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1)  Ortho and Para twins. 

Formally, an ortho twin can be produced in a crystal with stacking sequence …Aα Bβ C Aα 

Bβ… by making a cut on a {111} plane between group III and V atoms that lie on the same 

type of site (e.g. C and ), followed by a rotation of one part by 180 and joining the two parts 

together once more.  This creates a stacking sequence …Aα Bβ C Bβ Aα… as shown in Fig. 

S1a.  This is distinct from a twin produced by a mirror on the {111} plane, which produces a 

sequence …Aα Bβ CC βB αA…, known as a para twin (Fig. S1b).  Para twins on {111} have 

never been observed due to the large energy of the III-III or V-V bonds that would be required 

for every atom on the boundary plane.  See e.g. [1,2] 

  

Figure S1. <110> projection of a) an ortho twin and b) a para twin in the III-V zinc blende 

structure. 

 

  



2) Interfacial defects. 

Any interfacial defect that lies between symmetrically-equivalent interfacial structures can be 

characterised by a combination of symmetry operations, one each from the space group of the 

two crystals (often denoted white,  and black, ) on either side of the interface.3  As shown in 

Fig. S2, for each crystal it is possible to describe the relationship between the surfaces on either 

side of the step by a symmetry operator (since the interfaces on either side of the step are 

equivalent).  In a planar interface these symmetry operations, represented by e.g. Seitz 

operators4 𝑊𝜆 and 𝑊𝜇
−1, must leave the interfacial orientation unchanged, but they may shift 

its position (i.e. introduce a step).  In general, the complete defect will be characterised by an 

operation 𝑄;  

𝑄 = 𝑊𝜆𝑃𝑊𝜇
−1𝑃−1 (S1) 

where the transformation 𝑃 allows the 𝑊𝜇
−1 operation to be written in the  reference frame (in 

the case of an ortho twin, 𝑃 is a 180 degree rotation about the [111] axis).  For the defect to be 

a dislocation, solutions are restricted to the case where 𝑄 is a vector, b.  Figure S2 shows the 

case where the operations 𝑊𝜆 and 𝑊𝜇
−1 are simple translation vectors of the crystal, although 

more complicated scenarios are possible in non-symmorphic structures where mirror-glide and 

screw axes can also describe interfacial steps.3  In the simple case where the step is 

characterised by lattice translations (Fig. S2), 𝐭𝜆 and 𝐭𝜇 are the step vectors for each crystal; 

the Burgers vector of the interfacial dislocation is a result of the mismatch between these two 

vectors.  For a crystalline material, surface steps are topologically conserved; a step can change 

its orientation on the surface but is always characterised by the same step vector.  They can 

only form a closed loop, or end at the edge of the surface.  These rules produce the similar well-

known topological constraints on dislocations, as may be appreciated by considering the case 

where both  and  crystals are identical in structure and orientation.  



A step will have no defect character if both step vectors are the same, i.e. 𝑄 = 0, or more 

generally 

𝑊𝜆 =  𝑃𝑊𝜇
−1𝑃−1

 (S2) 

Equation S2 allows the constraints for dislocation-free steps to be derived for any interface and 

crystal structure.  For steps in fcc twin interfaces, this occurs when the step vector is 𝐭𝜆 = 𝐭𝜇 =

[111] (or indeed any multiple of [111]), i.e. three monolayers high.  Eq. S2 is not satisfied for 

steps of other heights.  For 'complete' steps, i.e. those which satisfy Eq. S2, it is possible to 

define an overall step vector 𝐭 = 𝐭𝜆.   

 
Figure S2.  An interfacial step that has dislocation character, with Burgers vector b given by 

the difference between step vectors for each crystal surface 𝐛 =  𝐭𝜆 − 𝑃𝐭𝜇. Line direction is 

out of the image. 

 



3) [11̅0] projection of a twin terminated by a Ʃ3 (112̅) facet 

 

Figure S3. Two different situations have been displayed (a) with its end parallel and (b) not parallel 

to the electron beam. 
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4) Observations in other NWs 

 

Figure S4. Two further examples of twins terminating in the interior of a GaAs NW that 

obey the three-monolayer rule. 

Following our discovery of these defects in the GaAsP NWs mentioned in the main manuscript, 

we have also noticed them in other III-V zinc-blende NWs with different growth conditions 

and compositions.  Two examples are given in Fig. S3 of twins terminating in a NW that obey 

the three-monolayer rule, with the same structure as shown in Fig. 4 in the main manuscript. 

  



5) Comparison of relaxed DFT model and experimental data 

 

Figure S5. A colorized version of Fig. 2 with the relaxed DFT model overlaid in line form.  

Distortions in the STEM image, due to specimen drift during image acquisition, were 

removed by applying a vertical stretch of 2.7% and a horizontal skew of 2.2°. 

 

 

 

 

Figure S6. Perspective view of the relaxed DFT model showing atom coordination. 
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