SUPPORTING INFORMATION

for

Physical Molecular Mechanics Method for Damped Dispersion

Pragya Verma, Bo Wang,[‡] Laura E. Fernandez,[†] and Donald G. Truhlar*

Department of Chemistry, Nanoporous Materials Genome Center, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455-0431

*E-mail: truhlar@umn.edu

Present Addresses: [‡]BW: Global Energy Interconnection Research Institute, State Grid Corporation of China, San Jose, CA [†]LEF: American Chemical Society, Washington, D.C. 20036

Date and time of finalization of Supporting Information: Mar. 6, 2017, 11:57 pm.

Table S1 shows how damped dispersion contributions to the binding of two monomers are affected by the geometry of the monomer. The first column (1) with each DFT-D3 method refers to the case in which the geometries of the monomers are separately optimized and the second column (2) with each DFT-D3 method (and also SAPT(DFT)) refers to the case in which the geometries of the monomers are the same as in the complex.

Complex	SAPT(DFT) Disp + Exch-Disp ^b	DD3S		OLYP -D3(BJ)		OPBE -D3(BJ)	
	2	1	2	1	2	1	2
(NH ₃) ₂	-2.11	-2.05	-2.05	-1.73	-1.73	-1.77	-1.77
$(HF)_2$	-1.66	-1.77	-1.77	-1.17	-1.17	-1.12	-1.12
$(H_2O)_2$	-2.30	-2.30	-2.30	-1.69	-1.69	-1.66	-1.66
NH_3H_2O	-3.03	-2.84	-2.85	-2.13	-2.13	-2.11	-2.11
(HCONH ₂) ₂	-7.41	-7.29	-7.26	-5.71	-5.71	-5.78	-5.78
(HCOOH) ₂	-8.78	-7.90	-8.02	-5.94	-6.00	-5.93	-5.97
$C_2H_4F_2$	-1.63	-1.19	-1.19	-1.16	-1.16	-1.24	-1.24
NH_3F_2	-1.80	-0.98	-0.98	-0.88	-0.88	-0.90	-0.90
C_2H_2ClF	-5.01	-5.27	-5.29	-4.28	-4.28	-4.23	-4.23
HCNClF	-4.18	-3.52	-3.53	-2.67	-2.68	-2.61	-2.61
NH_3Cl_2	-4.70	-3.51	-3.55	-2.93	-2.94	-2.95	-2.96
H_2OClF	-4.05	-3.27	-3.28	-2.54	-2.54	-2.49	-2.49
NH ₃ ClF	-9.16	-5.82	-5.88	-4.20	-4.21	-4.02	-4.03
$(H_2S)_2$	-2.05	-2.28	-2.28	-2.16	-2.16	-2.30	-2.30
$(HCl)_2$	-2.05	-2.59	-2.59	-2.22	-2.22	-2.28	-2.28
$HC1H_2S$	-2.96	-3.40	-3.40	-2.86	-2.86	-2.92	-2.92
CH ₃ ClHCl	-3.63	-4.58	-4.60	-3.93	-3.93	-4.02	-4.03
HCNCH ₃ SH	-2.69	-3.70	-3.72	-3.36	-3.37	-3.51	-3.52
CH ₃ SHHCl	-4.61	-5.49	-5.49	-4.66	-4.65	-4.76	-4.76
HeNe	-0.08	-0.08	-0.08	-0.08	-0.08	-0.09	-0.09
HeAr	-0.13	-0.13	-0.13	-0.13	-0.13	-0.15	-0.15
Ne ₂	-0.16	-0.17	-0.17	-0.17	-0.17	-0.18	-0.18
NeAr	-0.27	-0.28	-0.28	-0.29	-0.29	-0.32	-0.32
CH ₄ Ne	-0.33	-0.36	-0.36	-0.38	-0.38	-0.41	-0.41
C_6H_6Ne	-1.00	-1.03	-1.03	-1.09	-1.09	-1.20	-1.21
$(CH_{4})_{2}$	-1.26	-1.57	-1.58	-1.63	-1.63	-1.78	-1.78
$(C_2H_2)_2$	-1.42	-1.82	-1.83	-1.84	-1.85	-2.00	-2.00
$(C_2H_4)_2$	-2.60	-3.92	-3.93	-3.84	-3.84	-4.11	-4.11
sandwich $(C_6H_6)_2$	-4.72	-5.89	-5.29	-6.04	-5.78	-6.69	-6.48
T-shaped $(C_6H_6)_2$	-4.07	-6.02	-5.42	-5.73	-5.47	-6.14	-5.94
parallel-displaced (C ₆ H ₆) ₂	-5.82	-7.31	-6.71	-7.50	-7.25	-8.30	-8.09
Average ^c	-3.09	-3.17	-3.12	-2.74	-2.72	-2.84	-2.82
Method MUE ^a	0.00	0.63	0.57	0.87	0.84	0.98	0.96

Table S1. Damped dispersion contributions $(\Delta E_{dampdisp} \text{ in kcal/mol})^a$ for the NCCE31/05 database.

 ${}^{a}\Delta E_{\text{dampdisp}}$ is defined as $E_{\text{dampdisp}}^{\text{complex}} - E_{\text{dampdisp}}^{\text{monomer_1}} - E_{\text{dampdisp}}^{\text{monomer_2}}$.

^bRef. 20 of the paper.

^{*c*}The average for each method is taken over all 31 complexes.

 d MUE = mean unsigned error.