Supporting Information

Ultrafine TiO₂ Confined in Porous Nitrogen Doped Carbon from Metal-Organic Frameworks for High Performance Lithium Sulfur Batteries

Yongling An^a, Zhen Zhang^a, Huifang Fei^a, Shenglin Xiong^b, Bing Ji^c,

Jinkui Feng^a*

^a Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China

^b School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100,

PR China

^c School of Control Science and Engineering, Shandong University, Jinan 250100, PR China.

Corresponding author: Jinkui Feng Email: jinkui@sdu.edu.cn

Fig. S1 XRD patterns of the sulfur-activated carbon composites.

Fig. S2 Thermal gravity analysis (TGA) curve of the sulfur-activated carbon

composites.

Fig. S3 Pore-size distributions of the TiO₂@NC.

Fig. S4 High-resolution Ti 2p XPS spectrum of the TiO₂@NC.

Fig. S5 High-resolution C 1s XPS spectrum of the $TiO_2@NC$.

Fig. S6 High-resolution N 1s XPS spectrum of the TiO₂@NC.

Fig. S7 Raman spectra of the TiO₂@NC.

The Raman spectra of TiO₂@NC reveals the characteristic peaks of the anatase TiO₂ and the graphite carbon (G band) and the disordered carbon (D band) of carbon. Three peaks at 397cm^{-1} , 512cm^{-1} and 642 cm^{-1} correspond to the states of B_{1g}, B_{1g}, E_g of the anatase TiO₂, respectively. The peaks at 1340cm^{-1} and 1528 cm^{-1} are the D band and the G band, respectively. The Raman spectra demonstrates that the samples are composed of the anatase TiO₂ and the carbon.

Fig. S8 Cycling performance of the lithium sulfur battery without interlayer and $TiO_2@NC$ and carbon black as the interlayer at a current density of 1 C.

Reference

 Yan, L. T.; Xu, Y.; Zhou, M.; Chen, G.; Deng, S. G.; Smirnov, S.; Luo, H. M.; Zou, G. F. Porous TiO₂ Conformal Coating on Carbon Nanotubes as Energy Storage Materials, *Electrochim. Acta* 2015, *169*, 73-81.