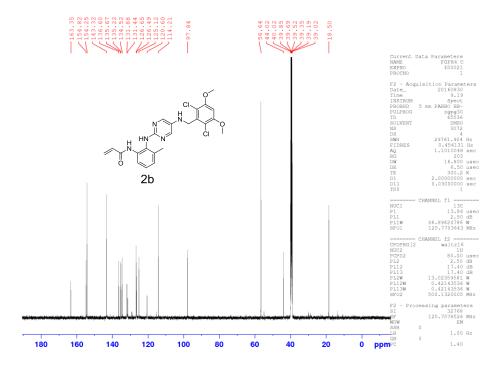
TRKB

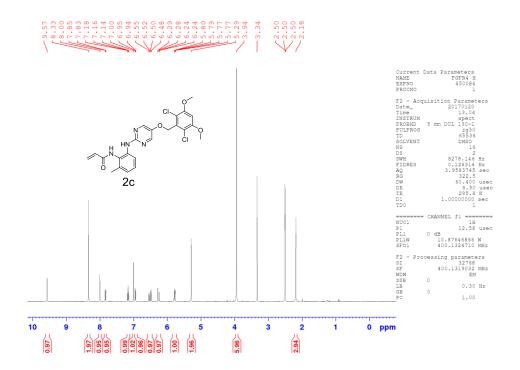

TRKC

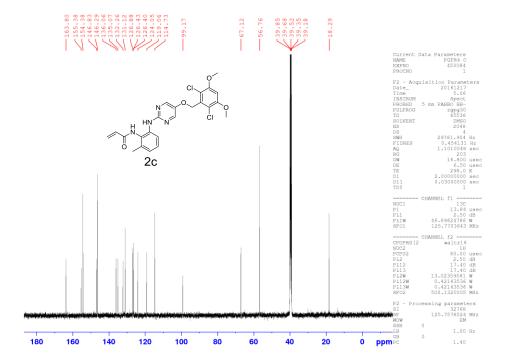

Compd	Selectivity Score Type	Number of hits	Number of Non-Mutant Kinases	Screening Concentration (nM)	Selectivity Score
	S(35)	4	403	1000	0.01
2n	S(10)	3	403	1000	0.007
	S(1)	1	403	1000	0.002

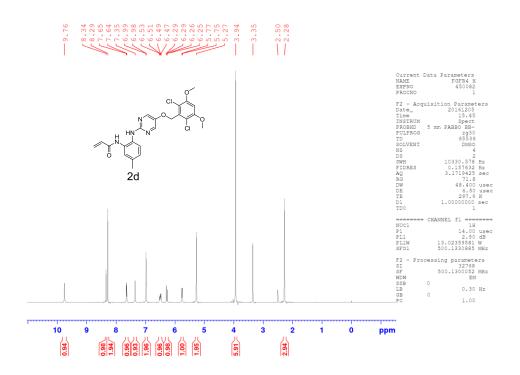

Figure S2. Compound 2n induces apoptosis in MDA-MB-453.

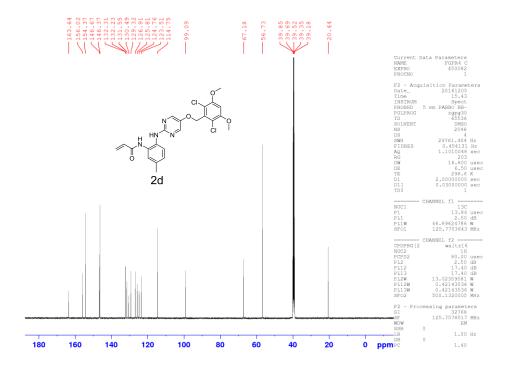


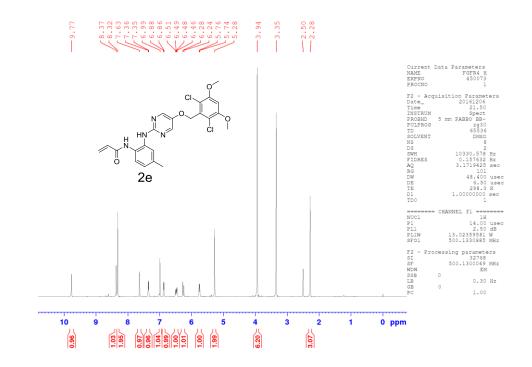

*MDA-MB-453 Cells were treated with 0.03 μ M, 0.3 μ M, 3 μ M compound **2n** for 48h before analysis by annexin V/7-ADD staining.

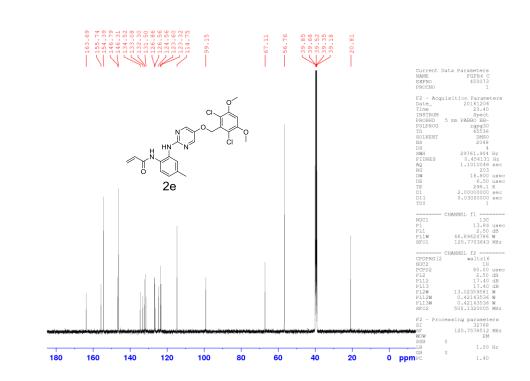


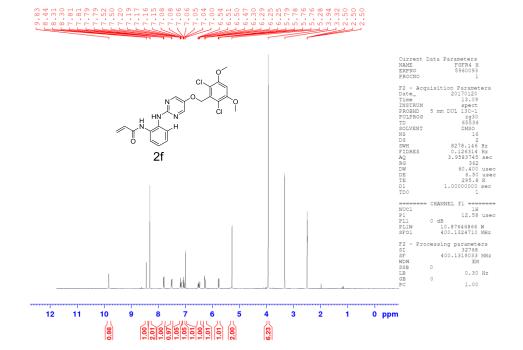


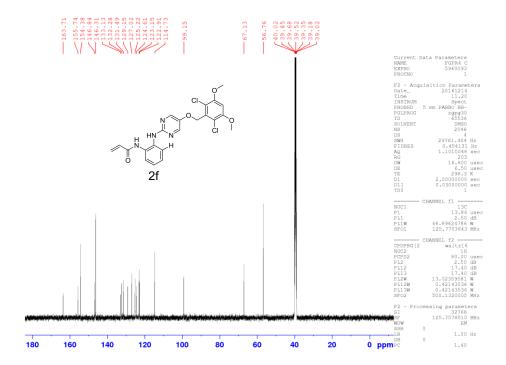


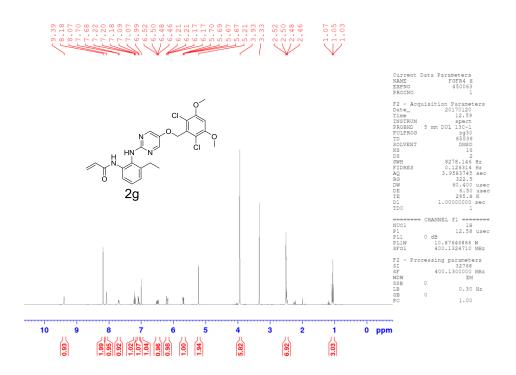


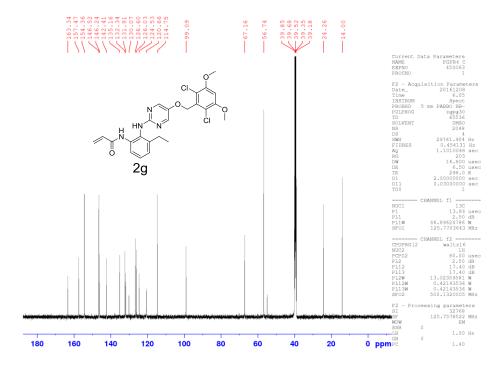


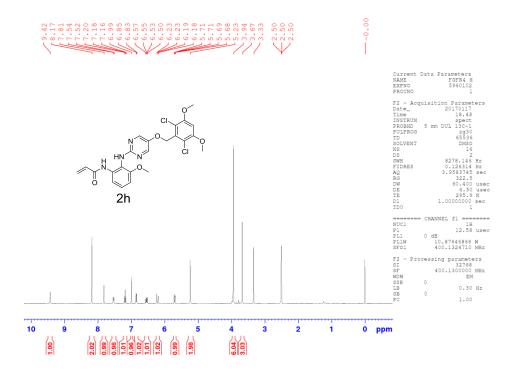











Briker

