SUPPORTING INFORMATION for:

Triazolyl, Imidazolyl and Carboxylic Acid Moieties in the Design of Molybdenum Trioxide Hybrids: Photophysical and Catalytic Behavior

Andrey B. Lysenko,^{a*} Ganna A. Senchyk,^a Konstantin V. Domasevitch,^a Merten Kobalz,^b Harald Krautscheid,^b Jakub Cichos,^c Miroslaw Karbowiak,^cPatrícia Neves,^d Anabela A. Valente,^d Isabel S. Gonçalves^{d*}

^a Inorganic Chemistry Department, Taras Shevchenko National University of Kyiv, Volodimirska Str. 64, Kyiv 01033, Ukraine

^b Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany

^c Faculty of Chemistry, University of Wroclaw, 14 Joliot-Curie Str., 50-383 Wroclaw, Poland

^d Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

• Corresponding author. E-mail address: ab_lysenko@univ.kiev.ua (Lysenko A.B.), igoncalves@ua.pt (I. S. Gonçalves)

-		
Content		Page
Table S1.	Crystal data for compounds 1, 2a, 2b and 3.	<u>S3</u>
Figure S1.	Crystal structure and labeling scheme for for $[Mo_2O_6(trethbz)_2]$ ·H ₂ O (1)	<u>S3</u>
Table S2.	Selected bond lengths (Å) and angles (°) for 1 .	S4
Figure S2.	Illustration of the hydrogen-bonding interactions in the crystal structure of	S5
	$[Mo_2O_6(trethbz)_2] \cdot H_2O(1).$	
Table S3.	Hydrogen bonding scheme in the crystal structure of 1 (Å, °).	S5
Figure S3.	Crystal structure and labeling scheme for $[Mo_4O_{12}(trPhCO_2H)_2]$ ·0.5H ₂ O (2a).	S6
Table S4.	Selected bond lengths (Å) and angles (°) for 2a .	S6-
		S 8
Table S5.	Hydrogen bonding scheme in the crystal structure of 2a (Å, °).	S 8
Figure S4.	Illustration of the hydrogen-bonding interactions in the crystal structure of compound 2a.	S9
Figure S5.	Crystal structure and labeling scheme for $[MO_4O_{12}(trPhCO_2H)_2]$ ·H ₂ O (2b).	S10
Table S6.	Selected bond lengths (Å) and angles (°) for 2b .	S10-
		S12
Table S7.	Illustration of the hydrogen-bonding interactions in the crystal structure of compound 2b .	S12
Figure S6.	Illustration of the hydrogen-bonding interactions in the crystal structure of compound 2b .	S13
Figure S7.	Crystal structure and labeling scheme for $[Mo_8O_{25}(trhis)_2(Htrhis)_2]^{\circ}(2H_2O(3))$.	S14
Table S8.	Selected bond lengths (Å) and angles (°) for complex $[M_0, O_2, (trhis)_2, (Htrhis)_2] \cdot 2H_2O(3)$.	S14-
		S16
Table S9.	Hydrogen bonding scheme in the crystal structure of 3 .	S16
Figures S8.	Illustration of the hydrogen-bonding interactions in the crystal structure of 3 .	S17.
S9 .		S18
Figure S10	¹ H NMR spectrum of (S)- <i>trethbz</i>	S10
Figure S11	¹ H NMR spectrum of racemic- <i>trhis</i>	S19
Figure S12	The PXRD and 2D thermo-PXRD patterns (Cu-K ₋₁ radiation $2\theta = 5-70^{\circ}$) for compound	S20
i igui e bill.	$[M_{0}\Omega_{c}(trethbz)_{2}]$ ·H ₂ $\Omega_{c}(1)$	520
Figure S13	$DTA/TG-MS$ data for compound $[M_{O2}O_{\epsilon}(trethbz)_{2}]\cdotH_{2}O(1)$	S21
Figure S14	ECD and absorption spectra spectra of $trathba and [MoaO_c(trathba)a]:HaO (1)$	<u>\$21</u>
Figure S14.	ECD and absorption spectra spectra of $Hemoz$ and $[Ho2O_6(Hemoz)/2]$ H2O (1)	521
Figure S15.	FTIR and VCD spectra of $[WO_2O_6(WemO_2)_2]$ H ₂ O (1) III KDI.	<u>SZZ</u>
rigure 510.	The observed and simulated PARD patterns of compound $[M_0, O_1, (trC, H, CO, H), 1, 0, 5H, O, (2n)]$	322
Figure S17	$\frac{[M04O_{12}(HC_{6}H4CO_{2}H)_{2}]\cdot 0.5H_{2}O(2\mathbf{a})}{2D(2D-4t_{equal}, DVDD-settems (C-V_{equal}, dv))}$	522
Figure 517	$2D/3D$ thermo-PARD patterns (Cu-K _{a1} radiation, $2\theta = 5-80^{\circ}$) for compound $M_{\alpha} = 0$ (we have $M_{\alpha} = 0$).	525
Figure C10	$\frac{[M04U_{12}(IPC_{6}\Pi_{4}CU_{2}\Pi)_{2}]\cdot 0.5\Pi_{2}U(2\mathbf{a})}{\text{The PVDD and therma PVDD netterns for compound [Ma O (trDhCO II)]. III O (2\mathbf{b})}$	524
Figure S18.	The PARD and thermo-PARD patterns for compound $[Mo_4O_{12}(IPRO_2\pi)_2] = \pi_2O(2D)$.	524 525
Figure 519.	$\frac{DTA}{16} = \frac{1}{16} = \frac{1}{16$	525
Figures S20	The observed and simulated XRPD patterns of $[MO_8O_{25}(trnis)_2(Htrnis)_2]^2H_2O(3)$.	525
Table S10.	Comparison of the catalytic results of compounds 1, 2a and 3° to literature data for	\$26
	molybdenum (v_1) oxide hybrid polymers, tested as catalysis for the reaction of <i>cis</i> -	
Table C11	Comparison of the activity results for Ma Q (trackbr) LUQ (1) to literature data for	527
Table S11.	Comparison of the catalytic results for $[Mo_2O_6(remoz)_2]$ H ₂ O (1) to interature data for malubdanum(VI), avida hybrid nalyman, tastad as astalysts for the reaction of size	527
	(v_1) by (v_1) oxide hybrid polymens, tested as catalysis for the reaction of cis -	
	Density functional theory calculations	527
Figure 621	Density functional meory calculations	S27
rigure 521.	Partial densities of states calculated for moryodenum and organic figures of $[M_0, O_1(trathbr)]$ $H_0(1)$	527
Figure \$22	Coloulated alastronia hand structure of complex 1	528
Figure 622	Calculated electronic balle subclute of complex 1.	520 520
rigure 525.	ration densities of states calculated for moryodenum and organic figands of complex $[M_0, O_1, (trBhCO_2H)_1] = 0.5H_0 (2n)$	328
Figure 624	$\begin{bmatrix} 19104O_{12}(11110O_{2}\pi)_{2} \end{bmatrix} 0.5\pi_{2}O(4a).$	520
Figure 524.	Calculated electronic value structure of $[W104O_{12}(IFFICO_2H)_2]^{\circ}U.5H_2O(2H)$	528 520
rigure 525.	ration densities of states calculated for moryodenum and organic figands of $[M_{0}, O_{1}, (trhis), (Htrhis),]:2H_{0}, (3)$	329
Figure 826	[1908025(17113)2(1117113)2] 21120 (3). Calculated electronic band structure of complex [MosOs (twisis). (Utwisis). 1:2U.O. (2)	\$20
Deferences	Carculated electronic band subclute of complex $[M08O_{25}(Irms)_2(\Pi Irms)_2]^2\Pi_2O(3)$.	529
References		529

	1	2a	2b	3
Formula	$C_{22}H_{28}Mo_2N_6O_7$	$C_{18}H_{15}Mo_4N_6O_{16.5}$	$C_{18}H_{16}Mo_4N_6O_{17}$	$C_{32}H_{42}Mo_8N_{20}O_{35}$
<i>Т</i> , К	213	213	213	213
М	680.38	963.12	972.13	2034.38
Crystal system	Orthorhombic	Monoclinic	Triclinic	Monoclinic
Space group, Z	<i>C</i> 222 ₁ , 4	<i>P</i> 2, 2	$P \overline{1}, 2$	$P2_1/c, 2$
<i>a</i> / Å	9.6544(5)	9.9831(5)	7.2937(5)	14.3760(9)
b∕ Å	23.0267(9)	13.6626(6)	14.4673(11)	9.1515(4)
<i>c</i> / Å	12.3254(4)	10.1235(5)	14.8484(11)	21.3642(14)
a/ o	90	90	117.124(8)	90
β/ °	90	90.926(6)	92.334(7)	103.188(7)
γ/ ^o	90	90	99.015(8)	90
$U/ Å^3$	2740.0(2)	1380.62(11)	1366.0(2)	2736.6(3)
μ (Mo-K α)/ mm ⁻¹	0.966	1.864	1.887	1.895
$D_c/g cm^{-3}$	1.649	2.317	2.363	2.469
θ _{max} / °	27.9	27.5	27.9	28.0
Meas/ Unique	10348/ 3247	11600/ 5627	12768/ 6479	23148/ 6547
reflns				
$R_{\rm int}$	0.027	0.017	0.045	0.029
Parameters refined	169	415	406	430
<i>R</i> 1 [I > 2σ (I)]	0.022	0.014	0.029	0.020
wR2 [all data]	0.050	0.031	0.060	0.047
Goof on F^2	0.928	0.921	0.819	0.921
Flack x parameter	0.00(7)	-0.031(19)	-	-
Max, min peak/ e Å ⁻³	1.77, -0.26	0.44, -0.31	0.98, -1.67	1.59, -0.52

Table S1. Crystal data for [Mo ₂ O ₆ (<i>trethbz</i>) ₂]·H ₂ O (1), [Mo ₄ O ₁₂ (<i>trPhCO</i> ₂ <i>H</i>) ₂]·0.5H ₂ O (2a),
$[Mo_4O_{12}(trPhCO_2H)_2]$ ·H ₂ O (2b) and $[Mo_8O_{25}(trhis)_2(Htrhis)_2]$ ·2H ₂ O (3)

Figure S1. Crystal structure and labeling scheme for $[Mo_2O_6(trethbz)_2]$ ·H₂O (1). Ellipsoids are shown at the 50% probability level. Symmetry codes: (*i*) *x*, -y, -z; (*ii*) -x, y, -z+1/2.

$[Mo_2O_6(trethbz)_2]$ ·H ₂ O (1), symmetry codes: (<i>i</i>) <i>x</i> , - <i>y</i> , - <i>z</i> ; (<i>ii</i>) - <i>x</i> , <i>y</i> , - <i>z</i> +1/2.				
Mo1—O4	1.700 (4)	Mo1—O2	1.9065 (2)	
Mo1—O3	1.723 (4)	Mo1—N2i	2.387 (5)	
Mo1-01	1.9030 (6)	Mo1—N1	2.401 (5)	
<u></u>	104.50 (10)			
O4—Mo1—O3	104.78 (12)	O4—Mo1—N1	162.8 (2)	
O4—Mo1—O1	100.01 (15)	O3—Mo1—N1	92.40 (19)	
O3—Mo1—O1	98.53 (16)	N1—N2—Mo1i	119.9 (4)	
O4—Mo1—O2	98.9 (2)	O1—Mo1—N1	75.80 (13)	
O3—Mo1—O2	99.9 (2)	O2—Mo1—N1	78.96 (19)	
O1—Mo1—O2	149.20 (5)	N2i—Mo1—N1	73.72 (6)	
O4—Mo1—N2i	89.1 (2)	N2—N1—Mo1	116.2 (4)	
O3—Mo1—N2i	165.7 (2)	Mo1i—O1—Mo1	144.87 (10)	
O1—Mo1—N2i	74.90 (13)	Mo1—O2—Mo1ii	178.0 (5)	
O2—Mo1—N2i	81.33 (18)			

 Table S2. Selected bond distances (Å) and angles (°) for 1.

Figure S2. Illustration of the hydrogen-bonding interactions in the crystal structure of $[Mo_2O_6(trethbz)_2]$ ·H₂O (1). Symmetry codes: (*i*) *x*, -y, -z; (*ii*) -x, y, -z+1/2; (*iii*) -x+1, y, -z+1/2; (*iv*) -x, -y, z-1/2; (*v*) x-1, -y, -z.

Table S3. Hydrogen bonding scheme in the crystal structure of 1 (Å, °). $^{S1,\,S2}$

<i>D</i> -H…A	H···A	D···A	D-H···A
O(1W)-H(1O)O(3)iii	1.96	2.8582	172
C(1)-H(1)O(3)ii	2.30	3.0815	140
C(2)-H(2)O(4)iv	2.19	3.0175	147
C(5)-H(5A)O(4)v	2.55	3.3113	136
a (i)	<i></i>		

symmetry codes: (i) x, -y, -z; (ii) -x, y, -z+1/2; (iii) -x+1, y, -z+1/2; (iv) -x, -y, z-1/2; (v) x-1, -y, -z.

Figure S3. Crystal structure and labeling scheme for $[Mo_4O_{12}(trC_6H_4CO_2H)_2]\cdot 0.5H_2O$ (**2a**). Ellipsoids are shown at the 50% probability level. Symmetry codes: (*i*) -x+1, *y*, -z; (*ii*) -x, *y*, -z; (*iii*) -x, *y*, -z+1; (*iv*) -x+1, *y*, -z+1.

Table S4 . Selected bond distances (Å) an	d angles (°) for 2	a
--	----------------------	---

 $[Mo_4O_{12}(trC_6H_4CO_2H)_2] \cdot 0.5H_2O$ (2a), symmetry codes: (*i*) -x+1, *y*, -z; (*ii*) -x, *y*, -z; (*iii*) -x, *y*, -z; (*iii*) -x, *y*, -z+1; (*iv*) -x+1, *y*, -z+1.

Mo1—O3	1.6949 (18)	Mo3—O10	1.6945 (19)
Mo1	1.7819 (17)	Mo3	1.7560 (19)
Mo1-01	1.7990 (19)	Mo3	1.8266 (16)
Mo1	2.0172 (18)	Mo3-011	2.0668 (16)
Mo1—O6i	2.1486 (19)	Mo3—O13iii	2.087 (2)
Mo1—N2	2.361 (2)	Mo3—N5iii	2.362 (2)
Mo207	1.692 (2)	Mo4—O12	1.697 (2)
Mo2—O6	1.7447 (18)	Mo4-011	1.7708 (16)
Mo2—O4	1.8562 (18)	Mo4—O13	1.822 (2)
Mo2—O9ii	1.9818 (17)	Mo4-01	2.0407 (19)
Mo2—O8	2.164 (2)	Mo4—O2iv	2.0861 (16)
Mo2—N1	2.372 (2)	Mo4—N4	2.362 (2)

Table S4. continued			
O3—Mo1—O2	104.45 (8)	O8—Mo3—O11	89.64 (8)
O3—Mo1—O1	102.43 (9)	O9—Mo3—O11	160.11 (8)
O2—Mo1—O1	99.89 (8)	O10—Mo3—O13iii	94.97 (9)
O3—Mo1—O4	95.30 (8)	08—Mo3—O13iii	157.68 (9)
O2—Mo1—O4	153.55 (8)	O9—Mo3—O13iii	87.02 (8)
O1—Mo1—O4	92.69 (8)	O11—Mo3—O13iii	78.34 (7)
O3—Mo1—O6i	91.25 (9)	O10—Mo3—N5iii	169.32 (9)
O2—Mo1—O6i	84.38 (8)	O8—Mo3—N5iii	82.97 (9)
01—Mo1—O6i	164.02 (8)	09—Mo3—N5iii	84.36 (8)
O4—Mo1—O6i	77.69 (7)	O11—Mo3—N5iii	79.19 (8)
O3—Mo1—N2	168.99 (9)	O13iii—Mo3—N5iii	76.38 (8)
O2—Mo1—N2	81.40 (8)	012—Mo4—011	102.79 (10)
01—Mo1—N2	85.46 (8)	O12—Mo4—O13	101.41 (9)
O4—Mo1—N2	76.48 (7)	O11—Mo4—O13	100.08 (8)
O6i—Mo1—N2	79.94 (8)	O12—Mo4—O1	99.42 (9)
O7—Mo2—O6	103.76 (10)	011—Mo4—01	87.86 (8)
O7—Mo2—O4	100.33 (9)	O13—Mo4—O1	155.40 (8)
O6—Mo2—O4	100.41 (8)	O12—Mo4—O2iv	91.53 (9)
O7—Mo2—O9ii	99.34 (8)	O11—Mo4—O2iv	161.32 (8)
06—Mo2—O9ii	92.85 (8)	O13—Mo4—O2iv	88.57 (8)
O4—Mo2—O9ii	152.85 (8)	O1—Mo4—O2iv	77.90 (7)
O7—Mo2—O8	90.34 (9)	O12—Mo4—N4	168.54 (8)
O6—Mo2—O8	164.38 (9)	O11—Mo4—N4	88.12 (8)
O4—Mo2—O8	83.32 (8)	O13—Mo4—N4	79.80 (8)
09ii—Mo2—O8	78.03 (7)	O1—Mo4—N4	77.21 (8)
O7—Mo2—N1	166.11 (9)	O2iv—Mo4—N4	77.07 (7)
O6—Mo2—N1	89.91 (9)	Mo1-01-Mo4	151.43 (11)
O4—Mo2—N1	79.20 (8)	Mo1—O2—Mo4iv	158.03 (11)
O9ii—Mo2—N1	77.22 (7)	Mo2—O4—Mo1	145.44 (11)

Table S4. continued			
O8—Mo2—N1	75.80 (7)	Mo2—O6—Mo1i	173.10 (11)
O10—Mo3—O8	104.49 (10)	Mo3—O8—Mo2	154.95 (11)
O10—Mo3—O9	101.65 (9)	Mo3—O9—Mo2ii	151.10 (11)
08—Mo3—O9	99.42 (8)	Mo4—O11—Mo3	168.74 (11)
O10—Mo3—O11	93.04 (9)	Mo4—O13—Mo3iii	143.92 (10)

Table S5. Hydrogen bonding scheme in the crystal structure of 2a (Å, °).^{S1, S2}

D-H···A	H···A	D···A	D-H···A
O(14)-H(1O)O(4)vii	1.86	2.7080	177
O(16)-H(2O)O(13)v	1.86	2.7058	174
C(4)-H(4)O(17)viii	2.45	3.3726	168
C(6)-H(6)O(12)	2.50	3.3862	157
C(10)-H(10)O(15)v	2.40	3.1214	133
C(13)-H(13)O(15)vi	2.41	3.3333	168
C(15)-H(15)O(3)iv	2.49	3.3709	156

symmetry codes: (i) -x+1, y, -z; (ii) -x, y, -z; (iii) -x, y, -z+1; (iv) -x+1, y, -z+1; (v) x, y+1, z; (vi) -x, y+1, -z; (vii) x, y-1, z; (viii) x, y-1, z-1.

Figure S4. Illustration of the hydrogen-bonding interactions in the crystal structure of $[Mo_4O_{12}(trC_6H_4CO_2H)_2] \cdot 0.5H_2O$ (**2a**). Symmetry codes: (*i*) -x+1, *y*, -z; (*ii*) -x, *y*, -z; (*iii*) -x, *y*, -z+1; (*iv*) -x+1, *y*, -z+1; (*v*) *x*, y+1, *z*; (*vi*) -x, y+1, -z; (*vii*) *x*, y-1, *z*; (*viii*) *x*, y-1, *z*-1.

$[Mo_2O_6(trPhCO_2H)]$ ·0.5H ₂ O (2b), symmetry codes: (<i>i</i>) <i>x</i> +1, <i>y</i> , <i>z</i> ; (<i>ii</i>) <i>x</i> -1, <i>y</i> , <i>z</i> .					
Mo1—O3	1.689 (3)	Mo3—O9	1.699 (3)		
Mo1—O2	1.694 (3)	Mo3—O4	1.960 (3)		
Mo1—O1	1.963 (3)	Mo3—O1i	1.969 (3)		
Mo1—O4	1.965 (3)	Mo3—O8	2.285 (3)		
Mo1—O5	2.269 (3)	Mo3—N4	2.345 (4)		
Mo1—N1	2.410 (4)	Mo4—O12	1.689 (3)		
Mo2—O6	1.692 (3)	Mo4—O11	1.699 (3)		
Mo2—O7	1.696 (3)	Mo4—O5i	1.952 (3)		
Mo2—O8	1.960 (3)	Mo4	1.956 (3)		
Mo2—O5	1.969 (3)	Mo4—O1i	2.271 (3)		
Mo2—O4	2.267 (3)	Mo4—N5	2.432 (4)		
Mo2—N2	2.395 (4)	O1—Mo4ii	2.271 (3)		

Table S6. Selected bond distances (Å) and angles (°) for 2b.

Table S6. continued			
Mo3—O10	1.690 (3)	O5—Mo4ii	1.952 (3)
		O1—Mo3ii	1.969 (3)
O3—Mo1—O2	105.10 (16)	O10—Mo3—O8	160.76 (14)
O3—Mo1—O1	100.88 (15)	O9—Mo3—O8	94.90 (15)
O2—Mo1—O1	102.97 (16)	O4—Mo3—O8	72.75 (11)
O3—Mo1—O4	98.57 (15)	01i—Mo3—O8	73.19 (12)
O2—Mo1—O4	102.72 (15)	O10—Mo3—N4	87.39 (15)
01—Mo1—O4	142.25 (12)	O9—Mo3—N4	167.95 (16)
O3—Mo1—O5	96.20 (13)	O4—Mo3—N4	79.45 (13)
O2—Mo1—O5	158.69 (13)	Oli—Mo3—N4	75.55 (13)
01—Mo1—O5	73.08 (12)	08—Mo3—N4	73.56 (12)
O4—Mo1—O5	72.90 (13)	O12—Mo4—O11	103.61 (18)
O3—Mo1—N1	168.95 (15)	012—Mo4—O5i	102.34 (16)
O2—Mo1—N1	84.98 (14)	011—Mo4—O5i	100.65 (15)
01—Mo1—N1	80.84 (13)	O12—Mo4—O8	103.65 (16)
O4—Mo1—N1	74.37 (13)	011—Mo4—08	97.07 (15)
O5—Mo1—N1	73.74 (11)	O5i—Mo4—O8	143.92 (12)
O6—Mo2—O7	103.93 (17)	012—Mo4—O1i	159.84 (15)
O6—Mo2—O8	103.61 (15)	011—Mo4—O1i	96.55 (15)
O7—Mo2—O8	99.42 (15)	O5i—Mo4—O1i	73.21 (12)
O6—Mo2—O5	102.45 (16)	O8—Mo4—O1i	73.74 (13)
O7—Mo2—O5	99.01 (15)	O12—Mo4—N5	86.57 (15)
O8—Mo2—O5	143.19 (12)	011—Mo4—N5	168.58 (16)
O6—Mo2—O4	157.91 (15)	O5i—Mo4—N5	81.87 (13)
O7—Mo2—O4	98.14 (14)	O8—Mo4—N5	75.19 (13)
O8—Mo2—O4	73.17 (12)	O1i—Mo4—N5	73.39 (12)
O5—Mo2—O4	72.87 (12)	Mo1—O1—Mo3ii	139.35 (16)
O6—Mo2—N2	84.71 (16)	Mo1—O1—Mo4ii	106.62 (14)

Table S6. continued			
O7—Mo2—N2	171.05 (16)	Mo3ii—O1—Mo4ii	105.93 (14)
O8—Mo2—N2	80.47 (13)	Mo3—O4—Mo1	138.00 (16)
O5—Mo2—N2	76.53 (13)	Mo3—O4—Mo2	107.36 (13)
O4—Mo2—N2	73.20 (12)	Mo1	106.57 (14)
O10—Mo3—O9	104.27 (17)	Mo4ii—O5—Mo2	138.18 (16)
O10—Mo3—O4	101.60 (15)	Mo4ii—O5—Mo1	107.08 (13)
O9—Mo3—O4	100.76 (15)	Mo2—O5—Mo1	106.33 (14)
010—Mo3—O1i	105.12 (16)	Mo4—O8—Mo2	139.16 (17)
09—Mo3—O1i	98.08 (15)	Mo4—O8—Mo3	105.88 (14)
O4—Mo3—O1i	142.16 (12)	Mo2—O8—Mo3	106.70 (13)

Table S7. Hydrogen bonding scheme in the crystal structure of 2b (Å, °).^{S1, S2}

<i>D</i> -H…A	H…A	D···A	<i>D</i> -H…A
O1W-H1WAO7iii	2.12	2.9202	156
O1W-H1WBO13	2.01	2.8083	156
O14-H14AO3iii	2.17	2.9503	153
O15-H15AO11iv	2.50	3.1142	130
C1-H1O16v	2.43	3.0487	123
C10-H10O10vi	2.48	3.3376	151
C11-H11O1Wvii	2.43	3.2998	154
C13-H13O2vi	2.40	3.3248	166
C16-H16O12viii	2.43	3.3271	161
C8-H8O6ix	2.37	3.2490	155

symmetry codes: (*i*) *x*+1, *y*, *z*; (*ii*) *x*-1, *y*, *z*; (*iii*) *x*, *y*, *z*-1, (*iv*) *x*, *y*, *z*+1, (*v*) *x*-1, *y*, *z*-1, (*vi*) -*x*+1, -*y*+2, -*z*+1, (*vii*) -*x*+1, -*y*+1, -*z*, (*viii*) -*x*+1, -*y*+1, -*z*+1, (*ix*) -*x*, -*y*+1, -*z*.

Figure S6. Illustration of the hydrogen-bonding interactions in the crystal structure of $[Mo_4O_{12}(trPhCO_2H)_2]$ ·H₂O (**2b**). Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) x, y, z-1; (iv) x, y, z+1; (v) x-1, y, z-1; (vi) -x+1, -y+2, -z+1; (vii) -x+1, -y+1, -z; (viii) -x+1, -y+1, -z+1; (ix) -x, -y+1, -z; (x) x+1, y, z+1.

Figure S7. Crystal structure and labeling scheme for $[Mo_8O_{25}(trhis-2H)_2(trhis-H)_2] \cdot 2H_2O$ (**3**). Ellipsoids are shown at the 50% probability level. Symmetry codes: (i) *x*, *y*+1, *z*; (ii) -*x*, -*y*+1, -*z*+1; (iii) -*x*, -*y*, -*z*+1; (iv) -*x*+1, -*y*, -*z*+1; (v) *x*, *y*-1, *z*.

Table S8. Selected bond distances (Å) and angles (°) for 3.

$[Mo_8O_{25}(trhis-2H)_2(trhis-H)_2]$ ·2H ₂ O (3), symmetry codes: (i) x, y+1, z; (ii) -x, -y+1, -z+1; (iii) -	- <i>x</i> ,
-y, -z+1; (iv) -x+1, -y, -z+1; (v) x, y-1, z.	

Mo1—O2	1.7090 (18)	Mo3—O9	1.7098 (18)
Mo1-03	1.7113 (17)	Mo3	1.7113 (16)
Mo1—O4	1.9092 (2)	Mo3—O7	1.9456 (16)
Mo1—O1	1.9213 (16)	Mo3—O10	1.9555 (15)
Mo1—N6	2.3956 (19)	Mo3—O11	2.1928 (15)
Mo1—N1	2.3963 (19)	Mo3—O14i	2.2798 (17)
Mo2—O6	1.7010 (18)	Mo4—O12	1.7116 (17)
Mo2—O5	1.7590 (16)	Mo4—O13	1.7204 (16)
Mo2—O7	1.8658 (15)	Mo4—O11	1.8975 (15)
Mo2—O1	1.9029 (16)	Mo4—O10ii	1.9604 (15)
Mo2—N7	2.309 (2)	Mo4—O11ii	2.1852 (15)
Mo2—N2	2.431 (2)	Mo4—O15iii	2.4122 (16)

Table S8. continued			
O2—Mo1—O3	104.15 (9)	O9—Mo3—O10	98.62 (8)
O2—Mo1—O4	101.08 (6)	O8—Mo3—O10	96.10 (7)
O3—Mo1—O4	100.45 (6)	O7—Mo3—O10	153.65 (6)
02—Mo1—O1	97.94 (8)	O9—Mo3—O11	95.46 (7)
O3—Mo1—O1	97.22 (8)	O8—Mo3—O11	160.83 (7)
04—Mo1—01	149.90 (4)	O7—Mo3—O11	83.28 (6)
O2—Mo1—N6	163.23 (8)	O10—Mo3—O11	73.79 (6)
O3—Mo1—N6	91.91 (8)	O9—Mo3—O14i	174.03 (8)
O4—Mo1—N6	80.33 (5)	O8—Mo3—O14i	82.68 (7)
O1—Mo1—N6	74.89 (7)	O7—Mo3—O14i	79.27 (7)
O2—Mo1—N1	89.23 (8)	O10—Mo3—O14i	84.08 (6)
O3—Mo1—N1	165.67 (8)	O11—Mo3—O14i	80.12 (6)
O4—Mo1—N1	81.62 (5)	O12—Mo4—O13	102.26 (8)
O1—Mo1—N1	75.50 (7)	O12—Mo4—O11	102.22 (8)
N6—Mo1—N1	74.37 (7)	O13—Mo4—O11	104.52 (7)
O6—Mo2—N7	92.18 (8)	O12—Mo4—O10ii	99.71 (7)
O5—Mo2—N7	163.69 (8)	O13—Mo4—O10ii	96.54 (7)
O7—Mo2—N7	80.20 (7)	O11—Mo4—O10ii	145.37 (6)
O1—Mo2—N7	76.08 (7)	O12—Mo4—O11ii	99.05 (7)
O6—Mo2—N2	164.70 (8)	O13—Mo4—O11ii	157.86 (7)
O5—Mo2—N2	91.49 (7)	O11—Mo4—O11ii	76.45 (6)
O7—Mo2—N2	79.13 (7)	O10ii—Mo4—O11ii	73.87 (6)
O1—Mo2—N2	74.59 (7)	O12—Mo4—O15iii	177.51 (6)
N7—Mo2—N2	72.73 (7)	O13—Mo4—O15iii	79.47 (7)
07—Mo2—01	148.73 (7)	011—Mo4—O15iii	78.97 (6)
06—Mo2—05	103.34 (9)	010ii—Mo4—O15iii	78.25 (6)
06—Mo2—07	101.24 (8)	011ii—Mo4—O15iii	79.05 (6)
O5—Mo2—O7	101.27 (7)	Mo2—O1—Mo1	144.26 (8)
O6—Mo2—O1	99.75 (8)	Mo1—O4—Mo1iv	180.0

Table S8. continued			
O5—Mo2—O1	96.10 (7)	Mo2—O7—Mo3	135.12 (9)
O9—Mo3—O8	102.25 (8)	Mo3—O10—Mo4ii	114.62 (8)
O9—Mo3—O7	96.29 (8)	Mo4—O11—Mo4ii	103.55 (6)
O8—Mo3—O7	101.82 (8)	Mo4—O11—Mo3	151.26 (8)
		Mo4ii—O11—Mo3	97.66 (6)

Table S9. Hydrogen bonding scheme in the crystal structure of 3 (Å, °). $^{S1,\,S2}$

D-H···A	$H \cdot \cdot \cdot A$	$D \cdots A$	D-H···A
O1W-H1WO5	2.19	3.0378	175
O1W-H2WO10vii	2.03	2.8732	173
N4-H4O10ii	2.17	2.8318	132
N4-H4O13	2.31	3.0418	142
N5-H5O1Wiii	2.15	2.9015	144
N9-H9O17	2.13	2.7995	133
N10-H10O5viii	2.08	2.8466	146
O17-H17AO5vi	1.80	2.6511	176
C1-H1O3iv	2.28	3.0601	140
СЗ-НЗО15ііі	2.28	3.2390	164
C5-H5BO16	2.55	3.4145	147
С7-Н7О12v	2.34	3.1209	140
C8-H8O8ii	2.43	3.2597	147
C9-H9AO2iv	2.25	3.1121	152
C10-H10AO12	2.53	3.2344	132
C11-H11O12	2.37	3.3164	160
C13-H13BO1ix	2.36	3.3259	168
C15-H15O2ix	2.48	3.4015	168
C16-H16O8viii	2.14	3.0030	152

symmetry codes: : (i) x, y+1, z; (ii) -x, -y+1, -z+1; (iii) -x, -y, -z+1; (iv) -x+1, -y, -z+1; (v) x, y-1, z; (vi) x, -y+1/2, z+1/2; (vii) -x, y-1/2, -z+1/2; (viii) x, -y+3/2, z+1/2; (ix) -x+1, -y+1, -z+1.

Figure S8. Illustration of the hydrogen-bonding interactions in the crystal structure of $[Mo_8O_{25}(trhis-2H)_2(trhis-H)_2]$ ·2H₂O (**3**). Symmetry codes: (*i*) *x*, *y*+1, *z*; (*ii*) –*x*, –*y*+1, –*z*+1; (*iii*) –*x*, –*y*, –*z*+1; (*iv*) –*x*+1, –*y*, –*z*+1; (*v*) *x*, *y*-1, *z*; (*vi*) *x*, –*y*+1/2, *z*+1/2; (*vii*) –*x*, *y*-1/2, –*z*+1/2; (*viii*) *x*, –*y*+3/2, *z*+1/2; (*ix*) –*x*+1, –*y*+1, –*z*+1.

Figure S9. Illustration of the hydrogen-bonding interactions in the crystal structure of $[Mo_8O_{25}(trhis-2H)_2(trhis-H)_2]$ ·2H₂O (**3**). Symmetry codes: (*i*) *x*, *y*+1, *z*; (*ii*) -*x*, -*y*+1, -*z*+1; (*iii*) -*x*, -*y*, -*z*+1; (*iv*) -*x*+1, -*y*, -*z*+1; (*v*) *x*, *y*-1, *z*; (*vi*) *x*, -*y*+1/2, *z*+1/2; (*vii*) -*x*, *y*-1/2, -*z*+1/2; (*viii*) *x*, -*y*+3/2, *z*+1/2; (*ix*) -*x*+1, -*y*+1, -*z*+1.

 $K_{\alpha 1}$ radiation, $2\theta = 5-70^{\circ}$) for compound $[Mo_2O_6(trethbz)_2]$ ·H₂O (1).

Figure S13. DTA/TG-MS data for compound [Mo₂O₆(*trethbz*)₂]·H₂O (1).

Figure S14. a). ECD spectra recorded for (*S*)-*trethbz* in MeCN solution or KBr pellet and for compound $[Mo_2O_6(trethbz)_2]$ ·H₂O (1) dispersed in paraffin oil. b) Absorption spectra of *trethbz* and $[Mo_2O_6(trethbz)_2]$ ·H₂O (1) in paraffin oil.

Figure S15. FTIR and VCD spectra of [Mo₂O₆(*trethbz*)₂]·H₂O (1) in KBr.

 $K_{\alpha 1}$ radiation, $2\theta = 5-70^{\circ}$) for compound $[Mo_4O_{12}(trPhCO_2H)_2] \cdot H_2O$ (2b).

 H_{2}^{-1} (3).

Compound ^a	Reaction conditions ^b			Conv. ^c	Sel. ^d	Ref ^e	
	Mo:Cy:TBHP	Т	Solv.	t (h)	(%)	(%)	
	-	(°C)			· · ·		
1	1:100:153	55	THF	6/24	77/97	100	-
1	1:100:153	70	THF	6/24	98/100	100	-
2a	1:100:153	55	THF	6/24	44/82	100	-
3*	1:100:153	55	THF	6/24	12/47	100	-
$[MoO_3(tr)_{0.5}]$	1:100:152	70	CH ₃ CN	24	35	100	3g
$[Mo_2O_6(trpzH)(H_2O)_2]$	1:100:153	70	THF	6/24	74/100	100	11b
[MoO ₃ (bipy)] _n	1:100:153	55	DCE	6	95	100	27
[MoO ₃ (bipy)] _n	1:100:153	75	DCE	6	100	100	27
$\{[MoO_3(bipy)][MoO_3(H_2O)]\}_n$	1:100:150	55	DCE	48	62	100	3b
${[MoO_{3}(bipy)][MoO_{3}(H_{2}O)]}_{n}$	1:100:150	75	hex	24	81	100	3b
${[MoO_{3}(bipy)][MoO_{3}(H_{2}O)]}_{n}$	1:100:150 ^f	55	-	24	24	100	3b
${[MoO_{3}(bipy)][MoO_{3}(H_{2}O)]}_{n}$	1:100:153 ^f	70	H_2O	24	38	100	32
$[Mo_2O_6(HpypzA)]_n$	1:100:153	55	DCE	24	74	100	3f
$[Mo_2O_6(HpypzA)]_n$	1:100:153 ^f	55	EtOH	24	16	100	3f
$[Mo_2O_6(pent-pp)]_n$	1:113:172	55	THF	6	98	100	28
$[Mo_3O_9(pypz)]_n$	1:100:153	75	THF	6/24	60/100	100	3c
$[PiperazinCH_2 \{MoO_2(Salen)\}]_n$	1:200:200	75	DCE	12	98	n.a.	S 3
[PiperazinCH ₂ {MoO ₂ (Salen)}] _n	1:200:200 ^g	75	DCE	12	95	98	S 3
$[PiperazinCH_2 \{MoO_2(Salophen)\}]_n$	1:200:200 ^g	75	DCE	12	89	97	S 3
[PiperazinCH ₂ {MoO ₂ (Salpn)}] _n	1:200:200 ^g	75	DCE	12	93	97	S 3
$[MoO_2(L1)]_n$	1:2000:4000 ^f	80	-	6	72	87	S4
$[MoO_2(L2)]_n$	$1:2000:4000^{f}$	80	-	6	54	87	S 4
$[MoO_2(L3)]_n$	$1:2000:4000^{f}$	80	-	6	23	73	S4

Table S10. Comparison of the catalytic results of compounds 1, 2a and 3* to literature data for molybdenum(VI) oxide hybrid polymers, tested as catalysts for the reaction of ciscyclooctene (Cy) with TBHP.

=

^a tr = 1,2,4-triazole; trpzH=4-(3,5-dimethyl-1H- pyrazol-4-yl)-1,2,4-triazole; bipy=2,2'-bipyridine; HpypzA=[3-(pyridinium-2-yl)-1H-pyrazol-1-yl]-acetate; pent-pp=2-(1-pentyl-3-pyrazolyl)pyridine; Salen=N, N'-bis(salicylidene)ethylenediamine; pypz=2-[3(5)-pyrazolyl]pyridine: Salophen=N.N'phenylene-bis(salicylideneimine); Salpn=*N*,*N*'-propylenebis(salicylideneiminato); H2L1=pyridoxal isonicotinic acid hydrazone; H2L2=pyridoxal benzhydrazone; H2L3=pyridoxal 4-hydroxy benzhydrazone. ^b Initial molar ratios of Mo:Cy:TBHP; T = reaction temperature; Solv=co-solvent (TFT= α, α, α -trifluorotoluene, DCE=1,2-dichloroethane, hex=hexane, EtOH=ethanol); reaction time (t); n.a.=data not available/specified. ^c Conversion of *cis*-cyclooctene (Cy). ^d Selectivity to cyclooctene oxide (CyO). ^e Please also see the references in the main text. ^f 70% aq. TBHP was used. ^g 80% TBHP in di-tert-butyl peroxide/water (3:2) was used.

Compounda	Reaction conditions ^b			Conv. ^c	Sel. ^d	Ref ^e	
	Mo:Cy:H2O2	T (°C)	Solv.	t (h)	(%)	(%)	
1	1:100:152	55	CH ₃ CN	24	77	100	
$[MoO_3(tr)_{0.5}]$	1:100:152	70	CH ₃ CN	24	98	100	-
$[Mo_2O_6(trpzH)(H_2O)_2]$	1:100:153	70	CH ₃ CN	4/24	97/100	100	11b
$\{[MoO_3(bipy)][MoO_3(H_2O)]\}_n$	1:100:153	55	-	48	11	100	3b
$\{[MoO_3(bipy)][MoO_3(H_2O)]\}_n$	1:100:153	70	CH ₃ CN	24	79	100	29
$[MoO(O_2)(4,4'-bipy)]_n$	1:33:89	r.t.	DCM	7	~40	100	30
[MoO3(pdtc)]n	1:33:327	r.t.	DCM	7.5	63	100	S 5

Table S11. Comparison of the catalytic results for $[Mo_2O_6(trethbz)_2]$ ·H₂O (1) to literature data for molybdenum(VI) oxide hybrid polymers, tested as catalysts for the reaction of *cis*-cyclooctene (Cy) with H₂O₂.

^a tr = 1,2,4-triazole; trpzH=4-(3,5-dimethyl-1H- pyrazol-4-yl)-1,2,4-triazole; bipy=2,2'-bipyridine; 4,4'-bipy=4,4'-bipyridine; pdtc=pyrrolidinedithiocarbamate. ^b Initial molar ratios of Mo:Cy:H₂O₂; T = reaction temperature (r.t.=ambient temperature); Solv=co-solvent (DCM=dichloromethane); reaction time (t). ^c Conversion of *cis*-cyclooctene (Cy). ^d Selectivity to cyclooctene oxide (CyO).^e please also see the references in the main text.

Density functional theory calculations

All DFT calculations were performed using a CASTEP package implemented in Materials Studio 8.0 software. Calculation were performed using the generalized gradient approximation (GGA) and Perdew-Burke-Ernzerhof (PBE) functional.^{S6} Band gap energy and density of states calculations were performed using geometry optimized structures with ultra-fine parameters setup.

Figure S21. Partial densities of states calculated for molybdenum and organic ligands of $[Mo_2O_6(trethbz)_2]$ ·H₂O (1).

Figure S22. Calculated electronic band structure of complex [Mo₂O₆(*trethbz*)₂]·H₂O (1).

Figure S23. Partial densities of states calculated for molybdenum and organic ligands of complex $[Mo_4O_{12}(trPhCO_2H)_2] \cdot 0.5H_2O$ (**2a**).

Figure S24. Calculated electronic band structure of [Mo₄O₁₂(*trPhCO*₂*H*)₂]·0.5H₂O (2a).

Figure S25. Partial densities of states calculated for molybdenum and organic ligands of $[Mo_8O_{25}(trhis)_2(Htrhis)_2]$ ·2H₂O (**3**).

Figure S26. Calculated electronic band structure of complex $[Mo_8O_{25}(trhis)_2(Htrhis)_2]$ ·2H₂O (3).

References:

- S1. For C--H...Acceptor Interactions See: Steiner, Th. C-H O hydrogen bonding in crystals. *Cryst. Rev*, **1996**, *6*, 1-57.
- S2. Jeffrey, G. A.; Maluszynska, H.; Mitra, J. Hydrogen bonding in nucleosides and nucleotides. *Int. J. Biol. Macromol.* **1985**, *7*, 336-348.
- S3. Bagherzadeh, M.; Zare, M. Oxido-peroxido molybdenum(VI) complexes in catalytic and stoichiometric oxidations. *J. Coord. Chem.* **2013**, *66*, 2885-2900.
- S4. Pisk, J.; Prugovecki, B.; Matkovic-Calogovic, D.; Jednacak, T.; Novak, P.; Agustin, D.; Vrdoljak,
 V. Pyridoxal hydrazonato molybdenum(vi) complexes: Assembly, structure and epoxidation (pre)catalyst testing under solvent-free conditions. *Rsc Adv.* 2014, *4*, 39000-39010.
- S5. Afsharpour, M.; Mahjoub, A.; Amini, M. M. A nano-hybrid of molybdenum oxide intercalated by dithiocarbamate as an oxidation catalyst. *J. Inorg. Organomet. Polymer Mater.* **2008**, *18*, 472-476.
- S6. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **1996**, *77*, 3865-3868.