First Evidence of $CH_3NH_3PbI_3$ Optical Constant Improvement in N_2 Environment in the Range 40-80°C

Giovanni Mannino¹, Alessandra Alberti¹*, Ioannis Deretzis¹, Emanuele Smecca¹, Salvatore Sanzaro¹, Youhei Numata, ² Tsutomu Miyasaka² and Antonino La Magna¹

¹CNR-IMM Zona Industriale, Strada VIII 5, 95121, Catania, Italy ²Graduate School of Engineering, Toin University of Yokohama, 1614, Kuroganecho, Aoba, Yokohama 225-8503, Japan

SUPPORTING INFORMATION

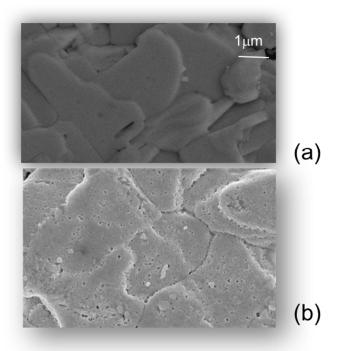
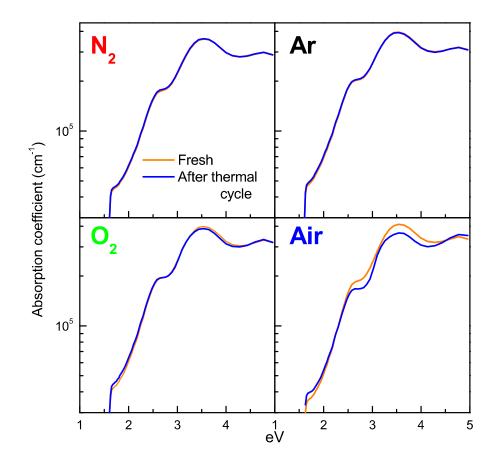



Fig. S1: Scanning electron microscopy. (a) The starting sample is made of large grains with flat surfaces; (b) leaving the sample in air causes the grains surface to be damaged by holes and roughening.

Fig. S2: The absorption coefficients as calculated from Eq. 1 in the text at the end of the thermal cycle (5days) reported in Fig. 1a for all environments.