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Experimental Section 

Characterization 

1H NMR spectra were recorded using a Bruker Ultrashield 400 Plus NMR 

spectrometer. High-resolution matrix-assisted laser desorption/ionization 

time-of-flight (MALDI-TOF) mass spectra were obtained with a Bruker Autoflex 

MALDI-TOF mass spectrometer. UV-vis spectra of dilute solutions (1 × 10−5 M) of 

samples in CHCl3 were recorded at room temperature (ca. 25℃) using a Shimadzu 

UV-3600 spectrophotometer. SEM images were obtained from JEOL JSM-7401F 

operating at 2 kV. The excitation of the sample was carried out with a picosecond 

diode laser (Edinburgh Instrument, EPL470) at 470 nm. The optimum geometries of 

CuP and ZnP and their electron-state-density distributions of HOMOs and LUMOs 

were investigated by performing density functional theory (DFT) calculations using 

the cam-B3LYP3 and the 6-31G** basis set for all atoms, without any symmetry 

constraints. All reported calculations were carried out by means of Gaussian 09.1, 2 

Electrochemical Measurements 

Electrochemical experiments were performed with a CH Instruments electrochemical 

workstation (model 660A) using a conventional three-electrode electrochemical cell. 

A glassy carbon electrode (diameter 3mm) was used as the working electrode, a 

platinum wire as the counter electrode, an Ag/AgNO3 electrode as the reference 

electrode and 0.1 M of tetrabutylammoniunhexafluorophosphate (n-Bu4NPF6) in 

dichloromethane solution as supporting electrolyte. The cyclovoltammetric scan rate 

was 50 mV/s. Each measurement was calibrated with Fc. E1/2
Fc = 0.20 V. EHOMO =  

−5.1− (E1/2−E1/2
Fc). 

Conductivity Measurement 

The electrical conductivities of the HTMs films were determined by using two-probe 

electrical conductivity measurements, which were performed by following published 
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procedure.3 Conductivity devices structure was shown in Fig. S1, and the electrical 

conductivity (σ) was calculated by using the following equation (1):  

(1) 

where L is the channel length 10 mm, W is the channel width 2 mm, D is the film 

thickness of the TiO2 and HTM, and R is the film resistance calculated from the 

gradients of the curves. 

 

 

Figure S1. Schematic illustrations of the conductivity device: (a) top-sectional view; 

(b) cross-sectional view. 

The conductivity devices were fabricated as following. Glass substrates without 

conductive layer were carefully cleaned in ultrasonic baths of detergents, deionized 

water, acetone and ethanol successively. A thin layer of nanoporous TiO2 was coated 

on the glass substrates by spin-coating with a diluted TiO2 paste (Dyesol DSL 

18NR-T) with terpineol (1:3, mass ratio). The thickness of the film is ca. 500 nm, as 

measured with a DekTakprofilometer. After sintering the TiO2 film on a hotplate at 

500 °C for 30 min, the film was cooled to room temperature. A solution of HTMs in 

chlorobenzene was subsequently deposited by spin-coating. Here the concentration of 

CuP or ZnP is 20 mg mL−1 in chlorobenzene. The doped 

Spiro-OMeTAD/chlorobenzene (80 mg/mL) solution was prepared with addition of 

20 μL Li-TFSI (520 mg Li-TFSI in 1 mL acetonitrile), and 30 μL tert-butylpyridine 

(tBP). Subsequently, a 200 nm thick Ag back contact was deposited onto the organic 

semiconductor by thermal evaporation in a vacuum chamber with a base pressure of 

about 10−6 bar, to complete the device fabrication. J-V characteristics were recorded 

on a Keithley 2400 semiconductor characterization system.  
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Mobility Measurements 

Due to the low mobility of charge carriers in organic semiconductors, the injected 

carrier forms a space charge. This space charge creates a field that opposes the 

applied bias and thus decreases the voltage drop across junction; as a result, space 

charge limited currents (SCLCs) have been proposed as the dominant conduction 

mechanism in organic semiconductors by researchers. Mobility devices structure was 

shown in Fig. S-2, andohmic conduction can be described by equations (2):  

(2) 

where J is the current density, μ is the hole mobility, ɛo is the vacuum permittivity 

(8.85×10−12 F/m), ɛɤ is the dielectric constant of the material (normally taken to 

approach 3 for OSs), V is the applied bias, and d is the film thickness.  

 

 

Figure S2. Schematic illustration of the mobility device 

 

Fluorine-doped tin-oxide (FTO) coated glass substrates (Pilkington TEC15) were 

patterned by etching with zinc powder and 2 M hydrochloric acid. The substrates 

were carefully cleaned in ultrasonic baths of detergents, deionized water, acetone and 

ethanol successively. The remaining organic residues were removed with 10 min by 

airbrush. A 40 nm thick PEDOT: PSS layer was spin-coated onto the substrates, 

which were then annealed at 120 °C for 30 min in air. The substrates were then 

transferred into a glove box for further fabrication steps. The HTMs were dissolved in 

anhydrous chlorobenzene. Here the concentration of CuP or ZnP is 20 mg mL−1 in 

chlorobenzene. The doped Spiro-OMeTAD/chlorobenzene (80 mg/mL) solution was 

prepared with addition of 20 μL Li-TFSI (520 mg Li-TFSI in 1 mL acetonitrile), and 

30 μL tert-butylpyridine (tBP). This HTMs solution was spin-coated at 3000 rpm to 
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yield films. The thicknesses of the films are measured by using a Dektak 6M 

profilometer. 200 nm of silver was then evaporated onto the active layer under high 

vacuum(less than 10−6 mbar). J-V characteristics of the devices have been measured 

with a Keithley2400 Source-Measure unit, interfaced with a computer. Device 13 

characterization was carried out in air. 

Fabrication of perovskite solar cells 

Fluorine-doped tin-oxide (FTO) coated glass substrates (Pilkington TEC15) were 

etched with zinc powder and 2 M hydrochloric acid. The substrates were carefully 

cleaned in ultrasonic baths of detergents, deionized water, acetone and ethanol 

subsequently. A thin compact TiO2 blocking layer was deposited onto the FTO 

substrate by spray pyrolysis on a hotplate at 450 °C. A mesoporous TiO2 film was 

deposited on the compact TiO2 blocking layer by spin-coating at 6000 rpm for 45 s, 

using a commercial 20 nm TiO2 paste (Dyesol 18NRT, Dyesol) diluted in 2-proponal 

(1:3, weight ratio), followed by annealing at 525 °C for 30 min, then cooling down to 

room temperature. PbI2 in N,N-dimethylformamide solution (510 mg mL−1 ) was 

stirred at 70 °C overnight. The PbI2 solution was spin-coated on the mesoporous TiO2 

at 6000 rpm for 15 s and then dried at 100 °C for 15 min. After cooling down to the 

room temperature, the PbI2 coated film was then dipped in the CH3NH3I solution (8.5 

mg mL−1 in 2-proponal) for 20 s. After the formation of the CH3NH3PbI3, the film 

was rinsed at 70 °C for further manipulation. After cooling down to the room 

temperature, the doped HTMs solution was deposited by spin-coating at 3000 rpm for 

30 s. Here the concentration of CuP or ZnP is 20 mg mL−1 in chlorobenzene. The 

doped Spiro-OMeTAD/chlorobenzene (80 mg/mL) solution was prepared with 

addition of 20μL Li-TFSI (520 mg Li-TFSI in 1 mL acetonitrile), and 30 μL 

tert-butylpyridine (tBP). Finally, 200 nm of gold was thermally evaporated on top of 

the device to form the counter-electrode. The prepared PSCs samples were masked 

during the measurement with an aperture area of 0.126 cm2 (diameter 4 mm) exposed 

under illumination. 
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Figure S3. Absorption spectra of perovskite films with and without ZnP. 
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Figure S4. Thermogravimetric analysis of these two new HTMs 
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Figure S5. Cyclic voltammograms of CuP and ZnP. 

 

Figure S6. The MALDI-TOF mass spectrum of CuP. 
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Figure S7. The MALDI-TOF mass spectrum of ZnP. 
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