Triconoids A–D, Four Limonoids Possess Two Rearranged

Carbon Skeletons from Trichilia connaroides

Guo-Cai Wang,[†] Yao-Yue Fan,[†] Sajan L. Shyaula,[‡] and Jian-Min Yue*,[†]

[†]State Key Laboratory of Drug Research, Shanghai Institute of MateriaMedica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, P. R. China

[‡]Nepal Academy of Science and Technology, Khumaltar, Lalitpur, GPO Box: 3323, Kathmandu, Nepal

List of Supporting Information

S1. Experimental Section	4
S2. Physical and Chemical Data	6
Table S1. X-ray crystallographic data for triconoid A (1)	7

Figure S1. ¹ H NMR spectrum of triconoid A (1) in CDCl ₃	8
Figure S2. ¹³ C NMR spectrum of triconoid A (1) in CDCl ₃	9
Figure S3. HSQC spectrum of triconoid A (1) in CDCl ₃	10
Figure S4. HMBC spectrum of triconoid A (1) in CDCl ₃	11
Figure S5. ¹ H- ¹ H COSY spectrum of walsunoid A (1) in CDCl ₃	12
Figure S6. NOESY spectrum of triconoid A (1) in CDCl ₃	13
Figure S7. ESI(+)MS spectrum of triconoid A (1)	14
Figure S8. HRESI(+)MS spectrum of triconoid A (1)	15
Figure S9. IR spectrum of triconoid A (1)	16

Figure S10. ¹ H NMR spectrum of triconoid B (2) in CDCl ₃	17
Figure S11. ¹³ C NMR spectrum of triconoid B (2) in CDCl ₃	18
Figure S12. HSQC spectrum of triconoid B (2) in CDCl ₃	19
Figure S13. HMBC spectrum of triconoid B (2) in CDCl ₃	20
Figure S14. ¹ H- ¹ H COSY spectrum of triconoid B (2) in CDCl ₃	21
Figure S15. NOESY spectrum of triconoid B (2) in CDCl ₃	22
Figure S16. ESI(+)MS spectrum of triconoid B (2)	23
Figure S17. HRESI(+)MS spectrum of triconoid B (2)	24
Figure S18. IR spectrum of triconoid B (2)	25

Figure S19. ¹ H NMR spectrum of triconoid C (3) in CDCl ₃	26
Figure S20. ¹³ C NMR spectrum of triconoid C (3) in CDCl ₃	27
Figure S21. HSQC spectrum of triconoid C (3) in CDCl ₃	28
Figure S22. HMBC spectrum of triconoid C (3) in CDCl ₃	29

Figure S23. ¹ H- ¹ H COSY spectrum of triconoid C (3) in CDCl ₃	.30
Figure S24. NOESY spectrum of triconoid C (3) in CDCl ₃	.31
Figure S25. ESI(+)MS spectrum of triconoid C (3)	.32
Figure S26. ESI(–)MS spectrum of triconoid C (3)	.33
Figure S27. HRESI(–)MS spectrum of triconoid C (3)	.34
Figure S28. IR spectrum of triconoid C (3)	.35

DCl ₃ 36
DCl ₃ 37
Cl ₃ 39
n CDCl ₃ 40
Cl ₃ 41
42
43
44

S1. Experimental Section

General Experimental Procedures

Melting point was acquired on a SGM X-4 apparatus (Shanghai Precision & Scientific Instrument Co., Ltd., P.R. China). Optical rotations were measured by a an AutopolVI polarimeter at 300 K. UV spectra were obtained on a Shimadzu UV-2550 UV-visible spectrophotometer. IR spectra were acquired on a Perkin-Elmer 577 spectrometer with KBr disks. ECD data were carried out on a JASCO 810 Spectrophotometer. NMR data were performed on Bruker AM-500 NMR spectrometers with TMS as internal standard. ESI(+)MS and HRESI(+)MS experiments were recorded on an Esquire 3000 plus LCMS and a Waters Q-TOF Ultima Global mass spectrometers. The X-ray crystallographic data were obtained on a Bruker SMART CCD detector employing graphite monochromated Cu-Ka radiation. Semi-preparative HPLC was carried out on a Waters 1525 pump equipped with a Waters 2489 detector and YMC-Pack ODS-A column (250 × 10 mm, S-5 µm, 12 nm). MCI gel (CHP20P, 75-150 µm, Mitsubishi Chemical Industries Ltd., Japan), Sephadex LH-20 gel (Amersham Biosciences, Sweden), Silica gel (Silica gel H, 100-200 mesh, 200-300 mesh, 300-400 mesh, Qingdao Haiyang Chemical Co., Ltd., Qingdao, P. R. China), and C18 reversed-phase silica gel (150-200 mesh, Merck, Germany) were used for column chromatography. TLC analyses were carried out on pre-coated silica gel GF254 plates (Qingdao Haiyang Chemical Co., Ltd., Qingdao, P. R. China). All solvents used for column chromatography were of analytical grade (ShanghaiChemical Reagents Co., Ltd., Shanghai, P. R. China), and solvents used for HPLC were of HPLC grade (J & K Scientific Ltd., Shanghai, P. R. China).

Plant Material

The leaves and twigs of *Trichilia connaroides* were collected in August 2013 at Shivapuri Nagarjun National Park, Nepal, and were identified via comparison with the herbarium specimen deposited at the National Herbarium Laboratory, Department of Plant Resources, Godawari, Nepal. A voucher specimen has been deposited in Shanghai Institute of Materia Medica, Chinese Academy of Sciences (Deposition no. TC-2013-1Y).

Extraction and isolation

The air-dried powder of the branches of T. connaroides (9 Kg) was extracted with 95% EtOH (20 L) three times (for one week each time) at room temperature to obtain a crude extract (250 g). The extract was partitioned between EtOAc (3 \times 1.0 L) and H₂O (1.0 L) to afford EtOAc-soluble fraction (50 g), which was then separated into five fractions (A-E) by MCI gel column eluted with MeOH/H2O (50% to 90%). Fraction D was separated over a silica gel CC eluted with petroleum ether/acetone (15:1 to 1:3) to produce six fractions (D1-D6). Fraction D3 was fractionated by Sephadex LH-20 gel eluted with MeOH to obtain four fractions (D3a-D3d). Fraction D3d was subjected to a silica gel CC eluted with CH₃Cl/CH₃OH (200:1 to 50:1) to return a major component, which was further purified by semi-preparative HPLC (3.0 mL/min, 49% CH₃CN-H₂O) to afford compound 4 (5 mg). Fraction D4 was separated by a column of silica gel eluted with CH₃Cl/CH₃OH (200:1 to 50:1) to obtain two fractions (D4a-D4b), and the second fraction was subjected to a C18 reversed-phase silica gel eluted with MeOH/ H_2O (50 to 100%) to give three fractions (D4b1–D4b3). Compounds 3 (8 mg) was obtained via semi-preparative HPLC (3.0 mL/min, 45% CH₃CN-H₂O) from fraction D4b1. Compound 1 (38 mg) was crystallized form the fraction D5 in MeOH at room temperature, and the mother liquor of this fraction was then separated using a silica gel eluted with petroleum ether/acetone(5:1 to 1:1) to obtain two fractions (D5a and D5b). The fraction D5b was subjected to a column of C18 reversed-phase silica gel eluted with MeOH/H₂O (50 to 100%) to afford three components (D5b1–D5b3), and compound 2 (1.4 mg) was obtained from fraction D5b3 via purification on semi-preparative HPLC (3.0 mL/min, 45% CH₃CN-H₂O).

X-ray crystallographic analysis

Triconoid A (1) was crystallized from MeOH at room temperature. The X-ray crystallographic data of 1 was obtained on a Bruker SMART CCD detector employing graphite monochromated Cu-K α radiation ($\lambda = 1.54178$ Å) at 140(2) K (operated in the ϕ - ω scanmode). The structure was solved by direct method using SHELXS-97 (Sheldrick 2008) and refined with full-matrix least-squares calculations on F2 using SHELXL-97 (Sheldrick2008).All

non-hydrogen atoms were refined anisotropically. The hydrogen atom positions were geometrically idealized and allowed to ride on their parent atoms.

Crystallographic data for **1** (Table S1) has been deposited at the Cambridge Crystallographic Data Center (deposition numbers: CCDC 1523294 for **1**). The copy of the data can be acquired free of charge on application to the CCDC, 12 Union Road, Cambridge CB21EZ, UK [tel: (+44) 1223-336-408; fax: (+44) 1223-336-033; e-mail: <u>deposit0@ccdc.cam.ac.uk</u>].

S2. Physical and Chemical Data

Triconoid A (1) : colorless crystals; mp 146–148 °C; $[\alpha]^{27}_{D}$ –66 (*c* 0.15, MeOH); UV (MeOH) λ_{max} (log ε) 217 (4.00), 264 (3.40) nm; ECD (MeOH) λ ($\Delta \varepsilon$) 194 (–14.9), 213 (6.8), 235 (–3.0), 293 (–3.5) nm; IR (KBr) ν_{max} 2946, 1789, 1727, 1269, 1212, 1023, 734 cm⁻¹; ¹H and ¹³C NMR data see Table 1; (+)-ESIMS *m*/*z* 604 [M + H]⁺, 1229 [2 M + Na]⁺; (+)-HRESIMS *m*/*z* 604.2181 [M + H]⁺ (calcd for C₃₃H₃₄NO₁₀ 604.2183).

Triconoid B (2) : white powder; $[\alpha]^{27}_{D}$ –64 (*c* 0.2, MeOH); UV (MeOH) λ_{max} (log ε) 211 (4.2), 264 (3.70) nm; ECD (MeOH) λ ($\Delta \varepsilon$) 196 (–9.8), 213 (13.8), 239 (–2.8), 294 (–6.4) nm; IR (KBr) ν_{max} 3463, 2923, 1794, 1731, 1273, 1213, 1025, 738 cm⁻¹; ¹H and ¹³C NMR data see Table 1; (+)-ESIMS *m*/*z* 620 [M + H]⁺; (–)-ESIMS *m*/*z*664 [M + COOH][–]; (+)-HRESIMS *m*/*z* 620.2126 [M + H]⁺ (calcd for C₃₃H₃₄NO₁₁ 620.2132).

Triconoid C (**3**): white powders; $[\alpha]^{27}_{D}$ +36 (*c* 0.3, MeOH); UV (MeOH) λ_{max} (log ε) 212 (4.1) nm; ECD (MeOH) λ ($\Delta \varepsilon$) 193 (–12.4), 216 (10.7), 295 (–2.7) nm; IR (KBr) ν_{max} 3461, 2946, 1788, 1727, 1220, 1048, 1029, 735 cm⁻¹; ¹H and ¹³C NMR data see Table 1; (+)-ESIMS m/z499 [M + H]⁺, 1019 [2 M + Na]⁺; (–)-HRESIMS m/z497.1814 [M – H]⁻ (calcd for C₂₇H₂₉O₉ 497.1812).

Triconoid D (4) : white powder; $[\alpha]^{27}_{D}$ –113 (*c* 0.5, MeOH); UV (MeOH) λ_{max} (log ε) 206 (4.4) nm; ECD (MeOH) λ ($\Delta \varepsilon$) 201 (–63.5), 230 (17.5) nm; IR (KBr) ν_{max} 2925, 1781, 1740, 1708, 1262, 1025, 731 cm⁻¹; ¹H and ¹³C NMR data see Table 1; (+)-ESIMS *m*/*z* 601 [M +Na]⁺; (+)-HRESIMS *m*/*z* 601.2039 [M + Na]⁺ (calcd for C₃₂H₃₄O₁₀Na 601.2050).

Empirical formula	$C_{33}H_{33}NO_{10}{\cdot}CH_{3}OH$					
Formula weight	635.64					
Temperature	296(2) K					
Wavelength	1.54178 Å					
Crystal system	Orthorhombic					
Space group	P 21 21 21					
Unit cell dimensions	$a = 8.2479(3)$ Å, $\alpha = 90^{\circ}$					
	$b = 13.1646(4)$ Å, $\beta = 90.180(2)^{\circ}$					
	$c = 28.6827(9) \text{ A}, \gamma = 90^{\circ}$					
Volume	3114.38(18)A ³					
Z	4					
Calculated density	1.356 Mg/m ³					
Absorption coefficient	0.847 mm^{-1}					
F(000)	1344					
Crystal size	0.230*0.120*0.060 mm ³					
Theta range for data collection	3.081 to 69.618 °					
Index ranges	-8<=h<=9, -15<=k<=15, -34<=l<=28					
Reflections collected	20753					
Independent reflections	5624 [R(int) = 0.0348]					
Completeness to theta = 67.679°	98.3 %					
Absorption correction	Semi-empirical from equivalents					
Max. and min. transmission	0.7532 and 0.5972					
Refinement method	Full-matrix least-squares on F ²					
Data / restraints / parameters	5624 / 39 / 417					
Goodness-of-fit on F ²	1.092					
Final R indices [I>2o(I)]	R1 = 0.0500, wR2 = 0.1471					
R indices (all data)	R1 = 0.0526, wR2 = 0.1505					
Absolute structure parameter	0.09(6)					
Extinction coefficient	n/a					
Largest diff. peak and hole	0.477 and –0.647 e. ${\rm \AA}^{-3}$					
^{a} Colorless crystals of triconoid A (1) were obtained in methanol solvent.						

Table S1. X-ray crystallographic data for triconoid A (1)^a

Figure S1. ¹H NMR spectrum of triconoid A (1) in CDCl₃

Figure S2. ¹³C NMR spectrum of triconoid A (1) in CDCl₃

Figure S3. HSQC spectrum of triconoid A (1) in CDCl₃

Figure S4. HMBC spectrum of triconoid A (1) in CDCl₃

Figure S5. ¹H-¹H COSY spectrum of walsunoid A (1) in CDCl₃

fl (ppm)

Figure S6. NOESY spectrum of triconoid A (1) in CDCl₃

Figure S7. ESI(+)MS spectrum of triconoid A (1)

14

Figure S8. HRESI(+)MS spectrum of triconoid A (1)

Elemental	Compositio	n Report							Page 1
Single Mas Tolerance = Element pre Number of is	ss Analysis 3.0 PPM / [diction: Off sotope peaks (DBE: min = -1. used for i-FIT	5, max = = 3	50.0					
Monoisotopic 727 formula(e Elements Use C: 5-80 H: MTC-11	Mass, Even Ele e) evaluated with ed: 2-120 N: 0-;	ectron lons h 1 results withi 2 O: 0-20 I	n limits (up Na: 0-1	to 50 close	est results for e EKE324	each mass)			01-Jul-2014
MTC-11_0701	33 (0.726) AM2 (A	Ar,10000.0,0.00,1	.00); AB\$; (Cm (30:48)				1: 1	TOF MS ES+
100 -			604.2181						2.956+004
%-			60	5.2223					
0	581.4316	592.4427 595	6 4431	06.2228	618.2321 626	637.441	⁵ 642.1731	646.2660	656.3478m/z
v	580.0	590.0 6	0.00	610.0	620.0	630.0	640.0	650.0	
Minimum: Maximum:		5.0	3.0	-1.5 50.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm) Form	nula	
604.2181	604.2183	-0.2	-0.3	17.5	125.9	0.0	C33	H34 N	010

Figure S9. IR spectrum of triconoid A (1)

Figure S10. ¹H NMR spectrum of triconoid B (2) in CDCl₃

Figure S11. ¹³C NMR spectrum of triconoid B (2) in CDCl₃

Figure S12. HSQC spectrum of triconoid B (2) in CDCl₃

Figure S13. HMBC spectrum of triconoid B (2) in CDCl₃

Figure S14. ¹H-¹H COSY spectrum of triconoid B (2) in CDCl₃

Figure S15. NOESY spectrum of triconoid B (2) in CDCl₃

Figure S16. ESI(+)MS spectrum of triconoid B (2)

Display Report

Figure S17. HRESI(+)MS spectrum of triconoid B (2)

Elementa	ıl Composi	ition Repo	rt						F	Page 1
Single Ma Tolerance Element pr Number of	ass Analys = 3.0 PPM rediction: Off isotope pea	i s / DBE: min ks used for i	i = -1.5, ma i-FIT = 3	x = 50.0						
Monoisotopi 245 formula Elements U: C: 5-80 H MTC-16	ic Mass, Even (e) evaluated sed: 1: 2-120 O	Electron Ion with 1 results : 0-20 Na:	s s within limits 0-1	s (up to 50 closest LCT PXE KI	results for e E324	ach mass)			01-	Jul-2014
MTC-16_070	1 33 (0.725) AN	//2 (Ar,10000.0	,0.00,1.00); A	BS; Cm (29:44)					1: TOF	16:05:57 MS ES+
100					603.2	209			2.	11e+004
%-						604.2243				
۰. ا	562.1923	567.1705	581.239 578.1703	5 582.2435 592.2214	600.2084	605.2262	619,1949	626.297	⁷⁴ 632.0	3456 ,
0	560.0	570.0	580.0	590.0	600.0	610.0	620.0		630.0	m/z
Minimum: Maximum:		5.0	3.0	-1.5) 50.0						
Mass	Calc. Ma	ss mDa	₽ PPM	I DBE	i-FIT	1-FIT	(Norm) Form	ula		
603.2209	603.2206	0.3	0.5	14.5	97.6	0.0	C32	H36	010	Na

Figure S18. IR spectrum of triconoid B (2)

Figure S19. ¹H NMR spectrum of triconoid C (3) in CDCl₃

Figure S20. ¹³C NMR spectrum of triconoid C (3) in CDCl₃

Figure S21. HSQC spectrum of triconoid C (3) in CDCl₃

Figure S22. HMBC spectrum of triconoid C (3) in CDCl₃

Figure S23. ¹H-¹H COSY spectrum of triconoid C (3) in CDCl₃

Figure S24. NOESY spectrum of triconoid C (3) in CDCl₃

Figure S25. ESI(+)MS spectrum of triconoid C (**3**)

Bruker Daltonics DataAnalysis 3.1 printed: 07/04/14 09:03:04

Page 1 of 1

Figure S26. ESI(–)MS spectrum of triconoid C (**3**)

Figure S27. HRESI(–)MS spectrum of triconoid C (3)

Elemental	Composit	ion Report						Page 1
Single Ma Tolerance = Element pre Number of is	ss Analysi 3.0 PPM / diction: Off sotope peak	s DBE: min = -1.5 s used for i-FIT =	5, max = 50 3	0.0				
Monoisotopic 97 formula(e) Elements Use C: 5-80 H: MTC-18	Mass, Even evaluated wi ed: 2-120 O:	Electron lons th 1 results within li 0-20	imits (up to	50 closest	results for ead (E324	ch mass)		27-Aug-2014
MTC-18_0827	13 (0.284) AM	2 (Ar,10000.0,0.00,1.0	00); ABS; Cm	ı (7:13)				10:27:46 1: TOF MS ES-
			4	97.1814				6.17e+003
%_								
-				498.18	351			
489.849	2 491.5230	493.7577 494.3802	496.5611		499.1879	501.1758 502.1740	505.1	506.0201
490.0) 492.() 494.0	496.0	498.0	500.0	502.0	504.0	506.0 m/z
Minimum: Maximum:		5.0	3.0	-1.5 50.0				
Mass	Calc. Mas	s mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula	
497.1814	497.1812	0.2	0.4	13.5	85.3	0.0	C27 H29	09

Figure S28. IR spectrum of triconoid C (3)

Figure S29. ¹H NMR spectrum of triconoid D (4) in CDCl₃

Figure S30. ¹³C NMR spectrum of triconoid D (4) in CDCl₃

Figure S31. HSQC spectrum of triconoid D (4) in CDCl₃

Figure S32. HMBC spectrum of triconoid D (4) in CDCl₃

Figure S33. ¹H-¹H COSY spectrum of triconoid D (4) in CDCl₃

Figure S34. NOESY spectrum of triconoid D (4) in CDCl₃

Figure S35. ESI(+)MS spectrum of triconoid D (4)

Display Report

Bruker Daltonics DataAnalysis 3.1

printed: 08/11/14 11:27:46

Page 1 of 1

Figure S36. HRESI(+)MS spectrum of triconoid D (4)

Elemental Composition Report

, Page 1

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 11 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass)

SIMM-Mass Sp MTC-36 141232 100 (1	887) AM (Cer	1.5, 80.00, Ht.9000.0.	369.20.0.70); S	Q-Tof Ulti m (Mn, 2x0.00	ma)); Cm (92;1)	01)		17-Sep-201412:33:27 TO F MS ES+
100					,, , , , , , , , , , , , , , , , , , ,	601.20	039	1.82e3
-591 1915 0-4 · · · - 1	1			· · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		604.2447 605.2587 m/z
592	.0	594.0	596.0	598.0	t	500.0	602.0	604.0
Minimum: Maximum:	50.00 100.00		200.0	10.0	-1.5 50.0			
Mass	RA	Calc. Mass	mDa	PPM	DBE	Score	Formula	
601.2039	100.00	601.2050	-1.1	-1.8	15.5	1	C32 H34	Ol0 Na

Figure S37. IR spectrum of triconoid D (4)