Supporting Information

Cobalt(III) and Rhodium(III)-Catalyzed C-H Amidation and Synthesis of

4-Quinolones: C-H Activation Assisted by Weakly Coordinating and Functionalizable Enaminone

Fen Wang, Liang Jin, Lingheng Kong, Xingwei Li*

Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023,

China

School of Chemistry and Chemical Engineering, Dalian University of Technology, Dalian 116023, China Email: xwli@dicp.ac.cn

Content

I.	General Considerations	S2
II.	Procedure for the catalytic synthesis of 4-quinolones	S2
III.	Synthesis of NH Quinolones	S15
IV.	Derivatization of product 3aa	S18
V.	Mechanistic Studies	S19
а	a. H/D exchange experiment	S19
b	b. Intramolecular KIE experiments	S20
C	c. Intermolecular KIE experiments	S21
Ċ	l. proposed catalytic cycle	S22
VI. NMR Spectra		S23

I. General Considerations

All rhodium- and cobalt-catalyzed reactions were carried out in a nitrogen-filled dry box. ¹H and ¹³C NMR spectra were recorded using CDCl₃, DMSO- d_6 , CD₃OD as a solvent on a 400 MHz spectrometer at 298 K. The chemical shift is given in dimensionless δ values and is frequency referenced relative to SiMe₄ in ¹H and ¹³C NMR spectroscopy. High-resolution mass spectra were obtained on an Agilent Q-TOF 6540 spectrometer. All other solvents were obtained from commercial sources and were used as received.

II. Procedure for the cobalt- and rhodium-catalyzed C-H amidation of enaminones

Reaction Conditions A (representative example): enaminone **1a** (35.1 mg, 0.2 mmol), $CoCp^*(CO)I_2$ (9.5 mg, 10 mol %), AgNTf₂ (15.5 mg, 20 mol %), KOAc (6.0 mg, 30 mol %), and freshly prepared dioxazolone **2a** (50.0 mg, 0.3 mmol) were weighed into a pressure tube, to which was added 1,4-dioxane (2 mL) under N₂. The reaction mixture was stirred for 12 h at 100 °C. Purification was performed by flash column chromatography on silica gel using EtOAc and petroleum ether to afford the product **3aa** as a yellow solid (54.6 mg, 93%).

Scale-up synthesis: enaminone **1a** (175 mg, 1 mmol), $CoCp^*(CO)I_2$ (47.5 mg, 10 mol %), AgNTf₂ (77.5 mg, 20 mol %), KOAc (30 mg, 30 mol %), and dioxazolone **2a** (250 mg, 1.5 mmol) were weighed into a pressure tube, to which was added freshly prepared 1,4-dioxane (10 mL) under N₂. The reaction mixture was stirred for 12 h at 100 °C. Purification was performed by flash column chromatography on silica gel using EtOAc and petroleum ether to afford the product **3aa** as a yellow solid (206 mg, 70%).

Reaction Conditions B: enaminone 1 (35.1 mg, 0.2 mmol), dioxazolone 2a (50.0 mg,

0.3 mmol), $[Cp*RhCl_2]_2$ (4.9 mg, 4 mol %), AgSbF₆ (11 mg, 16 mol %), and AgOAc (6.7 mg, 20 mol %) were weighed into a pressure tube, to which was added 1,2-dichloromethane(2 mL) under N₂. The reaction mixture was stirred for 12 h at 100 °C. Purification was performed by flash column chromatography on silica gel using EtOAc and petroleum ether to afford the desired product.

Reaction Conditions C: enaminone **1** (35.1 mg, 0.2 mmol), dioxazolone **2a** (50.0 mg, 0.3 mmol), $Cp*Co(CO)I_2$ (9.5 mg, 10 mol %), AgSbF₆ (11.0 mg, 20 mol %), and AgOAc (6.7 mg, 20 mol %) were weighed into a pressure tube, to which was added 1,4-dioxane (2 mL) under N₂. The reaction mixture was stirred for 12 h at 100 °C. Purification was performed by flash column chromatography on silica gel using EtOAc and petroleum ether to afford the desired product.

Conditions A (54.7 mg, 93%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 13.10 (br s, 1H), 8.85 (d, J = 7.9 Hz, 1H), 8.10 – 8.07 (m, 2H), 7.83 – 7.80 (m, 2H), 7.56 – 7.40 (m, 4H), 7.12 – 7.08 (m, 1H), 5.72 (d, J = 12.2 Hz, 1H), 3.13 (s, 3H), 2.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 165.6, 155.0, 140.2, 135.2, 132.2, 131.4, 129.0, 128.6, 127.3, 125.6, 122.3, 120.8, 93.3, 45.2 (br), 37.3 (br). The broadening of the Me signals is likely due to partially hindered rotation along the C(alkenyl)-N bond. HRMS (ESI) Calcd for [C₁₈H₁₈N₂O₂+H]⁺ 295.1447, Found 295.1445.

Conditions A (54.2 mg, 88%, white solid). ¹H NMR (400 MHz, CDCl₃) δ 13.22 (br s, 1H), 8.72 (s, 1H), 8.10 – 8.08 (m, 2H), 7.82 (d, J = 12.0 Hz, 1H), 6.72 (d, J = 8.1 Hz, 1H), 7.53 – 7.47 (m, 3H), 6.91 (d, J = 8.0 Hz, 1H), 5.74 (d, J = 12.2 Hz, 1H), 3.16 (s, 3H), 2.93 (s, 3H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.2, 165.7, 154.7, 143.2, 140.5, 135.3, 131.4, 129.2, 128.6, 127.4, 123.1, 122.9, 121.2, 93.2, 45.2 (br),

37.4 (br), 21.9. The broadening of the Me signals is likely due to partially hindered rotation along the C(alkenyl)-N bond. HRMS (ESI) Calcd for $[C_{19}H_{20}N_2O_2+H]^+$ 309.1603, Found 309.1605.

Conditions A (60.3 mg, 93%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 13.71 (br, 1H), 8.61 (d, J = 2.6 Hz, 1H), 8.12 – 8.09 (m, 2H), 7.82 – 7.78 (m, 2H), 7.52 – 7.48 (m, 3H), 6.63 (dd, J = 8.9, 2.6 Hz, 1H), 5.72 (d, J = 12.2 Hz, 1H), 3.91 (s, 3H), 3.14 (s, 3H), 2.93 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 190.4, 166.0, 162.8, 154.3, 143.1, 135.2, 131.5, 130.8, 128.6, 127.4, 117.8, 109.5, 104.2, 92.7, 55.4, 45.2 (br), 37.3 (br). The broadening of the Me signals is likely due to partially hindered rotation along the C(alkenyl)-N bond. HRMS (ESI) Calcd for $[C_{19}H_{20}N_2O_3+H]^+$ 325.1552, Found 325.1556.

Conditions B (44.1 mg, 63%, white solid). ¹H NMR (400 MHz, CDCl₃) δ 13.22 (br, 1H), 8.99 (d, J = 1.3 Hz, 1H), 8.21 – 8.09 (m, 2H), 7.83 (d, J = 12.2 Hz, 1H), 7.83 (d, J = 12.2 Hz, 1H), 7.51 – 7.50 (m, 3H), 7.13 (dd, J = 8.3, 1.4 Hz, 1H), 5.76 (d, J = 12.2 Hz, 1H), 3.17 (s, 3H), 2.94 (s, 3H), 1.39 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 165.8, 156.3, 154.7, 140.5, 135.4, 131.4, 128.9, 128.6, 127.4, 122.8, 119.4, 118.0, 93.2, 45.2 (br), 37.4 (br), 35.2, 31.1. The broadening of the Me signals is likely due to partially hindered rotation along the C(alkenyl)-N bond. HRMS (ESI) Calcd for $[C_{22}H_{26}N_2O_2+H]^+$ 351.2073, found 351.2070.

Conditions A (64.8 mg, 99%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 13.30 (br,

1H), 8.95 (s, 1H), 8.06 – 8.05 (m, 2H), 7.80 (d, J = 12.0 Hz, 1H), 7.70 (d, J = 8.4 Hz, 1H), 7.50 – 7.48 (m, 3H), 7.02 (d, J = 8.2 Hz, 1H), 5.64 (d, J = 12.0 Hz, 1H), 3.14 (s, 3H), 2.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.0, 165.6, 155.2, 141.5, 138.0, 134.8, 131.7, 130.1, 128.6, 127.4, 123.5, 122.2, 120.5, 92.8, 45.3 (br), 37.4 (br). The broadening of the Me signals is likely due to partially hindered rotation along the C(alkenyl)-N bond. HRMS (ESI) Calcd for $[C_{18}H_{17}CIN_2O_2+H]^+329.1057$, Found 329.1059.

Conditions A (67.7 mg, 91%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 13.25 (br, 1H), 9.11 (d, J = 1.7 Hz, 1H), 8.06 – 8.05 (m, 2H), 7.81 (d, J = 12.1 Hz, 1H), 7.63 (d, J = 8.5 Hz, 1H), 7.54 – 7.47 (m, 3H), 7.18 (dd, J = 8.5, 1.7 Hz, 1H), 5.63 (d, J = 12.1 Hz, 1H), 3.15 (s, 3H), 2.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.1, 165.6, 155.2, 141.4, 134.8, 131.7, 130.2, 128.6, 127.4, 126.6, 125.2, 124.0, 123.4, 92.8, 45.3 (br), 37.4 (br). The broadening of the Me signals is likely due to partially hindered rotation along the C(alkenyl)-N bond. HRMS (ESI) Calcd for [C₁₈H₁₇BrN₂O₂+H]⁺ 373.0552, Found 373.0551.

Conditions A (69.5 mg, 96%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 13.09 (br, 1H), 9.21 (s, 1H), 8.07 (d, J = 6.7 Hz, 2H), 7.88 – 7.85 (m, 2H), 7.54 – 7.51 (m, 3H), 7.31 (d, J = 8.0 Hz, 1H), 5.68 (d, J = 12.1 Hz, 1H), 3.19 (s, 3H), 2.95 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.9, 165.8, 155.7, 140.6, 134.7, 133.3 (q, $J_{C-F} = 32.0$ Hz), 131.8, 129.3, 128.7, 128.2, 127.4, 123.7 (q, $J_{C-F} = 271.2$ Hz), 118.7 (q, $J_{C-F} = 3.7$ Hz), 117.8 (q, $J_{C-F} = 3.4$ Hz), 93.2, 45.4 (br), 37.5 (br). The broadening of the Me signals is likely due to partially hindered rotation along the C(alkenyl)-N bond. HRMS (ESI) Calcd for [C₁₉H₁₇F₃N₂O₂+H]⁺ 363.1320, Found 363.1321.

Conditions A (54.9 mg, 88%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 13.43 (br, 1H), 8.69 (dd, J = 12.1, 2.5 Hz, 1H), 8.08 – 8.06 (m, 2H), 7.85 – 7.80 (m, 2H), 7.55 – 7.48 (m, 3H), 6.80 – 7.75 (m, 1H), 5.68 (d, J = 12.1 Hz, 1H), 3.18 (s, 3H), 2.94 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.1, 165.9, 164.7 (d, $J_{C-F} = 248.7$ Hz),155.0, 142.8 (d, $J_{C-F} = 12.5$ Hz), 134.9, 131.7, 131.07 (d, $J_{C-F} = 10.3$ Hz,), 128.7, 127.4, 121.6 (d, $J_{C-F} = 2.9$ Hz), 109.1 (d, $J_{C-F} = 22.0$ Hz), 107.8 (d, $J_{C-F} = 27.5$ Hz), 92.9, 45.3 (br), 37.4 (br). HRMS (ESI) Calcd for $[C_{18}H_{17}FN_2O_3+H]^+$ 313.1352, Found 313.1356.

Conditions B (30.0 mg, 48%, white solid). ¹H NMR (400 MHz, CDCl₃) δ 12.04 (br, 1H), 8.48 (d, J = 8.1 Hz, 1H), 8.01 (d, J = 6.9 Hz, 2H), 7.86 (s, 1H), 7.53 – 7.47 (m, 3H), 7.38 (dd, J = 14.6, 8.2 Hz, 1H), 6.86 – 6.82 (m, 1H), 5.62 (dd, J = 12.1, 3.3 Hz, 1H), 3.17 (s, 3H), 2.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 187.1, 165.4, 155.0, 140.0, 134.8, 131.8, 131.7 (two overlapping signals), 128.6, 127.3, 117.3 (d, $J_{C-F} = 16.6$ Hz), 116.9 (d, $J_{C-F} = 1.1$ Hz), 110.6 (d, $J_{C-F} = 24.3$ Hz), 98.6, 45.3 (br), 37.4 (br). The broadening of the Me signals is likely due to partially hindered rotation along the C(alkenyl)-N bond. HRMS (ESI) Calcd for $[C_{18}H_{17}FN_2O_2+H]^+$ 313.1352, Found 313.1355.

Conditions A (48.7 mg, 79%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 12.92 (br, 1H), 8.72 (d, J = 8.4 Hz, 1H), 8.08 – 8.06 (m, 2H), 7.83 (d, J = 12.2 Hz, 1H), 7.60 (s,

1H), 7.50 - 7.48 (m, 3H), 7.30 (d, J = 8.3 Hz, 1H), 5.73 (d, J = 12.2 Hz, 1H), 3.16 (s, 3H), 2.94 (s, 3H), 2.37 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 191.4, 165.4, 155.0, 137.8, 135.4, 132.9, 131.6, 131.3, 129.3, 128.6, 127.3, 125.7, 120.8, 93.4, 45.2 (br), 37.4 (br), 20.9. The broadening of the Me signals is likely due to partially hindered rotation along the C(alkenyl)-N bond. HRMS (ESI) Calcd for $[C_{19}H_{20}N_2O_2+H]^+$ 309.1603, Found 309.1601.

Conditions A (40.8%, 63%, yellow solid). ¹H NMR (400 MHz, DMSO) δ 13.08 (s, 1H), 8.60 (d, J = 9.1 Hz, 1H), 7.95 – 7.90 (m, 3H), 7.62 – 7.55 (m, 3H), 7.47 (d, J = 2.9 Hz, 1H), 7.14 (dd, J = 9.1, 2.9 Hz, 1H), 5.88 (d, J = 12.0 Hz, 1H), 3.83 (s, 3H), 3.21 (s, 3H), 2.98 (s, 3H). ¹³C NMR (100 MHz, DMSO) δ 189.1, 164.0, 156.1, 154.5, 135.0, 133.1, 131.8, 128.9, 127.3, 126.9, 121.6, 117.1, 114.6, 92.5, 55.6, 45.0 (br), 37.6 (br). The broadening of the Me signals is likely due to partially hindered rotation along the C(alkenyl)-N bond. HRMS (ESI) Calcd for $[C_{19}H_{20}N_2O_3+H]^+$ 325.1552, Found 325.1552.

Conditions B (58.3 mg, 89%, yellow solid). ¹H NMR (700 MHz, CDCl₃) δ 12.94 (br, 1H), 8.82 (d, J = 9.0 Hz, 1H), 8.05 – 8.04 (m, 2H), 7.85 (d, J = 12.1 Hz, 1H), 7.74 (d, J = 2.4 Hz, 1H), 7.53 – 7.48 (m, 3H), 7.43 (dd, J = 8.9, 2.4 Hz, 1H), 5.65 (d, J = 12.1 Hz, 1H), 3.19 (s, 3H), 2.96 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.8, 165.6, 155.5, 138.9, 135.0, 131.9, 131.7, 128.7, 127.4, 127.2, 127.1, 127.0, 122.3, 93.0, 45.4 (br), 37.6 (br). HRMS (ESI) Calcd for $[C_{18}H_{17}CIN_2O_2+H]^+$ 329.1057, Found 329.1052.

Conditions B (53.0mg, 77%, yellow solid). ¹H NMR (700 MHz, CDCl₃) δ 12.85 (br, 1H), 9.28 (s, 1H), 8.30 (s, 1H), 8.13 – 8.12 (m, 2H), 7.87 (s, 1H), 7.85 (d, *J* = 3.6 Hz, 1H), 7.81 (d, *J* = 8.1 Hz, 1H), 7.52 – 7.50 (m, 4H), 7.40 (t, *J* = 7.4 Hz, 1H), 5.86 (d, *J* = 12.2 Hz, 1H), 3.16 (s, 3H), 2.96 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.5, 165.6, 155.2, 136.3, 135.3, 131.4, 130.1, 128.7, 128.4, 128.1, 127.7, 127.3, 126.9, 125.1, 117.7, 93.8, 45.3 (br), 37.5 (br). The broadening of the Me signals is likely due to partially hindered rotation along the C(alkenyl)-N bond. HRMS (ESI) Calcd for [C₂₂H₂₀N₂O₂+H]⁺ 345.1603, Found 345.1601.

Conditions C (7.0 mg, 11%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 12.81 (br, 1H), 8.82 (dd, J = 9.2, 5.4 Hz, 1H), 8.06 – 8.04 (m, 2H), 7.86 (d, J = 12.1 Hz, 1H), 7.52 – 7.46 (m, 4H), 7.22 – 7.17 (m, 1H), 5.65 (d, J = 12.1 Hz, 1H), 3.21 (s, 3H), 2.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.9, 165.5, 157.5 (d, $J_{C-F} = 227.4$ Hz), 155.5, 136.5(d, $J_{C-F} = 2.4$ Hz), 135.1, 131.6, 128.7, 127.4, 127.31 (d, $J_{C-F} = 4.9$ Hz), 122.7 (d, $J_{C-F} = 7.2$ Hz), 118.8 (d, $J_{C-F} = 21.6$ Hz), 115.2 (d, $J_{C-F} = 23.0$ Hz), 93.1, 45.5 (br), 37.6 (br). The broadening of the Me signals is likely due to partially hindered rotation along the C(alkenyl)-N bond. HRMS (ESI) Calcd for $[C_{18}H_{17}FN_2O_2+H]^+$ 313.1352, Found 313.1356.

Conditions C (18.2 mg, 34%, white solid). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 7.9 Hz, 1H), 7.85 – 7.81 (m, 3H), 7.85 – 7.81 (m, 1H), 7.70 – 7.67 (m, 2H), 7.54 – 7.50 (m, 1H), 7.44 – 7.39 (m, 1H), 6.28 (d, J = 8.1 Hz, 1H). ¹³C NMR (100 MHz,

CDCl₃) δ 177.93 (d, J = 2.4 Hz, 3H), 169.3, 152.2 (d, $J_{C-F} = 251.2$ Hz), 139.2, 134.6, 130.8 (d, J = 4.1 Hz, 3H), 130.3, 129.2, 128.71, 128.70 (d, $J_{C-F} = 9.9$ Hz), 125.9 (d, $J_{C-F} = 7.9$ Hz), 122.1 (d, $J_{C-F} = 3.4$ Hz), 118.9 (d, $J_{C-F} = 19.9$ Hz), 111.4. HRMS (ESI) Calcd for [C₁₆H₁₀FNO₂+H]⁺ 268.0774, Found 268.0775.

Conditions C (14.6 mg, 25%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.5 Hz, 1H), 7.86 – 7.84 (m, 2H), 7.71 – 7.69 (m, 1H), 7.56 – 7.52 (m, 1H), 7.56 – 7.52 (m, 2H), 7.04 (d, J = 8.5 Hz, 1H), 6.16 (d, J = 8.2 Hz, 1H), 5.93 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 178.1, 168.2, 151.3, 138.6, 136.2, 134.3, 131.3, 130.4, 129.1, 124.1, 122.5, 121.8, 110.8, 108.0, 102.3. HRMS (ESI) Calcd for [C₁₇H₁₀FNO₄+H]⁺294.0761, Found 294.0765.

Conditions A (52.8 mg, 88%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 12.87 (br, 1H), 8.33 (d, J = 5.4 Hz, 1H), 8.07 (d, J = 6.8 Hz, 2H), 7.79 (d, J = 12.1 Hz, 1H), 7.55 – 7.47 (m, 3H), 7.39 (d, J = 5.4 Hz, 1H), 5.43 (d, J = 12.1 Hz, 1H), 3.15 (s, 3H), 2.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 183.4, 164.4, 153.3, 143.5, 134.1, 131.8, 128.7, 128.3, 127.5, 123.0, 121.4, 93.1, 45.1 (br), 37.4 (br). The broadening of the Me signals is likely due to partially hindered rotation along the C(alkenyl)-N bond. HRMS (ESI) Calcd for [C₁₆H₁₆N₂O₂S+H]⁺ 301.1011, Found 301.1012.

Conditions A (46.2 mg, 75%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 12.97 (br,

1H), 8.83 (d, J = 8.3 Hz, 1H), 7.97 (d, J = 8.0 Hz, 2H), 7.82 (t, J = 9.1 Hz, 1H), 7.84 – 7.80 (m, 2H), 7.48 (t, J = 7.6 Hz, 1H), 7.29 (d, J = 2.0 Hz, 1H), 7.09 (t, J = 7.5 Hz, 1H), 5.73 (d, J = 12.2 Hz, 1H), 3.17 (s, 3H), 2.93 (s, 3H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.3, 165.7, 155.0, 141.9, 140.4, 132.5, 132.2, 129.3, 129.0, 127.4, 125.7, 122.1, 120.9, 93.5, 45.3 (br), 37.4 (br), 21.5. HRMS (ESI) Calcd for [C₁₉H₂₀N₂O₂+H]⁺ 309.1603, Found 309.1602.

Conditions A (55.7 mg, 86%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 13.98 (s, 1H), 9.81 (d, J = 8.3 Hz, 1H), 9.04 (d, J = 8.7 Hz, 2H), 8.82 – 8.72 (m, 2H), 8.46 (t, J = 7.7 Hz, 1H), 8.06 (t, J = 7.5 Hz, 1H), 7.97 (d, J = 8.7 Hz, 2H), 6.71 (d, J = 12.2 Hz, 1H), 4.84 (s, 3H), 4.14 (s, 3H), 3.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.3, 165.2, 162.2, 154.9, 140.5, 132.2, 129.2, 129.0, 127.6, 125.5, 122.0, 120.7, 113.8, 93.4, 55.3, 45.2 (br), 37.3 (br). The broadening of the Me signals is likely due to partially hindered rotation along the C(alkenyl)-N bond. HRMS (ESI) Calcd for [C₁₉H₂₀N₂O₃+H]⁺ 325.1552, Found 325.1559.

Conditions A (65.8 mg, 94%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 12.98 (br, 1H), 8.83 (d, J = 8.3 Hz, 1H), 8.01 (d, J = 8.3 Hz, 2H), 7.85 –7.80(m, 2H), 7.52 – 7.50 (m, 3H), 7.09 (t, J = 7.5 Hz, 1H), 5.73 (d, J = 12.2 Hz, 1H), 3.16 (s, 3H), 2.92 (s, 3H), 1.35 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 191.3, 165.7, 154.9, 140.4, 132.5, 132.2, 129.0, 127.2 (two overlapping signals), 125.7, 125.6, 122.1, 120.9, 93.4, 45.2 (br), 37.4 (br), 34.9, 31.1. The broadening of the Me signals is likely due to partially

hindered rotation along the C(alkenyl)-N bond. HRMS (ESI) Calcd for $[C_{22}H_{26}N_2O_2+H]^+$ 351.2073, Found 351.2070.

Conditions A (49.2 mg, 79%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 13.13 (br, 1H), 8.80 (d, J = 8.3 Hz, 1H), 8.10 – 8.07 (m, 2H), 7.84 – 7.80 (m, 2H), 7.48 (t, J = 7.7 Hz, 1H), 7.18 –7.07 (m, 3H), 5.74 (d, J = 12.2 Hz, 1H), 3.16 (s, 3H), 2.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.3, 164.5 (d, $J_{C-F}= 250.1$ Hz), 164.4, 155.0, 140.3, 132.3, 131.5 (d, $J_{C-F}= 3.0$ Hz), 129.8 (d, $J_{C-F}= 9.0$ Hz), 129.1, 125.5, 122.3, 120.8, 115.5 (d, $J_{C-F}= 21.7$ Hz), 93.3, 45.3 (br), 37.4 (br). HRMS (ESI) Calcd for [C₁₈H₁₇FN₂O₂+H]⁺ 313.1352, Found 313.1357.

Conditions A (36.7 mg, 56%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 13.17 (br, 1H), 8.80 (d, J = 8.3 Hz, 1H), 8.01 (d, J = 8.5 Hz, 2H), 7.85 – 7.81 (m, 2H), 7.50 – 7.45 (m, 3H), 7.10 (t, J = 7.5 Hz, 1H), 5.74 (d, J = 12.2 Hz, 1H), 3.18 (s, 3H), 2.94 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.2, 164.5, 155.1, 140.3, 137.7, 133.8, 132.4, 129.1, 128.9, 128.8, 125.5, 122.5, 120.8, 93.3, 45.3 (br), 37.4 (br). HRMS (ESI) Calcd for [C₁₈H₁₇ClN₂O₂+H]⁺ 329.1057, Found 329.1058.

Conditions A (65.6 mg, 88%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 13.19 (br,

1H), 8.80 (d, J = 8.2 Hz, 1H), 7.94 (d, J = 8.1 Hz, 2H), 7.85 – 7.82 (m, 2H), 7.62 (d, J = 8.1 Hz, 2H), 7.48 (t, J = 7.5 Hz, 1H), 7.10 (t, J = 7.3 Hz, 1H), 5.74 (d, J = 12.1 Hz, 1H), 3.18 (s, 3H), 2.94 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.2, 164.6, 155.1, 140.2, 134.2, 132.4, 131.8, 129.1 (two overlapping signals), 126.2, 125.5, 122.5, 120.8, 93.2, 45.3 (br), 37.4 (br). HRMS (ESI) Calcd for [C₁₈H₁₇BrN₂O₂+H]⁺ 373.0552, Found 373.0555.

Conditions A (37.6 mg, 52%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 13.34 (br, 1H), 8.82 (d, *J* = 8.1 Hz, 1H), 8.18 (d, *J* = 7.5 Hz, 2H), 7.87–7.75 (m, 4H), 7.50 (t, *J* = 7.0 Hz, 1H), 7.13 (t, *J* = 7.2 Hz, 1H), 5.76 (d, *J* = 11.9 Hz, 1H), 3.19 (s, 3H), 2.96 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.2, 164.2, 155.2, 140.1, 138.7, 133.0 (q, *J*_{C-F} = 32.1 Hz), 132.4, 129.1, 127.9 (two overlapping signals), 125.7 (q, *J*_{C-F} = 3.7 Hz), 125.5, 122.7, 120.9, 93.2, 45.4 (br), 37.5 (br). The broadening of the Me signals is likely due to partially hindered rotation along the C(alkenyl)-N bond. HRMS (ESI) Calcd for [C₁₉H₁₇F₃N₂O₂+H]⁺ 363.1320, Found 363.1322.

Conditions A (43.4 mg, 68%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 13.5 (br, 1H), 8.79 (d, J = 8.3 Hz, 1H), 8.16 (d, J = 8.2 Hz, 2H), 7.87 – 7.77 (m, 4H), 7.50 (t, J = 7.8 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 5.76 (d, J = 12.1 Hz, 1H), 3.20 (s, 3H), 2.96 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 163.5, 155.3, 134.0, 139.3, 132.5, 132.4, 129.1, 128.1, 125.4, 122.9, 120.8, 118.3, 114.8, 93.1, 45.4 (br), 37.5 (br). The broadening of the Me signals is likely due to partially hindered rotation along the

C(alkenyl)-N bond. HRMS (ESI) Calcd for $[C_{19}H_{17}N_3O_2+H]^+$ 320.1399, Found 320.1399.

Conditions A (53.6 mg, 87%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 12.96 (br, 1H), 8.82 (d, J = 8.3 Hz, 1H), 7.89 – 7.80 (m, 4H), 7.49 (t, J = 7.8 Hz, 1H), 7.40 – 7.32 (m, 2H), 7.10 (t, J = 7.5 Hz, 1H), 5.73 (d, J = 12.2 Hz, 1H), 3.17 (s, 3H), 2.93 (s, 1H), 2.45 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 191.2, 165.9, 155.0, 140.3, 138.3, 135.2, 132.24, 132.20, 129.0, 128.4, 128.3, 125.7, 124.2, 122.2, 120.9, 93.4, 45.3 (br), 37.4 (br), 21.4. The broadening of the Me signals is likely due to partially hindered rotation along the C(alkenyl)-N bond. HRMS (ESI) Calcd for $[C_{19}H_{20}N_2O_2+H]^+$ 309.1603, Found 309.1600.

Conditions A (52.4 mg, 84%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 13.20 (br, 1H), 8.81 (d, J = 8.3 Hz, 1H), 7.95 – 7.68 (m, 4H), 7.51 – 7.44 (m, 2H), 7.21 (td, J = 8.3, 2.0 Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H), 5.75 (d, J = 12.2 Hz, 1H), 3.19 (s, 3H), 2.95 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 164.2, 162.8 (d, $J_{C-F}= 245.2$ Hz), 155.1, 140.1, 137.7 (d, $J_{C-F}= 6.8$ Hz), 132.3, 130.2 (d, $J_{C-F}= 7.7$ Hz), 129.1, 125.5, 122.8 (d, $J_{C-F}= 2.3$ Hz), 122.5, 120.8, 118.4 (d, $J_{C-F}= 21.3$ Hz), 114.8 (d, $J_{C-F}= 22.8$ Hz), 93.2, 45.3 (br), 37.4 (s). HRMS (ESI) Calcd for [C₁₈H₁₇FN₂O₂+H]⁺313.1352, Found 313.1358.

Conditions A (59.7 mg, 91%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 13.19 (br, 1H), 8.79 (d, J = 8.3 Hz, 1H), 8.07 (s, 1H), 7.93 (d, J = 7.6 Hz, 1H), 7.85 – 7.81 (m, 2H), 7.50 – 7.40 (m, 3H), 7.11 (t, J = 7.6 Hz, 1H), 5.74 (d, J = 12.2 Hz, 1H), 3.18 (s, 3H), 2.94 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 164.2, 155.1, 140.1, 137.2, 134.8, 132.3, 131.5, 129.9, 129.1, 128.0, 125.6, 125.2, 122.6, 120.9, 93.2, 45.3 (br), 37.4 (br). The broadening of the Me signals is likely due to partially hindered rotation along the C(alkenyl)-N bond. HRMS (ESI) Calcd for $[C_{18}H_{17}ClN_2O_2+H]^+$ 329.1057, Found 329.1053.

Conditions A (67.1 mg, 90%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 13.20 (br, 1H), 8.79 (d, J = 8.3 Hz, 1H), 8.23 (s, 1H), 7.98 (d, J = 7.7 Hz, 1H), 7.86 – 7.82 (m, 2H), 7.64 (d, J = 7.7 Hz, 1H), 7.49 (t, J = 7.4 Hz, 1H), 7.37 (t, J = 7.9 Hz, 1H), 7.11 (t, J = 7.4 Hz, 1H), 5.74 (d, J = 12.2 Hz, 1H), 3.18 (s, 3H), 2.94 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 164.1, 155.1, 140.1, 137.4, 134.4, 132.3, 131.0, 130.1, 129.1, 125.6 (two overlapping signals), 122.9, 122.6, 120.9, 93.2, 45.3 (br), 37.4 (br). HRMS (ESI) Calcd for [C₁₈H₁₇BrN₂O₂+H]⁺ 373.0552, Found 373.0551.

Conditions A (28.3 mg, 46%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 12.30 (br,

1H), 8.81 (d, J = 8.2 Hz, 1H), 7.80 – 7.74 (m, 2H), 7.63 (d, J = 7.2 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 7.34 – 7.23 (m, 3H), 7.11 (t, J = 7.4 Hz, 1H), 5.70 (d, J = 12.2 Hz, 1H), 3.15 (s, 3H), 2.93 (s, 3H), 2.55 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 191.1, 168.5, 155.0, 140.0, 136.9, 136.8, 132.2, 131.2, 130.0, 129.0, 127.2, 126.0, 125.9, 122.4, 120.9, 93.5, 45.2 (br), 37.4 (s), 20.3. HRMS (ESI) Calcd for $[C_{19}H_{20}N_2O_2+H]^+$ 309.1603, Found 309.1606.

Conditions A (50.4 mg, 84%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 13.16 (br, 1H), 8.74 (d, J = 8.3 Hz, 1H), 7.85 – 7.80 (m, 3H), 7.52 – 7.44 (m, 2H), 7.13 – 7.06 (m, 2H), 5.75 (d, J = 12.2 Hz, 1H), 3.18 (s, 3H), 2.94 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.2, 160.4, 155.0, 141.0, 140.3, 132.4, 130.5, 129.1, 128.4, 127.8, 125.2, 122.2, 120.7, 93.3, 45.3 (br), 37.4 (br). HRMS (ESI) Calcd for [C₁₆H₁₆N₂O₂S+H]⁺ 301.1011, Found 301.1009.

Conditions A (56.2 mg, 91%, yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 12.38 (br, 1H), 8.68 (d, J = 8.3 Hz, 1H), 7.82 – 7.77 (m, 2H), 7.43 (t, J = 7.7 Hz, 1H), 7.07 (t, J = 7.5 Hz, 1H), 5.71 (d, J = 12.2 Hz, 1H), 3.74 (s, 2H), 3.19 (s, 3H), 2.95 (s, 3H), 1.45 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 174.1, 154.9, 139.9, 132.2, 129.0, 125.7, 122.3, 120.8, 93.3, 53.0, 45.6, 45.3 (br), 37.4 (br), 23.5. The broadening of the Me signals is likely due to partially hindered rotation along the C(alkenyl)-N bond. HRMS (ESI) Calcd for [C₁₆H₂₁ClN₂O₂+H]⁺ 309.1370, Found 309.1371.

III. Synthesis of NH 4-Quinolones

Reaction Conditions A: enaminone 1a (35.1 mg, 0.2 mmol), CoCp*(CO)I₂ (9.5 mg,

10 mol %), AgNTf₂ (15.5 mg, 20 mol %), KOAc (6.0 mg, 30 mol %), and dioxazolone **2a** (50.0 mg, 0.3 mmol) were weighed into a pressure tube, to which was added 1,4-dioxane (2 mL) under N₂. The reaction mixture was stirred for 12 h at 100 $^{\circ}$ C.After removal of1,4-dioxane under reduced pressure, THF (3 mL) was added followed by addition of HCl (2 M, 0.5 mL). The mixture was stirred at 30 $^{\circ}$ C for 12 h. Purification was performed by flash column chromatography on silica gel using EtOAc and petroleum ether to afford the desired product **5a** (85% yield).

Reaction Conditions B: enaminone (0.2 mmol), dioxazolone **2a** (50.0 mg, 0.3 mmol), [Cp*RhCl₂]₂ (4.9 mg, 4 mol%), AgSbF₆ (11 mg, 16 mol%), and AgOAc (6.7 mg, 20 mol %) were weighed into a pressure tube, to which was added 1,2-dichloromethane (2 mL) under N₂. The reaction mixture was stirred for 12 h at 100 °C. After complete removal of 1,2-dichloromethane under reduced pressure, THF (3 mL) was added followed by addition of HCl (2 M, 0.5 mL). The mixture was stirred at 30 °C for 12 h. Purification was performed by flash column chromatography on silica gel using EtOAc and petroleum ether to afford the desired product.

Conditions A (24.7 mg, 85%, white solid). ¹H NMR (400 MHz, DMSO- d_6) δ 11.76 (br, 1H), 8.09 (d, J = 8.0 Hz, 1H), 7.90 (dd, J = 7.1, 6.1 Hz, 1H), 7.65 – 7.61 (m, 1H), 7.54 (d, J = 8.2 Hz, 1H), 7.31 (t, J = 7.5 Hz, 1H), 6.03 (d, J = 7.4 Hz, 1H). ¹³C NMR (100 MHz, DMSO) δ 176.9, 140.0, 139.4, 131.6, 125.8, 124.9, 123.0, 118.2, 108.7. HRMS (ESI) Calcd for [C₉H₇NO+H]⁺ 146.0606, Found 146.0605.

Conditions A (23 mg, 64%, yellow solid). ¹H NMR (400 MHz, CD₃OD) δ 8.19 (d, J = 2.1 Hz, 1H), 7.97 (d, J = 7.3 Hz, 1H), 7.67 (J = 8.9, 2.2 Hz, 1H), 7.57 (d, J = 8.9 Hz, 1H), 6.33 (d, J = 7.3 Hz, 1H). The NH signal was missing due to exchange. ¹³C NMR

(100 MHz, CD₃OD) δ 179.5, 141.7, 140.0, 133.8, 131.1, 127.7, 125.3, 121.6, 110.1. HRMS (ESI) Calcd for [C₉H₇ClNO+H]⁺ 180.0216, Found 180.0217.

Conditions A (23.5 mg, 67%, yellow solid). ¹H NMR (400 MHz, CD₃OD) δ 8.11 (d, *J* = 9.1 Hz, 1H), 7.86 (d, *J* = 7.3 Hz, 1H), 6.98 (dd, *J* = 9.1, 2.0 Hz, 1H), 6.90 (s, 1H), 6.24 (d, *J* = 7.3 Hz, 1H), 3.89 (s, 3H). The NH signal was missing due to exchange. ¹³C NMR (100 MHz, MeOD) δ 180.3, 164.6, 143.5, 141.0, 127.9, 121.0, 116.2, 109.5, 99.6, 56.2. HRMS (ESI) Calcd for [C₁₀H₉NO₂+H]⁺ 176.0712, Found 176.0712.

Conditions A (18.9 mg, 54%, yellow solid). ¹H NMR (400 MHz, CD₃OD) δ 8.40 (d, *J* = 8.5 Hz, 1H), 8.05 (d, *J* = 7.4 Hz, 1H), 7.89 (s, 1H), 7.62 (*J* = 8.6, 1.2 Hz, 1H), 6.38 (d, *J* = 7.4 Hz, 1H). The NH signal was missing due to exchange. ¹³C NMR (100 MHz, CD₃OD) δ 180.0, 142.5, 141.1, 134.8 (q, *J*_{C-F} = 32.6 Hz), 128.7, 128.1, 125.0 (q, *J*_{C-F} = 270.3 Hz), 120.8 (q, *J*_{C-F} = 3.3 Hz), 117.2 (q, *J*_{C-F} = 3.1 Hz), 111.0. HRMS (ESI) Calcd for [C₁₀H₆F₃NO+H]⁺ 176.0712, Found 176.0711.

Conditions A (24.1 mg, 76%, yellow solid). ¹H NMR (400 MHz, CD₃OD) δ 8.03 (s, 1H), 7.93 (d, *J* = 7.2 Hz, 1H), 7.55 (dd, J = 7.3, 1.2 Hz, 1H), 7.48 (d, J = 8.5 Hz, 1H), 6.32 (d, *J* = 7.2 Hz, 1H), 2.47 (s, 3H). The NH signal was missing due to exchange. ¹³C NMR (100 MHz, CD₃OD) δ 180.5, 141.0 139.6, 135.6, 135.2, 126.6, 125.2, 119.4, 109.5, 21.3. HRMS (ESI) Calcd for [C₁₀H₉NO+H]⁺ 160.0762, Found 160.0762.

Conditions B (29.5 mg, 82%, yellow solid). ¹H NMR (400 MHz, DMSO- d_6) δ 11.87 (s, 1H), 8.13 (d, J = 8.7 Hz, 1H), 8.05 – 7.92 (m, 1H), 7.64 (d, J = 1.7 Hz, 1H), 7.37 (dd, J = 8.7, 1.8 Hz, 1H), 6.10 (d, J = 7.4 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 176.4, 140.9, 140.1, 136.3, 127.4, 124.5, 123.5, 117.5, 109.4. HRMS (ESI) Calcd for [C₉H₆ClNO+H]⁺ 180.0216, Found 180.0218

Conditions A (21.0 mg, 60%, yellow solid). ¹H NMR (400 MHz, CD₃OD) δ 7.93 (d, *J* = 7.2 Hz, 1H), 7.66 (d, *J* = 2.8 Hz, 1H), 7.54 (d, *J* = 9.1 Hz, 1H), 7.35 (dd, *J* = 9.1, 2.9 Hz, 1H), 6.33 (d, *J* = 7.1 Hz, 1H), 3.90 (s, 3H). The NH signal was missing due to exchange. ¹³C NMR (100 MHz, CD₃OD) δ 180.0, 158.3, 140.2, 136.3, 127.8, 124.8, 121.2, 108.8, 104.7, 56.1. HRMS (ESI) Calcd for [C₁₀H₉NO₂+H]⁺176.0712, Found 176.0711. HRMS (ESI) Calcd for [C₁₀H₉NO₂+H]⁺176.0712, Found 176.0711.

IV. Derivatization of an Amidated Product.

To a solution of **3aa** (58.8 mg, 0.2 mmol) in ethanol (3 mL) was added hydrazine hydrate (15.6 mg, 1.5 equiv), and the mixture was heated at 100°C (oil bath temperature) for overnight. The solution was extracted three times with dichloromethane (5 ml). The organic layer was washed with brine (10 mL), dried dover MgSO₄, and the solvent was removed under reduced pressure to afford the crude product. The residue was purified by silica gel chromatography using PE/EA to afford the product **6a** as a yellow solid **.**

Selected signals: ¹H NMR (400 MHz, acetone- d_6): δ 12.67 (br, 2H, major), 12.2 (br, 1H, minor), 8.95 (d, J = 8.2 Hz, major), 8.90 (dd, J = 8.4, 1.0 Hz, 1H, minor), 8.19 – 8.17 (m, 2H, major), 8.15 – 8.14 (m, 1H, minor), 8.02 (d, J = 2.6 Hz, 1H, major), 7.96 (d, J = 2.3 Hz, 1H, minor), 7.89 (dd, J = 7.8, 1.5 Hz, 1H, major), 7.84 (J = 7.8, 1.5 Hz, 1H, minor), 6.94 (d, J = 2.0 Hz, 1H, major), 6.84 (d, J = 2.6 Hz, 1H, minor). ¹³C NMR (101 MHz, acetone- d_6) δ 165.0, 151.3, 137.0, 135.7, 131.5, 129.9, 128.7, 128.1, 128.0, 127.8, 127.6, 127.4, 123.1, 120.5, 120.4, 120.3, 103.5, 103.3. HRMS (ESI) Calcd for [C₁₆H₁₃N₃O+H]⁺264.1137, Found 264.1133.

Product **6b** was isolated as a yellow solid (68%) ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, *J* = 8.3 Hz, 1H), 7.97 (s, 1H), 7.86 (d, *J* = 1.6 Hz, 1H), 7.60 (d, *J* = 7.3 Hz, 2H), 7.52 (t, *J* = 7.3 Hz, 1H), 7.48 – 7.38 (m, 3H), 7.30 – 7.18 (m, 5H), 7.19 – 7.07 (m, 2H), 6.60 (d, *J* = 1.6 Hz, 1H).¹³C NMR (101 MHz, CDCl₃) δ 165.0, 140.8, 139.2, 138.2, 136.0, 134.3, 132.0, 130.8, 130.2, 129.0, 128.8, 127.6, 126.8, 124.3, 123.7, 121.5, 121.1, 109.1. HRMS (ESI) Calcd for [C₂₂H₁₈N₃O+H]⁺ 340.1450, Found 340.1454.

V. Mechanistic Studies

a. H/D exchange experiment

A mixture of enaminone **1** (35.1 mg, 0.2 mmol), $CoCp^*(CO)I_2$ (9.5 mg, 10 mol %), AgNTf₂ (15.5 mg, 20 mol%), KOAc (6.0 mg, 30 mol %), and acetic acid-*d*₄ (76.8 mg, 6 equiv) were weighed into a pressure tube, to which was added 1,4-dioxane (2 mL)

under N₂. The ratio of H/D was determined on the basis of ¹H NMR analysis.

b. Intramolecular KIE experiments

A mixture of enaminone **1a** (35.1 mg, 0.2 mmol), CoCp*(CO)I₂ (9.5 mg, 10 mol %), AgNTf₂ (15.5 mg, 20 mol %), KOAc (6.0 mg, 30 mol %), and dioxazolone **2a** (50.0 mg, 0.3 mmol) were weighed into a pressure tube, to which was added 1,4-dioxane (2 mL) under N₂. To another tube were added enaminone- d_5 **1a**- d_5 (36.0 mg, 0.2 mmol), CoCp*(CO)I₂ (9.5 mg, 10 mol %), AgNTf₂ (15.5 mg, 20 mol %), KOAc (6.0 mg, 30 mol%), and dioxazolone **2a** (50.0 mg, 0.3 mmol) were weighed into a pressure tube, to which was added 1,4-dioxane (2 mL) under N₂. These two reaction mixtures were stirred side-by-side in the same oil bath at 50 °C for 0.5 h. The reactions tubes were quenched at 0 °C and these two mixtures were rapidly combined, and all the volatiles were rapidly removed under a reduced pressure. The residue was purified by silica gel chromatography using PE/EA to afford the mixed product. KIE value ($k_{\rm H}/k_{\rm D} = 4.9$) was determined on the basis of ¹H NMR analysis.

c. Intermolecular KIE experiments

An equimolar mixture of enaminone **1a** (35.1 mg, 0.2 mmol), enaminone **1a**- d_5 (36.0 mg, 0.2 mmol), CoCp*(CO)I₂ (9.5 mg, 10 mol %), AgNTf₂ (15.5 mg, 20 mol %), KOAc (6.0 mg, 30 mol %), and dioxazolone **2a** (50.0 mg, 0.3 mmol) were weighed into a pressure tube, to which was added 1,4-dioxane (2 mL) under N₂. The reaction mixture was stirred at 50 °C for 0.5 h. Purification was performed by flash column chromatography on silica gel using EtOAc and petroleum ether to afford the desiredproducts.KIE value ($k_{\rm H}/k_{\rm D} = 5.7$) was determined on the basis of ¹H NMR analysis.

d. A proposed catalytic cycle for the coupling of 1a and 2a.

VI. NMR Spectra

S23

S29

S34

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)