Supporting Information

Cobalt(III) and Rhodium(III)-Catalyzed C-H Amidation and Synthesis of 4-Quinolones: C-H Activation Assisted by Weakly Coordinating and Functionalizable Enaminone
Fen Wang, Liang Jin, Lingheng Kong, Xingwei Li*
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023,China
School of Chemistry and Chemical Engineering, Dalian University of Technology,
Dalian 116023, China
Email: xwli@dicp.ac.cn

Content
I. General Considerations S2
II. Procedure for the catalytic synthesis of 4-quinolones S2
III. Synthesis of NH Quinolones S15
IV. Derivatization of product 3aa S18
V. Mechanistic Studies S19
a. H / D exchange experiment S19
b. Intramolecular KIE experiments S20
c. Intermolecular KIE experiments S21
d. proposed catalytic cycle S22
VI. NMR Spectra S23

I. General Considerations

All rhodium- and cobalt-catalyzed reactions were carried out in a nitrogen-filled dry box. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded using CDCl_{3}, DMSO- $d_{6}, \mathrm{CD}_{3} \mathrm{OD}$ as a solvent on a 400 MHz spectrometer at 298 K . The chemical shift is given in dimensionless δ values and is frequency referenced relative to SiMe_{4} in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. High-resolution mass spectra were obtained on an Agilent Q-TOF 6540 spectrometer. All other solvents were obtained from commercial sources and were used as received.

II. Procedure for the cobalt- and rhodium-catalyzed C-H amidation of enaminones

Reaction Conditions A (representative example): enaminone 1a ($35.1 \mathrm{mg}, 0.2$ $\mathrm{mmol}), \mathrm{CoCp}^{*}(\mathrm{CO}) \mathrm{I}_{2}(9.5 \mathrm{mg}, 10 \mathrm{~mol} \%), \mathrm{AgNTf}_{2}(15.5 \mathrm{mg}, 20 \mathrm{~mol} \%)$, KOAc (6.0 $\mathrm{mg}, 30 \mathrm{~mol} \%$), and freshly prepared dioxazolone $\mathbf{2 a}(50.0 \mathrm{mg}, 0.3 \mathrm{mmol})$ were weighed into a pressure tube, to which was added 1,4-dioxane (2 mL) under N_{2}. The reaction mixture was stirred for 12 h at $100{ }^{\circ} \mathrm{C}$. Purification was performed by flash column chromatography on silica gel using EtOAc and petroleum ether to afford the product 3aa as a yellow solid ($54.6 \mathrm{mg}, 93 \%$).

Scale-up synthesis: enaminone 1a ($175 \mathrm{mg}, 1 \mathrm{mmol}$), CoCp*(CO)I2 $(47.5 \mathrm{mg}, 10$ $\mathrm{mol} \%), \mathrm{AgNTf}_{2}(77.5 \mathrm{mg}, 20 \mathrm{~mol} \%)$, $\mathrm{KOAc}(30 \mathrm{mg}, 30 \mathrm{~mol} \%$), and dioxazolone 2a ($250 \mathrm{mg}, 1.5 \mathrm{mmol}$) were weighed into a pressure tube, to which was added freshly prepared 1,4-dioxane (10 mL) under N_{2}. The reaction mixture was stirred for 12 h at $100{ }^{\circ} \mathrm{C}$. Purification was performed by flash column chromatography on silica gel using EtOAc and petroleum ether to afford the product 3aa as a yellow solid (206 mg , $70 \%)$.

Reaction Conditions B: enaminone $\mathbf{1}(35.1 \mathrm{mg}, 0.2 \mathrm{mmol})$, dioxazolone 2a (50.0 mg ,
$0.3 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(4.9 \mathrm{mg}, 4 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(11 \mathrm{mg}, 16 \mathrm{~mol} \%)$, and AgOAc $(6.7 \mathrm{mg}, 20 \mathrm{~mol} \%)$ were weighed into a pressure tube, to which was added 1,2-dichloromethane (2 mL) under N_{2}. The reaction mixture was stirred for 12 h at 100 ${ }^{\circ} \mathrm{C}$. Purification was performed by flash column chromatography on silica gel using EtOAc and petroleum ether to afford the desired product.

Reaction Conditions C: enaminone $\mathbf{1}(35.1 \mathrm{mg}, 0.2 \mathrm{mmol})$, dioxazolone $\mathbf{2 a}(50.0 \mathrm{mg}$, $0.3 \mathrm{mmol}), \mathrm{Cp} * \mathrm{Co}(\mathrm{CO}) \mathrm{I}_{2}(9.5 \mathrm{mg}, 10 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(11.0 \mathrm{mg}, 20 \mathrm{~mol} \%)$, and $\mathrm{AgOAc}(6.7 \mathrm{mg}, 20 \mathrm{~mol} \%)$ were weighed into a pressure tube, to which was added 1,4-dioxane (2 mL) under N_{2}. The reaction mixture was stirred for 12 h at $100{ }^{\circ} \mathrm{C}$. Purification was performed by flash column chromatography on silica gel using EtOAc and petroleum ether to afford the desired product.

Conditions A ($54.7 \mathrm{mg}, 93 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.10$ (br s, $1 \mathrm{H}), 8.85(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.10-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.40$ $(\mathrm{m}, 4 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 1 \mathrm{H}), 5.72(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.1,165.6,155.0,140.2,135.2,132.2,131.4,129.0$, 128.6, 127.3, 125.6, 122.3, 120.8, 93.3, 45.2 (br), 37.3 (br). The broadening of the Me signals is likely due to partially hindered rotation along the $\mathrm{C}($ alkenyl)- N bond. HRMS (ESI) Calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$295.1447, Found 295.1445.

Conditions A ($54.2 \mathrm{mg}, 88 \%$, white solid). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.22$ (br s, $1 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.10-8.08(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~s}$, $3 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.2, 165.7, 154.7, $143.2,140.5,135.3,131.4,129.2,128.6,127.4,123.1,122.9,121.2,93.2,45.2$ (br),
37.4 (br), 21.9. The broadening of the Me signals is likely due to partially hindered rotation along the C (alkenyl)-N bond. HRMS (ESI) Calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$ 309.1603, Found 309.1605.

Conditions A ($60.3 \mathrm{mg}, 93 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.71$ (br, $1 \mathrm{H}), 8.61(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.12-8.09(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.48$ (m, 3H), $6.63(\mathrm{dd}, J=8.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~s}$, 3 H), 2.93 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.4,166.0,162.8,154.3,143.1$, 135.2, 131.5, 130.8, 128.6, 127.4, 117.8, 109.5, 104.2, 92.7, 55.4, 45.2 (br), 37.3 (br). The broadening of the Me signals is likely due to partially hindered rotation along the $\mathrm{C}\left(\right.$ alkenyl)-N bond. HRMS (ESI) Calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}$325.1552, Found 325.1556.

Conditions B ($44.1 \mathrm{mg}, 63 \%$, white solid). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.22$ (br, $1 \mathrm{H}), 8.99$ (d, $J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.21-8.09(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.83$ (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=12.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 191.1$, $165.8,156.3,154.7,140.5,135.4,131.4,128.9,128.6,127.4,122.8,119.4,118.0$, 93.2, 45.2 (br), 37.4 (br), 35.2, 31.1. The broadening of the Me signals is likely due to partially hindered rotation along the C (alkenyl)-N bond. HRMS (ESI) Calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$351.2073, found 351.2070.

Conditions A ($64.8 \mathrm{mg}, 99 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.30$ (br,
$1 \mathrm{H}), 8.95$ (s, 1H), $8.06-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~s}$, 3 H), $2.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.0,165.6,155.2,141.5,138.0$, 134.8, 131.7, 130.1, 128.6, 127.4, 123.5, 122.2, 120.5, 92.8, 45.3 (br), 37.4 (br). The broadening of the Me signals is likely due to partially hindered rotation along the C (alkenyl)-N bond. HRMS (ESI) Calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+} 329.1057$, Found 329.1059 .

Conditions A ($67.7 \mathrm{mg}, 91 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.25$ (br, $1 \mathrm{H}), 9.11(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.06-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{dd}, J=8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=12.1$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.15(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 190.1, 165.6, $155.2,141.4,134.8,131.7,130.2,128.6,127.4,126.6,125.2,124.0,123.4,92.8,45.3$ (br), 37.4 (br). The broadening of the Me signals is likely due to partially hindered rotation along the $\mathrm{C}\left(\right.$ alkenyl)-N bond. HRMS (ESI) Calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$ 373.0552 , Found 373.0551.

Conditions A ($69.5 \mathrm{mg}, 96 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.09$ (br, $1 \mathrm{H}), 9.21(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.88-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 3 \mathrm{H})$, $7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.9,165.8,155.7,140.6,134.7,133.3$ (q, $J_{\mathrm{C}-\mathrm{F}}=32.0$ $\mathrm{Hz}), 131.8,129.3,128.7,128.2,127.4,123.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=271.2 \mathrm{~Hz}\right), 118.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.7\right.$ $\mathrm{Hz}), 117.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.4 \mathrm{~Hz}\right)$, 93.2, $45.4(\mathrm{br}), 37.5(\mathrm{br})$. The broadening of the Me signals is likely due to partially hindered rotation along the C (alkenyl)- N bond. HRMS (ESI) Calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+} 363.1320$, Found 363.1321.

Conditions A (54.9 mg, 88\%, yellow solid). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.43(\mathrm{br}$, $1 \mathrm{H}), 8.69(\mathrm{dd}, J=12.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.55-$ $7.48(\mathrm{~m}, 3 \mathrm{H}), 6.80-7.75(\mathrm{~m}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 190.1,165.9,164.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=248.7 \mathrm{~Hz}\right), 155.0$, $142.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=12.5 \mathrm{~Hz}\right), 134.9,131.7,131.07\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=10.3 \mathrm{~Hz},\right), 128.7,127.4$, $121.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right), 109.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.0 \mathrm{~Hz}\right), 107.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=27.5 \mathrm{~Hz}\right), 92.9$, 45.3 (br), 37.4 (br). HRMS (ESI) Calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+} 313.1352$, Found 313.1356.

Conditions $\mathrm{B}\left(30.0 \mathrm{mg}, 48 \%\right.$, white solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.04$ (br, $1 \mathrm{H}), 8.48$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.01$ (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.86 (s, 1H), $7.53-7.47$ (m, $3 \mathrm{H}), 7.38(\mathrm{dd}, J=14.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J=12.1,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.1,165.4,155.0$, $140.0,134.8,131.8,131.7$ (two overlapping signals), 128.6, 127.3, 117.3 (d, $J_{\mathrm{C}-\mathrm{F}}=$ $16.6 \mathrm{~Hz}), 116.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1.1 \mathrm{~Hz}\right), 110.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=24.3 \mathrm{~Hz}\right), 98.6,45.3(\mathrm{br}), 37.4(\mathrm{br})$. The broadening of the Me signals is likely due to partially hindered rotation along the C (alkenyl)-N bond. HRMS (ESI) Calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$313.1352, Found 313.1355.

Conditions A ($48.7 \mathrm{mg}, 79 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.92$ (br, $1 \mathrm{H}), 8.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~s}$,
$1 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~s}$, $3 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.4, 165.4, 155.0, $137.8,135.4,132.9,131.6,131.3,129.3,128.6,127.3,125.7,120.8,93.4,45.2$ (br), 37.4 (br), 20.9. The broadening of the Me signals is likely due to partially hindered rotation along the C (alkenyl)-N bond. HRMS (ESI) Calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$ 309.1603, Found 309.1601.

Conditions A $\left(40.8 \%, 63 \%\right.$, yellow solid). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 13.08$ (s, $1 \mathrm{H}), 8.60(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.90(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.47(\mathrm{~d}, J=$ $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=9.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $3.21(\mathrm{~s}, 3 \mathrm{H}), 2.98$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO) δ 189.1, 164.0, 156.1, 154.5, 135.0, 133.1, 131.8, 128.9, 127.3, 126.9, 121.6, 117.1, 114.6, 92.5, 55.6, 45.0 (br), 37.6 (br). The broadening of the Me signals is likely due to partially hindered rotation along the C (alkenyl)-N bond. HRMS (ESI) Calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}$325.1552, Found 325.1552.

Conditions B ($58.3 \mathrm{mg}, 89 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.94$ (br, $1 \mathrm{H}), 8.82(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.05-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=12.1$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.19(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.8,165.6$, $155.5,138.9,135.0,131.9,131.7,128.7,127.4,127.2,127.1,127.0,122.3,93.0,45.4$ (br), 37.6 (br). HRMS (ESI) Calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$329.1057, Found 329.1052.

Conditions B (53.0mg, 77%, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.85$ (br, $1 \mathrm{H}), 9.28(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.13-8.12(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J$ $=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.5$, $165.6,155.2,136.3,135.3,131.4,130.1,128.7,128.4,128.1,127.7,127.3,126.9$, 125.1, 117.7, $93.8,45.3$ (br), 37.5 (br). The broadening of the Me signals is likely due to partially hindered rotation along the C(alkenyl)-N bond. HRMS (ESI) Calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+} 345.1603$, Found 345.1601.

Conditions C ($7.0 \mathrm{mg}, 11 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.81$ (br, $1 \mathrm{H}), 8.82(\mathrm{dd}, J=9.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.06-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.97$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 189.9,165.5,157.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=227.4 \mathrm{~Hz}\right), 155.5$, $136.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.4 \mathrm{~Hz}\right), 135.1,131.6,128.7,127.4,127.31\left(\mathrm{~d}, J_{C-F}=4.9 \mathrm{~Hz}\right), 122.7(\mathrm{~d}$, $\left.J_{C-F}=7.2 \mathrm{~Hz}\right), 118.8\left(\mathrm{~d}, J_{C-F}=21.6 \mathrm{~Hz}\right), 115.2\left(\mathrm{~d}, J_{C-F}=23.0 \mathrm{~Hz}\right), 93.1,45.5(\mathrm{br})$, 37.6 (br). The broadening of the Me signals is likely due to partially hindered rotation along the C (alkenyl)-N bond. HRMS (ESI) Calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+} 313.1352$, Found 313.1356.

Conditions C ($18.2 \mathrm{mg}, 34 \%$, white solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.81(\mathrm{~m}, 3 \mathrm{H}), 7.85-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.54-$ $7.50(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 177.93(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 169.3,152.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=251.2 \mathrm{~Hz}\right), 139.2,134.6$, $130.8(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 3 \mathrm{H}), 130.3,129.2,128.71,128.70\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.9 \mathrm{~Hz}\right), 125.9(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{F}}=7.9 \mathrm{~Hz}\right), 122.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.4 \mathrm{~Hz}\right), 118.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=19.9 \mathrm{~Hz}\right), 111.4$. HRMS (ESI) Calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{FNO}_{2}+\mathrm{H}\right]^{+}$268.0774, Found 268.0775.

Conditions C ($14.6 \mathrm{mg}, 25 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02$ (d, J $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.56-$ $7.52(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.1,168.2,151.3,138.6,136.2,134.3,131.3,130.4$, 129.1, 124.1, 122.5, 121.8, 110.8, 108.0, 102.3. HRMS (ESI) Calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{FNO}_{4}+\mathrm{H}\right]^{+}$294.0761, Found 294.0765 .

Conditions A ($52.8 \mathrm{mg}, 88 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.87$ (br, $1 \mathrm{H}), 8.33(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55$ - 7.47 (m, 3H), 7.39 (d, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 2.93$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 183.4, 164.4, 153.3, 143.5, 134.1, 131.8, 128.7, 128.3, 127.5, 123.0, 121.4, 93.1, 45.1 (br), 37.4 (br). The broadening of the Me signals is likely due to partially hindered rotation along the C (alkenyl)- N bond. HRMS (ESI) Calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+} 301.1011$, Found 301.1012.

Conditions A (46.2 mg, 75%, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.97$ (br,
$1 \mathrm{H}), 8.83$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.97$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-$ $7.80(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.73(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.3,165.7,155.0,141.9,140.4,132.5,132.2,129.3,129.0,127.4$, 125.7, 122.1, 120.9, 93.5, 45.3 (br), 37.4 (br), 21.5. HRMS (ESI) Calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+} 309.1603$, Found 309.1602.

Conditions A ($55.7 \mathrm{mg}, 86 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.98$ (s, $1 \mathrm{H}), 9.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.04(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.82-8.72(\mathrm{~m}, 2 \mathrm{H}), 8.46(\mathrm{t}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.84(\mathrm{~s}, 3 \mathrm{H}), 4.14(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.3$, $165.2,162.2,154.9,140.5,132.2,129.2,129.0,127.6,125.5,122.0,120.7,113.8$, 93.4, 55.3, 45.2 (br), 37.3 (br). The broadening of the Me signals is likely due to partially hindered rotation along the C (alkenyl)-N bond. HRMS (ESI) Calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+} 325.1552$, Found 325.1559.

Conditions A ($65.8 \mathrm{mg}, 94 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.98$ (br, $1 \mathrm{H}), 8.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.85-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.50$ $(\mathrm{m}, 3 \mathrm{H}), 7.09(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H})$, $1.35(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.3, 165.7, 154.9, 140.4, 132.5, 132.2, 129.0, 127.2 (two overlapping signals), 125.7, 125.6, 122.1, 120.9, 93.4, 45.2 (br), 37.4 (br), 34.9, 31.1. The broadening of the Me signals is likely due to partially
hindered rotation along the $\mathrm{C}($ alkenyl)-N bond. HRMS (ESI) Calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$351.2073, Found 351.2070.

Conditions A (49.2 mg, 79%, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.13$ (br, $1 \mathrm{H}), 8.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.10-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.07$ (m, 3H), 5.74 (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ (s, 3H), 2.93 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.3,164.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=250.1 \mathrm{~Hz}\right.$), 164.4, 155.0, 140.3, $132.3,131.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right), 129.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.0 \mathrm{~Hz}\right), 129.1,125.5,122.3,120.8$, 115.5 (d, $J_{\text {C-F }}=21.7 \mathrm{~Hz}$), 93.3, 45.3 (br), 37.4 (br). HRMS (ESI) Calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$313.1352, Found 313.1357.

Conditions A ($36.7 \mathrm{mg}, 56 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.17$ (br, $1 \mathrm{H}), 8.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.85-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.50-$ $7.45(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.2,164.5,155.1,140.3,137.7,133.8,132.4$, 129.1, 128.9, 128.8, 125.5, 122.5, 120.8, 93.3, 45.3 (br), 37.4 (br). HRMS (ESI) Calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$329.1057, Found 329.1058.

Conditions A ($65.6 \mathrm{mg}, 88 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.19$ (br,
$1 \mathrm{H}), 8.80$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.94$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.85-7.82$ (m, 2H), 7.62 (d, J $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=12.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.18$ (s, 3H), $2.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.2, 164.6, 155.1, 140.2, 134.2, 132.4, 131.8, 129.1 (two overlapping signals), 126.2, 125.5, 122.5, 120.8, 93.2, 45.3 (br), 37.4 (br). HRMS (ESI) Calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+} 373.0552$, Found 373.0555.

Conditions A (37.6 mg, 52\%, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.34$ (br, $1 \mathrm{H}), 8.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.87-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.50(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.2,164.2,155.2,140.1,138.7,133.0\left(\mathrm{q}, J_{C-\mathrm{F}}\right.$ $=32.1 \mathrm{~Hz}$), 132.4, 129.1, 127.9 (two overlapping signals), 125.7 (q, $J_{C-\mathrm{F}}=3.7 \mathrm{~Hz}$), 125.5, 122.7, 120.9, $93.2,45.4$ (br), 37.5 (br). The broadening of the Me signals is likely due to partially hindered rotation along the C (alkenyl)-N bond. HRMS (ESI) Calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+} 363.1320$, Found 363.1322.

Conditions A ($43.4 \mathrm{mg}, 68 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.5$ (br, $1 \mathrm{H}), 8.79$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.16$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.87-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.50(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 191.1, 163.5, 155.3, 134.0, 139.3, 132.5, 132.4, 129.1, 128.1, 125.4, 122.9, 120.8, 118.3, 114.8, 93.1, 45.4 (br), 37.5 (br). The broadening of the Me signals is likely due to partially hindered rotation along the
$\mathrm{C}\left(\right.$ alkenyl)-N bond. HRMS (ESI) Calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$320.1399, Found 320.1399.

Conditions A ($53.6 \mathrm{mg}, 87 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.96$ (br, $1 \mathrm{H}), 8.82(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.49(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-$ 7.32 (m, 2H), $7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{~s}$, 1 H), $2.45(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.2, 165.9, 155.0, 140.3, 138.3, $135.2,132.24,132.20,129.0,128.4,128.3,125.7,124.2,122.2,120.9,93.4,45.3$ (br), 37.4 (br), 21.4. The broadening of the Me signals is likely due to partially hindered rotation along the $\mathrm{C}($ alkenyl $)-\mathrm{N}$ bond. HRMS (ESI) Calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$ 309.1603, Found 309.1600.

Conditions A ($52.4 \mathrm{mg}, 84 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.20$ (br, $1 \mathrm{H}), 8.81(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{td}, J=$ 8.3, 2.0 Hz, 1H), $7.12(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.95$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.1,164.2,162.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=245.2 \mathrm{~Hz}\right), 155.1$, $140.1,137.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6.8 \mathrm{~Hz}\right), 132.3,130.2\left(\mathrm{~d}, J_{C-F}=7.7 \mathrm{~Hz}\right), 129.1,125.5$, $122.8(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{F}}=2.3 \mathrm{~Hz}\right), 122.5,120.8,118.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.3 \mathrm{~Hz}\right), 114.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.8 \mathrm{~Hz}\right), 93.2$, 45.3 (br), 37.4 (s). HRMS (ESI) Calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+} 313.1352$, Found 313.1358.

Conditions A ($59.7 \mathrm{mg}, 91 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.19$ (br, $1 \mathrm{H}), 8.79$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.81(\mathrm{~m}$, $2 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}$, 3 H), $2.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.1, 164.2, 155.1, 140.1, 137.2, $134.8,132.3,131.5,129.9,129.1,128.0,125.6,125.2,122.6,120.9,93.2,45.3$ (br), 37.4 (br). The broadening of the Me signals is likely due to partially hindered rotation along the $\mathrm{C}\left(\right.$ alkenyl)-N bond. HRMS (ESI) Calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$329.1057, Found 329.1053.

Conditions A ($67.1 \mathrm{mg}, 90 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.20$ (br, $1 \mathrm{H}), 8.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.82(\mathrm{~m}$, $2 \mathrm{H}), 7.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.1, 164.1, 155.1, 140.1, 137.4, 134.4, 132.3, 131.0, 130.1, 129.1, 125.6 (two overlapping signals), 122.9, 122.6, 120.9, 93.2, 45.3 (br), 37.4 (br). HRMS (ESI) Calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+} 373.0552$, Found 373.0551.

Conditions A ($28.3 \mathrm{mg}, 46 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.30$ (br,
$1 \mathrm{H}), 8.81$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.74$ (m, 2H), 7.63 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (t, J $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.15(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.1,168.5$, $155.0,140.0,136.9,136.8,132.2,131.2,130.0,129.0,127.2,126.0,125.9,122.4$, 120.9, 93.5, 45.2 (br), 37.4 (s), 20.3. HRMS (ESI) Calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$ 309.1603, Found 309.1606.

Conditions A ($50.4 \mathrm{mg}, 84 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.16$ (br, $1 \mathrm{H}), 8.74$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.44$ (m, 2H), $7.13-7.06$ $(\mathrm{m}, 2 \mathrm{H}), 5.75(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 191.2,160.4,155.0,141.0,140.3,132.4,130.5,129.1,128.4,127.8,125.2$, 122.2, 120.7, 93.3, 45.3 (br), 37.4 (br). HRMS (ESI) Calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+}$ 301.1011, Found 301.1009.

Conditions A ($56.2 \mathrm{mg}, 91 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.38$ (br, $1 \mathrm{H}), 8.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H})$, $1.45(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.1, 174.1, 154.9, 139.9, 132.2, 129.0, 125.7, 122.3, 120.8, 93.3, 53.0, 45.6, 45.3 (br), 37.4 (br), 23.5. The broadening of the Me signals is likely due to partially hindered rotation along the C (alkenyl)-N bond. HRMS (ESI) Calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$309.1370, Found 309.1371.

III. Synthesis of NH 4-Quinolones

Reaction Conditions A: enaminone 1a ($35.1 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{CoCp}^{*}(\mathrm{CO}) \mathrm{I}_{2}(9.5 \mathrm{mg}$,
$10 \mathrm{~mol} \%), \operatorname{AgNTf}_{2}(15.5 \mathrm{mg}, 20 \mathrm{~mol} \%), \mathrm{KOAc}(6.0 \mathrm{mg}, 30 \mathrm{~mol} \%)$, and dioxazolone $2 \mathbf{2 a}(50.0 \mathrm{mg}, 0.3 \mathrm{mmol})$ were weighed into a pressure tube, to which was added 1,4-dioxane (2 mL) under N_{2}. The reaction mixture was stirred for 12 h at 100 ${ }^{\circ}$ C.After removal of 1,4-dioxane under reduced pressure, THF (3 mL) was added followed by addition of $\mathrm{HCl}(2 \mathrm{M}, 0.5 \mathrm{~mL})$. The mixture was stirred at $30^{\circ} \mathrm{C}$ for 12 h . Purification was performed by flash column chromatography on silica gel using EtOAc and petroleum ether to afford the desired product $\mathbf{5 a}$ (85% yield).

Reaction Conditions B: enaminone (0.2 mmol), dioxazolone 2a ($50.0 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(4.9 \mathrm{mg}, 4 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(11 \mathrm{mg}, 16 \mathrm{~mol} \%)$, and $\mathrm{AgOAc}(6.7 \mathrm{mg}, 20$ mol \%) were weighed into a pressure tube, to which was added 1,2-dichloromethane $(2 \mathrm{~mL})$ under N_{2}. The reaction mixture was stirred for 12 h at $100^{\circ} \mathrm{C}$. After complete removal of 1,2-dichloromethane under reduced pressure, THF (3 mL) was added followed by addition of $\mathrm{HCl}(2 \mathrm{M}, 0.5 \mathrm{~mL})$. The mixture was stirred at $30^{\circ} \mathrm{C}$ for 12 h . Purification was performed by flash column chromatography on silica gel using EtOAc and petroleum ether to afford the desired product.

Conditions A ($24.7 \mathrm{mg}, 85 \%$, white solid). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 11.76$ (br, 1H), 8.09 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=7.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 1 \mathrm{H})$, $7.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) $\delta 176.9,140.0,139.4,131.6,125.8,124.9,123.0,118.2,108.7$. HRMS (ESI) Calcd for $\left[\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}+\mathrm{H}\right]^{+}$146.0606, Found 146.0605.

Conditions A ($23 \mathrm{mg}, 64 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.19(\mathrm{~d}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(J=8.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.33(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$. The NH signal was missing due to exchange. ${ }^{13} \mathrm{C}$ NMR
(100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 179.5,141.7,140.0,133.8,131.1,127.7,125.3,121.6,110.1$. HRMS (ESI) Calcd for $\left[\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{ClNO}+\mathrm{H}\right]^{+}$180.0216, Found 180.0217.

Conditions A ($23.5 \mathrm{mg}, 67 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.11$ (d, J $=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=9.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H})$, $6.24(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$. The NH signal was missing due to exchange. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 180.3,164.6,143.5,141.0,127.9,121.0,116.2,109.5$, 99.6, 56.2. HRMS (ESI) Calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$176.0712, Found 176.0712.

Conditions A ($18.9 \mathrm{mg}, 54 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.40$ (d, J $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.62(J=8.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.38$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$). The NH signal was missing due to exchange. ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 180.0,142.5,141.1,134.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=32.6 \mathrm{~Hz}\right), 128.7,128.1,125.0(\mathrm{q}$, $\left.J_{\mathrm{C}-\mathrm{F}}=270.3 \mathrm{~Hz}\right), 120.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.3 \mathrm{~Hz}\right), 117.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}\right), 111.0 . \mathrm{HRMS}(\mathrm{ESI})$ Calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{NO}+\mathrm{H}\right]^{+}$176.0712, Found 176.0711.

Conditions A ($24.1 \mathrm{mg}, 76 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.03$ (s, $1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, \mathrm{J}=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.32(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$. The NH signal was missing due to exchange. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 180.5,141.0$ 139.6, 135.6, 135.2, 126.6, 125.2, 119.4, 109.5, 21.3. HRMS (ESI) Calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}+\mathrm{H}\right]^{+} 160.0762$, Found 160.0762.

S17

Conditions B ($29.5 \mathrm{mg}, 82 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 11.87$ $(\mathrm{s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.05-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ $(\mathrm{dd}, J=8.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) δ 176.4, 140.9, 140.1, 136.3, 127.4, 124.5, 123.5, 117.5, 109.4. HRMS (ESI) Calcd for $\left[\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{ClNO}+\mathrm{H}\right]^{+}$180.0216, Found 180.0218

Conditions A ($21.0 \mathrm{mg}, 60 \%$, yellow solid). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.93$ (d, J $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=9.1,2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$. The NH signal was missing due to exchange. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 180.0,158.3,140.2,136.3,127.8,124.8$, 121.2, 108.8, 104.7, 56.1. HRMS (ESI) Calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{2}+\mathrm{H}\right]^{+} 176.0712$, Found 176.0711. HRMS (ESI) Calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{2}+\mathrm{H}\right]^{+} 176.0712$, Found 176.0711.

IV. Derivatization of an Amidated Product.

To a solution of 3aa ($58.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) in ethanol (3 mL) was added hydrazine hydrate ($15.6 \mathrm{mg}, 1.5$ equiv), and the mixture was heated at $100^{\circ} \mathrm{C}$ (oil bath temperature) for overnight. The solution was extracted three times with dichloromethane (5 ml). The organic layer was washed with brine (10 mL), dried dover MgSO_{4}, and the solvent was removed under reduced pressure to afford the crude product. The residue was purified by silica gel chromatography using PE/EA to afford the product 6a as a yellow solid .

Selected signals: ${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}): $\delta 12.67$ (br, 2H, major), 12.2 (br, 1 H , minor), 8.95 (d, $J=8.2 \mathrm{~Hz}$, major), 8.90 (dd, $J=8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 8.19 8.17 (m, 2H, major), $8.15-8.14$ ($\mathrm{m}, 1 \mathrm{H}$, minor), 8.02 ($\mathrm{d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$, major), 7.96 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 7.89 (dd, $J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, major), $7.84(J=7.8,1.5 \mathrm{~Hz}$, 1 H , minor), 6.94 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, major), $6.84\left(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, minor). ${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}\right.$, acetone- d_{6}) $\delta 165.0,151.3,137.0,135.7,131.5,129.9,128.7,128.1,128.0$, 127.8, 127.6, 127.4, 123.1, 120.5, 120.4, 120.3, 103.5, 103.3. HRMS (ESI) Calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}+\mathrm{H}\right]^{+} 264.1137$, Found 264.1133.

Product 6b was isolated as a yellow solid (68%) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.45$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.52(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.18(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.07(\mathrm{~m}, 2 \mathrm{H})$, $6.60(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.0,140.8,139.2,138.2$, $136.0,134.3,132.0,130.8,130.2,129.0,128.8,127.6,126.8,124.3,123.7,121.5$, 121.1, 109.1. HRMS (ESI) Calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}+\mathrm{H}\right]^{+} 340.1450$, Found 340.1454.

V. Mechanistic Studies

a. H/D exchange experiment

A mixture of enaminone $1(35.1 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{CoCp}^{*}(\mathrm{CO}) \mathrm{I}_{2}(9.5 \mathrm{mg}, 10 \mathrm{~mol} \%)$, $\operatorname{AgNTf}_{2}(15.5 \mathrm{mg}, 20 \mathrm{~mol} \%), \mathrm{KOAc}(6.0 \mathrm{mg}, 30 \mathrm{~mol} \%)$, and acetic acid $-d_{4}(76.8 \mathrm{mg}$, 6 equiv) were weighed into a pressure tube, to which was added 1,4-dioxane (2 mL)
under N_{2}. The ratio of H / D was determined on the basis of ${ }^{1} \mathrm{H}$ NMR analysis.

b. Intramolecular KIE experiments

A mixture of enaminone $\mathbf{1 a}(35.1 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{CoCp}^{*}(\mathrm{CO}) \mathrm{I}_{2}(9.5 \mathrm{mg}, 10 \mathrm{~mol} \%)$, $\operatorname{AgNTf}_{2}(15.5 \mathrm{mg}, 20 \mathrm{~mol} \%), \mathrm{KOAc}(6.0 \mathrm{mg}, 30 \mathrm{~mol} \%)$, and dioxazolone 2a (50.0 $\mathrm{mg}, 0.3 \mathrm{mmol}$) were weighed into a pressure tube, to which was added 1,4 -dioxane (2 mL) under N_{2}. To another tube were added enaminone- $d_{5} \mathbf{1 a} \mathbf{-} \boldsymbol{d}_{5}(36.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, $\mathrm{CoCp}^{*}(\mathrm{CO}) \mathrm{I}_{2}(9.5 \mathrm{mg}, 10 \mathrm{~mol} \%), \mathrm{AgNTf}_{2}(15.5 \mathrm{mg}, 20 \mathrm{~mol} \%), \mathrm{KOAc}(6.0 \mathrm{mg}, 30$ $\mathrm{mol} \%$), and dioxazolone $\mathbf{2 a}(50.0 \mathrm{mg}, 0.3 \mathrm{mmol})$ were weighed into a pressure tube, to which was added 1,4-dioxane (2 mL) under N_{2}. These two reaction mixtures were stirred side-by-side in the same oil bath at $50^{\circ} \mathrm{C}$ for 0.5 h . The reactions tubes were quenched at $0^{\circ} \mathrm{C}$ and these two mixtures were rapidly combined, and all the volatiles were rapidly removed under a reduced pressure. The residue was purified by silica gel chromatography using PE/EA to afford the mixed product. KIE value $\left(k_{\mathrm{H}} / k_{\mathrm{D}}=4.9\right)$
was determined on the basis of ${ }^{1} \mathrm{H}$ NMR analysis.
-13.0838

-3.1572
-2.9200

c. Intermolecular KIE experiments

An equimolar mixture of enaminone $\mathbf{1 a}(35.1 \mathrm{mg}, 0.2 \mathrm{mmol})$, enaminone $\mathbf{1 a}-d_{5}$ (36.0 $\mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{CoCp}^{*}(\mathrm{CO}) \mathrm{I}_{2}(9.5 \mathrm{mg}, 10 \mathrm{~mol} \%), \mathrm{AgNTf}_{2}(15.5 \mathrm{mg}, 20 \mathrm{~mol} \%)$, KOAc ($6.0 \mathrm{mg}, 30 \mathrm{~mol} \%$), and dioxazolone $\mathbf{2 a}(50.0 \mathrm{mg}, 0.3 \mathrm{mmol})$ were weighed into a pressure tube, to which was added 1,4-dioxane (2 mL) under N_{2}. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 0.5 h . Purification was performed by flash column chromatography on silica gel using EtOAc and petroleum ether to afford the desiredproducts.KIE value $\left(k_{\mathrm{H}} / k_{\mathrm{D}}=5.7\right)$ was determined on the basis of ${ }^{1} \mathrm{H}$ NMR analysis.

-13.0433
-8.8511 8.8492 8.8302 -7.0838 -7.8320 7.5240 7.4838 7.1275 7.0870
$\left\{\begin{array}{r}5.7616 \\ 5.7312\end{array}\right.$

d. A proposed catalytic cycle for the coupling of 1a and 2a.

VI. NMR Spectra

$\begin{array}{lllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \begin{array}{llllllll}90 \\ \mathrm{fl}(\mathrm{ppm})\end{array} & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

-183.3527
-164.4068
-153.2469
-143.5368
$\left[\begin{array}{r}128.6805 \\ 128.2969 \\ -127.5027 \\ -122.9473 \\ 121.3587\end{array}\right.$

-45.0793
-37.3756

[^0]

-191.3339
-165.6566
-154.9471
-141.8608

$\left[\begin{array}{l}129.2738\end{array}\right.$
127.4201
125.6757
122.1216
-93.4560

- 191.2502
$\int_{\Gamma}^{166.0196} 164.4755$
${ }^{2} 131.4918$
129.0728
- 120.7590
$\left[\begin{array}{l}115.6667 \\ 115.4494\end{array}\right.$
$\begin{array}{r} 77.3178 \\ 77.0000 \\ 76.6820 \end{array}$
-37.3866

| 1 | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 190 | 170 | 150 | 130 | 110 | 90 80 70 60 50 40 30 20 10 | 0 |

| 190 | 170 | 150 | 130 | 110 | 90
 $\mathrm{fl}(\mathrm{ppm})$ | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{aligned} & \stackrel{\circ}{m} \\ & \underset{\sim}{m} \end{aligned}$			$\begin{aligned} & 0.0 \\ & 0 \\ & \text { o } \\ & \text { in } \\ & \text { in } \end{aligned}$

-191.2090
-160.3719
-155.0171
$\int_{140.9937}^{140.2485}$
$\left[\begin{array}{l}130.5375 \\ 128.3744 \\ 127.7755 \\ 125.1459 \\ 122.2176 \\ 120.6880\end{array}\right.$
-93.2588
$\left[\begin{array}{l}77.3173 \\ 76.9995 \\ 76.6819\end{array}\right.$

190	170	150	130	110	90	80	70	60	50	40	30	20	10	0
					f1 (ppm)									

-164.9556
$\left[\begin{array}{l}130.7993 \\ 129.0090 \\ 128.7783 \\ 127.5535 \\ 126.8255 \\ 124.2636 \\ 123.7050 \\ 121.4796 \\ 121.0505 \\ -109.0669\end{array}\right.$

- 109.0669

[^1]
[^0]: $\begin{array}{ccc}\text { ton } & \text { a } \\ 0 & \text { à } \\ \text { mi } \\ \text { mi } \\ i & 1 & \text { i }\end{array}$

[^1]: $\begin{array}{lllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \begin{array}{c}100 \\ \mathrm{fl}(\mathrm{ppm})\end{array} & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

