Supporting Information

Enantioselective Construction of the ABCDE Pentacyclic Core of the *Strychnos* Alkaloids

Adam D. Gammack Yamagata and Darren J. Dixon*

Department of Chemistry, Chemistry Research Laboratory University of Oxford, Mansfield Road, Oxford, OX1 3TA

darren.dixon@chem.ox.ac.uk

Table of Contents

1. General Experimental	3
1.1 General Information	3
1.2 Solvents & reagents	3
1.3 Chromatography	3
1.4 Spectroscopy	3
2. Experimental procedures and characterisation data	4
2.1 Synthesis and characterisation of 6	4
2.2 Synthesis and characterisation of 7	6
2.3 Synthesis and characterisation of 9	7
2.4 Synthesis and characterisation of 10 2.5 Synthesis and characterisation of 13	8
2.5 Synthesis and characterisation of 13	9
2.6 Synthesis and characterisation of 12 and 14	10
2.7 Synthesis of 12 from 14	11
2.8 Screening of ligands in the Barluenga coupling	12
2.9 Synthesis and characterisation of 11	13
2.10 Synthesis of 12 from 11 <i>via N</i> -heteroannulation	14
2.12 Synthesis and characterisation of 2	16
2.13 Synthesis and characterisation of 15	17
2.14 Screening of conditions in the ATRC	18
2.15 Synthesis and characterisation of 1	19
2.16 Synthesis and characterisation of 18	20
3. NMR Spectra and HPLC traces	21

1. General Experimental

1.1 General Information

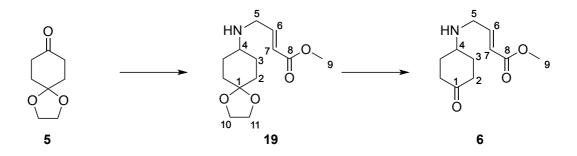
Reactions were carried out under a nitrogen atmosphere in oven-dried glassware unless otherwise stated. Standard inert atmosphere techniques were used in handling all air and moisture sensitive reagents.

1.2 Solvents & reagents

Anhydrous tetrahydrofuran, dichloromethane, toluene were obtained by filtration through activated alumina (powder ~150 mesh, pore size 58Å, basic, Sigma-Aldrich) columns. Other solvents were used directly as received from commercial suppliers. Petroleum ether (PE) refers to distilled light petroleum of fraction (30 °C - 40 °C). Bulk solutions were evaporated under reduced pressure using a rotary evaporator. Reagents used were obtained from commercial suppliers and used without purification. Na₂SO₄ refers to anhydrous sodium sulphate. Catalyst **8** was synthesized according to a literature procedure.¹

1.3 Chromatography

Column chromatography was carried out using VWR Kieselgel 60 silica gel (60-63 μ m). Thin-layer chromatography was carried out using Merck Kieselgel 60 F254 (230-400 mesh) fluorescent treated silica which were visualized under UV light (254 nm) and by staining with ethanolic vanillin or aqueous potassium permanganate solutions.


1.4 Spectroscopy

All ¹H and ¹³C NMR spectra were recorded using a Bruker 500 MHz and Bruker 400 MHz spectrometers and are quoted in ppm for measurement against residual solvent peaks as internal standards. Chemical shifts (δ) are given in parts per million (ppm), and coupling constants (*J*) are given in Hertz (Hz). The ¹H NMR spectra are reported as follows: δ/ppm (multiplicity, coupling constant J/Hz (where appropriate), number of protons). Multiplicity is abbreviated as follows: s = singlet, br s = broad singlet, d = doublet, dd= doublet of doublet, t = triplet, dt = doublet of triplet, q = quartet, dq = doublet of quartet, quint = quintet, m = multiplet, td = triplet of doublet, ddd = doublet of doublet of doublet, "d" = apparent doublet, "t" apparent triplet. For rotameric compounds the major rotamer has been fully assigned. Compound names are those generated by ACD LABS 12.0 following IUPAC nomenclature. The ¹³C NMR spectra are reported as follows: δ/ppm (multiplicity, number of carbons). Two-dimensional (COSY, HSQC, HMBC) NMR spectroscopy were used to assist the assignment of signals in the ¹H and ¹³C NMR spectra. IR spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer from a thin film deposited onto a sodium chloride plate and only selected maximum absorbances (v_{max}) are reported (cm⁻¹). High resolution mass spectra were recorded on a Bruker MicroTof mass spectrometer (ESI) by the internal service at the Department of Organic Chemistry, University of Oxford. Melting points were recorded using a Leica Galen III hot-stage microscope apparatus and are reported uncorrected in degrees Celsius (°C).

¹ Gammack Yamagata, A. D.; Datta, S.; Jackson, K. E.; Stegbauer, L.; Paton, R. S.; Dixon, D. J. Angew. Chem. Int. Ed. 2015, 54, 4899–4903

2. Experimental procedures and characterisation data

2.1 Synthesis and characterisation of 6 (*E*)-methyl 4-((4-oxocyclohexyl)amino)but-2-enoate

To a solution of ketone **5** (1 eq., 25.6 mmol, 4 g) in MeOH (130 mL), was added amine (*E*)-4-aminobut-2enoate (1.1 eq., 28.1 mmol, 3.24 g) and allowed stir at room temperature for 30 min. The reaction mixture was subsequently cooled to 0 °C and NaBH₃CN (1.1 eq., 28.1 mmol, 1.74 g) was added portion wise. TFA (1.1 eq., 28 mmol, 3.24 g, 2.2 mL) was added dropwise dropwise, subsequently warmed to rt and allowed to stir for 8 h. The reaction mixture was added NaOH until pH 9 was obtained and extracted with EtOAc (3 × 250 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo* to afford **19** as a dark brown oil. This residue (1 eq., assumed 25.6 mmol) was redissolved in THF (125 mL) and cooled to 0 °C. HCl (1 M; 5 eq., 128 mmol, 128 mL) was added slowly and subsequently warmed to rt and allowed to stir for 48 h. The reaction mixture was cooled to 0 °C and basified carefully wit 8 M NaOH until pH 9 was obtained and was quickly extracted with EtOAc (3 × 250 mL). The combined organic layers were dried over Na₂SO₄, concentrated *in vacuo* and purified by flash column chromatography (EtOAc:MeOH:Et₃N 95:2.5:2.5) to give **6** as dark yellow viscous oil (60%, 3.24 g).

Characterisation data for 19

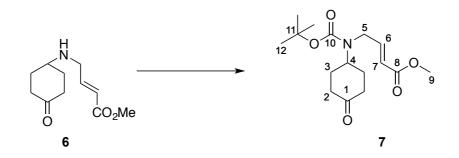
IR (film)/cm⁻¹ v_{max} 3012, 2358, 1724.

¹**H-NMR** (400 MHz, CDCl₃) 6.95 (dtd, J = 15.6, 5.3, 3.0 Hz, 1H, H-6), 5.94 (d, J = 15.7 Hz, 1H, H-7), 3.93–3.85 (m, 4H, H-10 & H-11), 3.68 (d, J = 2.7 Hz, 3H, H-9), 3.39 (dd, J = 4.7, 2.9 Hz, 2H, H-5), 2.51 (tt, J = 9.9, 4.4 Hz, 1H, H-4), 1.86–1.76 (m, 2H, H-2a), 1.75–1.68 (m, 2H, H-3a), 1.55–1.43 (m, 1H, H-3b), 1.42–1.32 (m, 1H, H-2b), 1.3 (br s, 1H, N–H).

¹³C-NMR (101 MHz, CDCl₃) 166.8 (C-8), 147.6 (C-6), 120.8 (C-7), 108.5 (C-1), 64.22 (C-10 or C-11), 64.18 (C-10 or C-11), 54.4 (C-4), 51.5 (C-9), 47.6 (C-5), 32.8 (C-2), 30.1 (C-3).

HRMS (ES+) exact mass calculated for $[M+H]^+$ (C₁₃H₂₂NO₄)+ requires *m/z* 256.1543, found *m/z* 256.1540.

Characterisation data for 6


IR (film)/cm⁻¹ v_{max} 3014, 1718, 1650.

¹**H-NMR** (400 MHz, CD₃OD) 6.99 (dt, J = 15.7, 5.5 Hz, 1H, H-6), 5.99 (dt, J = 15.7, 1.8 Hz, 1H, H-7), 3.71 (s, 3H, H-9), 3.45 (dd, J = 5.5, 1.8 Hz, 2H, H-5), 2.97 (tt, J = 8.3, 3.5 Hz, 1H, H-4), 2.46 (dt, J = 12.0, 5.7 Hz, 2H, H-2a), 2.27 (ddd, J = 15.0, 10.2, 5.8 Hz, 2H, H-2b), 2.11–1.97 (m, 5H, C-3a, 1.66 (dtd, J = 13.3, 9.1, 4.8 Hz, 2H, C-3b).

¹³C-NMR (101 MHz, CD₃OD) 207.1 (C-1), 162.8 (C-8), 143.1 (C-6), 117.2 (C-7), 49.0 (C-4), 47.6 (C-9), 43.8 (C-5), 34.4 (C-2), 27.9 (C-3).

HRMS (ES+) exact mass calculated for $[M+H]^+$ (C₁₁H₁₈NO₃)⁺ requires *m/z* 212.1281, found *m/z* 212.1279.

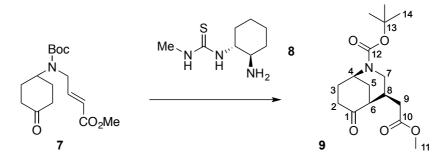
2.2 Synthesis and characterisation of 7(E)-Methyl 4-((tert-butoxycarbonyl)(4-oxocyclohexyl)amino)but-2-enoate

To a solution of amine **6** (1 eq., 15.1 mmol, 3.2 g) in MeOH (75 mL) at rt was added Boc_2O (1.15 eq., 17.4 mmol, 3.8 g) and stirred for 10 hours. The resulting solution was concentrated *in vacuo* and purified by flash column chromatography (elutes with EtOAc:PE 40:60) to give **7** as a white solid (92%, 4.7 g).

mp 106-108 °C.

IR (film)/cm⁻¹ v_{max} 1739, 1722, 1685.

When CD₃OD is used as NMR solvent, the ratio of rotamers reduces to 3:1.


¹**H-NMR** (400 MHz, CD₃OD) Major rotamer: 6.88 (dt, J = 15.7, 5.0 Hz, 1H, H-6), 5.91 (dt, J = 15.7, 1.7 Hz, 1H, H-7), 4.54–4.21 (br m, 1H, H-4), 3.98 (d, J = 3.3 Hz, 2H, H-5), 3.72 (s, 3H, H-9), 2.56 (td, J = 14.2, 6.6 Hz, 2H, H-2), 2.33 (dt, J = 14.9, 2.3 Hz, 2H, H-2), 2.06–1.86 (m, 4H, H-3), 1.47 (s, 9H, H-12).

¹³**C-NMR** (101 MHz, CD₃OD) 210.9 (C-1), 167.2 (C-8), 155.7 (C-10), 146.6 (C-8), 121.13 (C-7), 80.8 (C-11), 53.58 (C-4) 51.2 (C-9), 44.1 (C-5), 39.6 (C-2), 29.7 (2C-3), 27.7 (C-12).

HRMS (ES+) exact mass calculated for [M+Na]+ (C16H25NNaO5)+ requires m/z 334.1625, found m/z 334.1627.

2.3 Synthesis and characterisation of 9

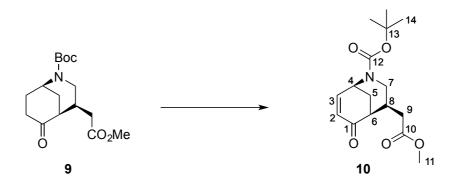
(1R,4S,5S)-tert-Butyl 4-(2-methoxy-2-oxoethyl)-6-oxo-2-azabicyclo[3.3.1]nonane-2-carboxylate

To a solution of 7 (1 eq., 12.8 mmol, 4 g) in CH₂Cl₂ (64 mL) in a pressure vessel was added (+)-8² (5 mol%, 0.64 mmol, 120 mg), benzoic acid (0.0125 eq., 0.16 mmol, 20 mg) and was sealed. The reaction mixture was heated to 50 °C for 72 hours and subsequently concentrated *in vacuo* and purified by flash column chromatography (eluted with EtOAc:PE 20:80 \rightarrow 60:40) to give (-)-9 as a white solid (86%, 3.44 g).

This solid was added MeOH (10 mL) and heated to reflux, at which point it dissolved to give a colourless solution. This solution was allowed to cool slowly to rt overnight for crystallisation to occur, after which the crystals were filtered and washed with cold MeOH to afford (–)-**9** in an augmented ee (99.9%, 90% yield for crystallisation step, 3.1 g).

$[\alpha]_{\mathbf{D}} = -17.1 \text{ (c 3, CDCl}_3). \mathbf{mp} 125-127 \text{ °C}. \mathbf{IR} \text{ (film)/cm}^{-1} v_{\text{max}} 1734, 1703, 1685.$

Compound **9** is rotameric in CD_3OD (ratio = 1:1). In the proton signal the difference in chemical shift is small enough that the signals from the same protons from the two rotamers overlap and appear as broad multiplets. The exception to this is H-7b which appears as two distict triplets which are labelled as H-7b and H-7b'.


¹**H-NMR** (500 MHz, CD₃OD) 4.39–4.30 (m, 1H, H-4), 4.04–3.95 (m, 1H. H-7a), 3.57 (s, 3H, H-11), 2.91 and 2.81 (t, J = 13.2 Hz, 1H, H-7b and H-7b'), 2.51–2.38 (m, 2H, H-2 & H-6), 2.35–2.16 (m, 3H, H-2 & H-8 & H-9), 2.11–1.84 (m, 5H, H-3 & H-5 & H-9), 1.38 (s, 9H). ¹³**C-NMR** (126 MHz, CD₃OD) C-1 (214.0 & 213.8), C-2 (39.8 & 39.7), C-3 (33.0 & 32.8), C-4 (46.1 & 45.0), C-5 (30.5 & 29.8), C-6 (48.5 & 48.4), C-7 (46.0 & 45.3), C-8 (35.9 & 36.6), C-9 (36.8 & 36.6), C-10 (173.50 & 173.45), C-11 (52.20), C-12 (155.3), C-13 (81.4), C-14 (28.7).

HRMS (ES+) exact mass calculated for $[M+Na]^+$ (CH₂₅NNaO₅)⁺ requires m/z 334.1625, found m/z 334.1627.

HPLC: ee = >99.9% (Chiralcel AS-H, 90:10 hexane/isopropanol, flow rate 1.0 mL/min, 210 nm, t_R (major) = 20.2 min, t_R (minor) = 12.2 min.

² Gammack Yamagata, A. D.; Datta, S.; Jackson, K. E.; Stegbauer, L.; Paton, R. S.; Dixon, D. J. Angew. Chem. Int. Ed. 2015, 54, 4899–4903

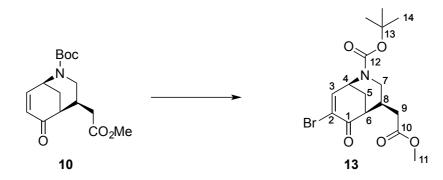
2.4 Synthesis and characterisation of 10 (1*S*,4*S*,5*S*)-*tert*-Butyl 4-(2-methoxy-2-oxoethyl)-6-oxo-2-azabicyclo[3.3.1]non-7-ene-2-carboxylate

To a solution of (–)-9 (1 eq., 10 mmol, 3.1 g) in PhCl (64 mL) was added IBX (2.5 eq., 25 mmol, 7.0 g) and the resulting suspension was heated to 100 °C (105 °C external temperature) for 36 h. The solution was cooled to rt, filtered through Celite[®] and concentrated *in vacuo*. The resulting cream solid was mostly pure but further purification through a silica plug (eluted with PE:EtOAc 80:20 \rightarrow 60:40) removed redidual IBX impurities and afforded (–)-10 as a white solid (92%, 2.8 g).

 $[\alpha]_{\rm D} = -36.2 \ (c \ 2.4, \ {\rm CDCl}_3)$

mp 115–117 °C.

IR (film)/cm⁻¹ v_{max} 2980, 1737, 1692, 1680.


Major rotamer: ¹**H-NMR** (400 MHz, CD₃OD) 6.84 (ddd, J = 10.0, 6.5, 1.5 Hz, 1H, H-3), 6.23 (d, J = 10.0 Hz, 1H, H-2), 4.97–4.89 (m, 1H, H-4), 4.05 (dd, J = 13.5, 5.0 Hz, 1H, H-7), 3.69 (s, 3H, H-11), 2.72–2.46 (m, 2H, H-6 & H-7), 2.43–2.27 (m, 3H, H-5a & H-8 & H-9a), 2.12 (dd, J = 16.5, 7.0 Hz, 1H, H-9b), 1.98 (d, J = 13.0 Hz, 1H, H-5b), 1.49 (s, 9H, H-13).

¹³C-NMR (101 MHz, CD₃OD) 200.7 (C-1), 172.5 (C-10), 155.2 (C-12), 143.3 (C-3), 132.8 (C-2), 81.0 (C-13), 51.2 (C-11), 45.3 (C-6), 45.2 (C-4), 41.2 (C-7), 35.7 (C-8), 35.3 (C-9), 32.6 (C-5), 27.6 (C-14).

HRMS (ES+) exact mass calculated for $[M+Na]^+$ (C₁₆H₂₃NNaO₅)⁺ requires *m/z* 332.1468, found *m/z* 332.1470.

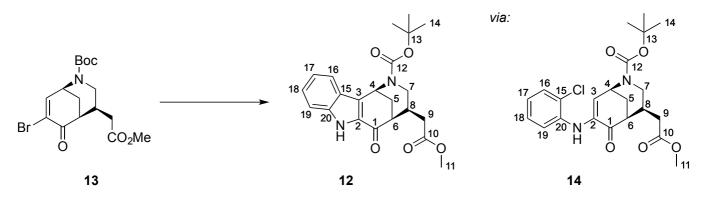
2.5 Synthesis and characterisation of 13

tert-Butyl (1*S*,4*S*,5*S*)-7-bromo-4-(2-methoxy-2-oxoethyl)-6-oxo-2-azabicyclo[3.3.1]non-7-ene-2-carboxylate

To a solution of (–)-10 (1 eq., 8.66 mmol, 2.68 g) in CH₂Cl₂ (22.5 ml) at <0 °C (external bath –10 °C) was added a stock solution of Br₂ (1.02 eq., 8.84 mmol, 1.42 g, 453mL) in CH₂Cl₂ (22.5 mL) dropwise quickly making sure the temperature of the reaction did not exceed 0 °C. 5 minutes after the addition of bromine, Et₃N (1.6 eq., 17.3 mmol, 1.75 g, 2.4 ml) was added in one portion. The reaction mixture was allowed to warm to rt and stirred for a further 1 h after which it was concentrated *in vacuo* and purified by flash column chromatography (elutes EtOAc:PE 20:80) to give (–)-13 as a white solid (92%, 3.10 g).

 $[\alpha]_{\mathbf{D}} = -67.6 \text{ (c } 2.6, \text{CDCl}_3).$

mp 154–156 °C.


IR (film)/cm⁻¹ v_{max} 1934, 1737, 1687, 1597.

Major rotamer: ¹**H-NMR** (500 MHz, CD₃OD) 7.31 (dd, J = 7.0, 1.5 Hz, 1H, H-3), 5.09–4.93 (br m, 1H, H-4), 4.09 (dd, J = 13.5, 5.0 Hz, 1H, H-7a), 3.71 (s, 3H, H-11), 2.90 (q, J = 3.5 Hz, 1H, H-6), 2.65–2.46 (br m, 1H, H-7b), 2.48–2.36 (m, 2H, H-5a & H-8), 2.31 (dd, J = 17.0, 7.0 Hz, 1H, H-9a), 2.14 (dd, J = 17.0, 7.0 Hz, 1H, H-9b), 2.00 (dt, J = 13.0, 3.0 Hz, 1H, H-5b), 1.51 (s, 9H, H-14).

¹³C-NMR (126 MHz, CD₃OD) 191.6 (C-1), 172.0 (C-10), 154.6 (C-12), 143.9 (C-3), 127.3 (C-2), 80.9 (C-13), 50.8 (C-11), 36.5 (C-4), 45.3 (C-6), 35.4 (C-8), 34.8 (C-9), 32.0 (C-5), 27.1 (C-14).

HRMS (ES+) exact mass calculated for $[M+Na]^+$ (C₁₆H₂₂BrNNaO₅)⁺ requires *m/z* 410.0574, found *m/z* 410.0577.

2.6 Synthesis and characterisation of 12 and 14 *tert*-Butyl (1*S*,4*S*,5*S*)-4-(2-methoxy-2-oxoethyl)-6-oxo-1,3,4,5,6,7-hexahydro-2*H*-1,5methanoazocino[4,3-*b*]indole-2-carboxylate (12) and *tert*-butyl (1*S*,4*S*,5*S*)-7-((2-chlorophenyl)amino)-4-(2-methoxy-2-oxoethyl)-6-oxo-2azabicyclo[3.3.1]non-7-ene-2-carboxylate (14)

Pd₂dba₃ (5 mol%, 0.194 mmol, 177 mg), BrettPhos (20 mol%, 0.77 mmol, 414 mg) and Cs₂CO₃ (4 eq, 15.5 mmol, 5 g) were added to a flask and subsequently evacuated and purged with N₂ (3×). Toluene (18 mL) was added and this mixture was allowed to stir under N₂ for 15 minutes. Bromide (–)-**13** (1 eq., 3.87 mmol, 1.5 g) and 2-chloroaniline (1.5 eq., 5.81 mmol, 0.74 g, 0.61 mL) were added under N₂. The reaction mixture was subsequently heated to 110 °C for 24 hours. The reaction mixture was then diluted with EtoAc and filtered through Celite[®], concentrated *in vacuo*, and purified by flash column chromatography ((–)-**12** elutes with Et₂O:PE 30:70 and (–)-**14** elutes with 80:20) to give indole (–)-**12** as a solid (56%, 859 mg) and intermediate (–)-**14** (24%, 410 mg) as an oil.

Characterisation data for indole (-)-12.

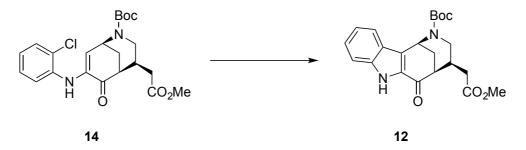
 $[\alpha]_{\rm D} = -71.3 \text{ (c 4, CDCl_3)}$

mp 178–180 °C. **IR** (film)/cm⁻¹ v_{max} 3273, 2976, 1737, 1689, 1649, 1620, 1537. ¹**H-NMR** (500 MHz, CDCl₃) 9.41 (s, 1H, N–H), 7.92 (d, J = 8.0 Hz, 1H, H-16), 7.52–7.44 (m, 1H, H-19), 7.43–7.36 (m, 1H, H-18), 7.24–7.14 (m, 1H, H-17), 5.90 (t, J = 3.0 Hz, 1H, H-4), 3.81 (dd, J = 13.5, 5.0 Hz, 1H, H-7a), 3.73 (s, 3H, H-11), 2.96–2.86 (m, 1H, H-6), 2.65–2.53 (m, 2H, H-5a & H-8), 2.54–2.41 (m, 1H, H-9a), 2.43–2.31 (m, 1H, H-7b), 2.29–2.20 (m, 1H, H-5b), 2.13 (dd, J = 16.0, 6.5 Hz, 1H, H-9b), 1.42 (s, 9H, H-14). ¹³**C-NMR** (126 MHz, CDCl₃) 191.3 (C-1), 172.2 (C-10), 154.6 (C-12), 138.4 (C-20), 132.9 (C-2), 127.5 (C-18), 125.5 (C-3), 124.5 (C-15), 122.8 (C-16), 121.2 (C-17), 112.4 (C-19), 80.2 (C-13), 51.8 (C-11), 45.1 (C-6), 42.6 (C-4), 42.2 (C-7), 36.2 (C-5), 35.8 (C-8), 35.7 (C-9), 28.3 (C-14). **HRMS** (ES+) exact mass calculated for $[M+Na]^+$ (C₂₂H₂₆N₂NaO₅)⁺ requires *m/z* 421.1734, found *m/z* 421.1732.

Characterisation data for intermediate (-)-14.

 $[\alpha]_{D} = -59.7 \text{ (c 3, CDCl_3)}.$

IR (film)/cm⁻¹ v_{max} 3360, 2976, 1737, 1677, 1627, 1592, 1525.


Major rotamer: ¹**H-NMR** (500 MHz, CDCl₃) 7.38 (d, J = 8.0 Hz, 1H, H-16), 7.29 (d, J = 8.0 Hz, 1H, H-19), 7.21 (t, J = 7.5 Hz, 1H, H-18), 6.98 (s, 1H, N–H), 6.90 (t, J = 7.5 Hz, 1H, H-17), 6.22–6.09 (br m, 1H, H-3), 5.22–5.06 (br m, 1H, H-4), 3.99–3.88 (br m, 1H, H-7a), 3.72 (s, 3H, H-11), 2.91–2.82 (br m, 1H, H-6), 2.79–2.62 (br m, 1H, H-7b), 2.52–2.31 (m, 3H, H-8 & H-5a & H-9a), 2.14 (dd, J = 16.5, 6.5 Hz, 1H, H-9b), 2.05–1.97 (m, 1H, H-5b), 1.47 (s, 9H, H-14).

¹³C-NMR (126 MHz, CDCl₃) 195.6 (C-1), 172.0 (C-10), 154.5 (C-12), 138.6 (C-2), 137.4 (C-20), 130.0 (C-16), 127.4 (C-18), 124.2 (C-15), 122.2 (C-17), 118.7 (C-19), 109.1 (C-3), 80.4 (C-13), 51.9 (C-11), 44.5 (C-4), 44.0 (C-6), 41.9 (C-7), 36.0 (C-8), 35.5 (C-9), 32.9 (C-5), 28.4 (C-14).

HRMS (ES+) exact mass calculated for $[M+Na]^+$ (C₂₂H₂₇ClN₂NaO₅)+ requires *m/z* 457.1501, found *m/z* 457.1498.

2.7 Synthesis of 12 from 14

Synthesis of indole (-)-12 from intermediate (-)-14.

Pd₂dba₃ (5 mol%, 0.94 mmol, 47 mg), BrettPhos (20 mol%, 0.19 mmol, 100 mg) and Cs₂CO₃ (4 eq, 3.77 mmol, 1.23 g) were added to a flask and subsequently evacuated and purged with N₂ (3×). Toluene (4.4 mL) was added and was allowed to stir under N₂ for 15 minutes. Intermediate (–)-14 (1 eq., 0.944 mmol, 410 mg) was added under N₂ and subsequently heated to 110 °C for 24 hours. The reaction mixture was diluted with EtOAc and filtered through Celite[®], concentrated *in vacuo*, and purified by flash column chromatography (elutes with Et₂O:PE 80:20) to give indole (–)-12 as a solid (66%, 375 mg).

Spectroscopic data of 12 consistent with those reported on pg 10.

2.8 Screening of ligands in the Barluenga coupling

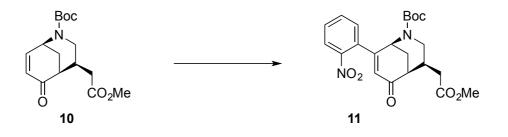
Table 1: Screening of conditions for the synthesis of indole 12 using theBarluenga protocol.

	CI NH ₂ Br O 13	a le H	Boc N O 12	+ D ₂ Me	CI N N CO ₂ Me
Entry ^a	Pd source (5 mol%)	Ligand (20 mol%)	$\mathop{\mathrm{Temp}}_{^{\circ}\mathrm{C}}$	Time h	Yield 12^b (14) %
$\frac{1}{2}$	$\begin{array}{c} \text{Pd}_2(\text{dba})_3\\ \text{Pd}_2(\text{dba})_3 \end{array}$	Xphos Davephos	100 100	24 24	
3 4^c 5^d	$\mathrm{Pd}_2(\mathrm{dba})_3$ $\mathrm{Pd}_2(\mathrm{dba})_3$ $\mathrm{Pd}_2(\mathrm{dba})_3$	RuPhos RuPhos RuPhos	$100 \\ 110 \\ 110$	$24 \\ 24 \\ 12+24$	trace (55) trace (61) 6 (27)
$\begin{array}{c} 6 \\ 7 \\ 8^e \\ 9^f \end{array}$	$\mathrm{Pd}_2(\mathrm{dba})_3$ $\mathrm{Pd}_2(\mathrm{dba})_3$ $\mathrm{Pd}_2(\mathrm{dba})_3$ $\mathrm{Pd}_2(\mathrm{dba})_3$	BrettPhos BrettPhos BrettPhos BrettPhos	100 100 110 110	$24 \\ 37 \\ 24 \\ 24+12$	$\begin{array}{c} 46 \ (36) \\ 40 \ (17) \\ 56 \ (24) \\ 51 \ (15) \end{array}$
$ \begin{array}{c} 10^{g} \\ 11 \end{array} $	$\begin{array}{c} \text{Brettphos-Pd-G3} \\ \text{Pd}_2(\text{dba})_3 \cdot \text{CHCl}_3 \end{array}$	Brettphos Brettphos	110 110	$\frac{11}{24}$	Complex mixture 42

^aReaction conditions: **13** (1 eq.), 2-chloroaniline (1.5 eq.), Pd–source, ligand, Cs_2CO_3 (2.5 eq. for entries 1–6, 4 eq. for entries 5–11), toluene, temp, time.

 $^b {\rm Isolated}$ yield after flash column chromatography.

 c10 mol% $\mathrm{Pd}_2(\mathrm{dba})_3$ and 40 mol% RuPhos was used.


 dAn additional amount of $\rm Pd_2(dba)_3$ (5 mol%) and RuPhos (20 mol%) was added after 12 hours. $^ePerformed \ on \ 1.3 \ g$

^fAn additional amount of $Pd_2(dba)_3$ (5 mol%) and BrettPhos (20 mol%) was added after 24 hours. ^g10 mol% Brettphos-Pd-G3 and 10 mol% BrettPhos was used.

2.9 Synthesis and characterisation of 11

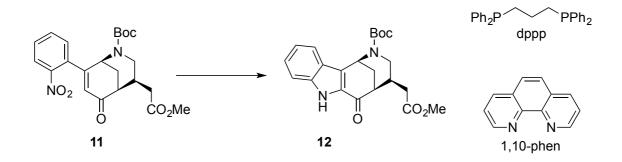
tert-butyl (15,45,55)-4-(2-methoxy-2-oxoethyl)-8-(2-nitrophenyl)-6-oxo-2-azabicyclo[3.3.1]non-7-ene-

2-carboxylate

Synthesis of 11 was performed on racemic enone 10.

To a flask was added (±)-10 (1 eq., 1.62 mmol, 500 mg), 2-nitrobenzoic acid (3 eq., 4.85 mmol, 810 mg), Pd(TFA)₂ (0.2 eq., 0.32 mmol, 107 mg), Ag₂CO₃ (3 eq., 4.85 mmol, 1.337 g), a solution of DMF/DMSO (8.05 mL, DMSO/DMF 5% v/v). The suspension was evacuated carefully under vacuum and purged with N₂ (3x) and heated to 125 °C for 3 hours. 8 such reactions were conducted in parallel amounting to a total of 4g of starting material (±)-10. All 8 reactions were combined and the resulting thick black suspension was diluted with EtOAc. H₂O was added and vigorously stirred for 10 min. Na₂SO₄ (20 g) was added and vigorously stirred for another 20 minutes. Filtration through Celite[®] and concentration of the filtrate gave a black sludge. Two purification steps *via* flash column chromatography are required for the purification of 11. The first flash column elutes nitrobenzene dimer quickly using neat C₆H₆ as solvent to give a mixture of (±)-10 and (±)-11. The second uses EtOAc:PE (20:80 \Rightarrow 30:70 \Rightarrow 40:60 \Rightarrow 50:50) to give (±)-11 as a yellow solid (19%, 1.16 g) and starting material (±)-10 as a yellow solid (46%, 1.84 g).

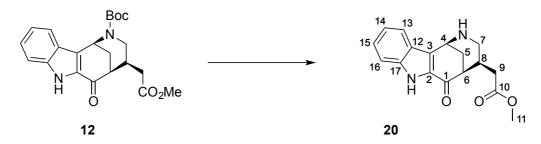
mp 169–171 °C


IR (film)/cm⁻¹ v_{max} 2971, 1737, 1692, 1672, 1605, 1571, 1524.

Major rotamer: ¹**H-NMR** (500 MHz, CD₃OD) 8.32 (dd, *J* = 8.0, 1.5 Hz, 1H, H-19), 7.81 (td, *J* = 7.5, 1.5 Hz, 1H, H-17), 7.75 (td, *J* = 8.0, 1.5 Hz, 1H, H-18) 7.35 (dd, *J* = 7.5, 1.5 Hz, 1H, H-16), 6.16 (s, 1H, H-2), 4.91 (t, *J* = 3.0 Hz, 1H, H-4), 4.11 (dd, *J* = 13.5, 5.0 Hz, 1H, H-7a), 3.73 (s, 3H, H-11), 2.76--2.62 (m, 3H, H-7b & H-6 & H-5a), 2.52--2.37 (m, 2H, H-8 & H-9a), 2.29--2.18 (m, 1H, H-9b), 2.16 (ddd, *J* = 13.0, 3.5, 2.0 Hz, 1H, H-5b), 1.04 (s, 9H, H-14).

¹³C-NMR (126 MHz, CD₃OD) 199.5 (C-1), 172.2 (C-10), 154.3 (C-3), 153.7 (C-12), 146.6 (C-20), 134.6 (C-17), 134.4 (C-15), 131.0 (C-16), 130.4 (C-17), 128.6 (C-2), 125.0 (C-19), 80.4 (C-13), 50.8 (C-11), 49.6 (C-4), 43.6 (C-6), 40.8 (C-7), 35.3 (C-8), 35.1 (C-9), 32.5 (C-5), 26.6 (C-14).

HRMS (ES+) exact mass calculated for $[M+Na]^+$ (C₂₂H₂₆N₂NaO₇)+ requires *m/z* 453.1632, found *m/z* 453.1633.


2.10 Synthesis of 12 from 11 via N-heteroannulation.

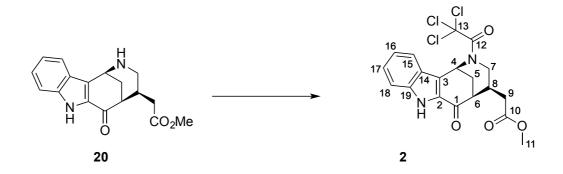
To a flask was added (\pm)-**11** (1 eq., 2.79 mmol, 1.2 g), Pd(dba₎₂ (0.1 eq., 0.28 mmol, 160 mg), dppp (0.1 eq., 0.28 mmol, 115 mg), and 1,10-phenanthroline (0.2 eq., 0.558 mmol, 110 mg) and DMF (29 mL). The flask was evacuated under vacuum and purged with CO(g) to saturate the solvent with gas. The reaction mixture was subsequently placed under CO(g) pressure with the aid of a balloon (5 balloons within each other, approx 1.35 atm) and heated to 95 °C for 2.5 h. The reaction mixture was concentrated *in vacuo* and purified by flash column chromatography (elutes with Et₂O:PE 60:40 to 70:30 to 80:20) to give (\pm)-**12** as a yellow solid (79%, 879 mg).

Spectroscopic data of 12 consistent with those reported on pg 10.

2.11 Synthesis and characterisation of 20 Methyl 2-((1*S*,4*S*,5*S*)-6-oxo-2,3,4,5,6,7-hexahydro-1*H*-1,5-methanoazocino[4,3-*b*]indol-4-yl)acetat

To a solution of (–)-12 (1 eq., 2.39 mmol, 950 mg) in CH_2Cl_2 (21 mL) at 0 °C was added TFA (7 mL). The reaction mixture was maintained at this temperature until all starting material had been consumed (approx 2.5 h). The reaction mixture was then diluted with toluene (21 mL) at 0 °C and concentrated *in vacuo*, first at rt to remove the CH_2Cl_2 and TFA and subsequently at 30 °C to remove toluene to give TFA salt of 20 as a brown residue. This was subsequently basified with 1 M NaOH, extracted with EtOAc (3 × 20 mL) and concentrated *in vacuo* to give (–)-20 as a yellow gum (92%, 647 mg). This was sufficiently pure to use in the subsequent step without further purification.

IR (film)/cm⁻¹ v_{max} 3266, 2923, 2854, 2359, 2341, 1734, 1647.


¹**H-NMR** (500 MHz, CDCl₃) 9.72 (s, 1H, N–H_{Ind}), 7.71 (dt, J = 8.0, 1.0 Hz, 1H, H-13), 7.50 (dt, J = 8.5, 1.0 Hz, 1H, H-16), 7.39 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H, H-15), 7.19 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H, H-14), 4.66 (t, J = 3.0 Hz, 1H, H-4), 3.71 (s, 3H, H-11), 2.86–2.80 (m, 2H, H-6 & H-7a), 2.63–2.51 (m, 2H, H-8 & H-5a), 2.48 (dd, J = 16.5, 7.0 Hz, 1H, H-9a), 2.38 (t, J = 12.5 Hz, 1H, H-7b), 2.33 (dt, J = 12.5, 3.0 Hz, 1H, H-5b), 2.11 (dd, J = 16.5, 7.5 Hz, 1H, H-9b), 1.85 (s, 1H).

¹³C-NMR (126 MHz, CDCl₃) 191.9 (C-1), 172.5 (C-10), 138.6 (C-17), 133.3 (C-2), 127.2 (C-15), 126.0 (C-3), 124.2 (C-12), 121.1 (C-13), 121.0 (C-14), 112.9 (C-16), 51.7 (C-11), 46.0 (C-6), 44.6 (C-4), 43.3 (C-5), 37.4 (C-5), 36.3 (C-9), 35.9 (C-8).

HRMS (ES+) exact mass calculated for $[M+H]^+$ (C₁₇H₁₉N₂O₃)+ requires *m/z* 299.1390, found *m/z* 299.1387.

2.12 Synthesis and characterisation of 2 Methyl 2-((1*S*,4*S*,5*S*)-6-oxo-2-(2,2,2-trichloroacetyl)-2,3,4,5,6,7-hexahydro-1*H*-1,5-

methanoazocino[4,3-b]indol-4-yl)acetate

To a solution of (–)-**20** (1. eq., 2.29 mmol, 681 mg) in CH_2Cl_2 (23 mL) at 0 °C was added Et₃N (1.25 eq., 2.86 mmol, 288 mg, 400mL) and trichloroacetyl chloride (1.05 eq., 2.40 mmol, 436 mg, 268mL). The reaction was allowed to warm to rt and stirred for an additional 7 h. Aqueous sat. NaHCO₃ was added and subsequently extracted with CH_2Cl_2 (3 × 20 mL). The combined organic extracts were dried over Na₂SO₄, concentrated *in vacuo*, purified by flash column chromatography to give (–)-**2** as a white solid (90%, 909 mg).

 $[\alpha]_{D} = -131.4$ (c 3.6, CDCl₃).

mp 220–222 °C.

IR (film)/cm⁻¹ v_{max} 3270, 2926, 1735, 1657, 1620.

¹**H-NMR** (500 MHz, CD2Cl2) 9.25 (s, 1H, N–H), 7.80 (d, J = 8.0 Hz, 1H, H-15), 7.51 (dt, J = 8.5, 1.0 Hz, 1H, H-18), 7.42 (ddd, J = 8.5, 7.0, 1.2 Hz, 1H, H-17), 7.22 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H, H-16), 6.26 (t, J = 2.5 Hz, 1H, H-4), 4.43 (dd, J = 14.0, 5.0 Hz, 1H, H-7a), 3.68 (s, 3H, H-11), 2.92 (app q, J = 3.5 Hz, 1H, H-6), 2.85 (t, J = 13.5, 12.5 Hz, 1H, H-7b), 2.75–2.64 (m, 2H, H-5a & H-8), 2.51 (dd, J = 16.5, 6.5 Hz, 1H, H-9a), 2.39–2.32 (m, 1H, H-5b), 2.12 (dd, J = 16.5, 8.0 Hz, 1H, H-9b).

¹³C-NMR (126 MHz, CD2Cl2) 190.2 (C-1), 171.5 (C-11), 159.5 (C-12), 138.1 (C-19), 133.6 (C-2), 127.7 (C-17), 124.4 (C-14), 123.5 (C-3), 121.9 (C-15), 121.7 (C-16), 112.6 (C-18), 93.1 (C-13), 51.8 (C-11), 45.8 (C-7), 45.3 (C-6), 44.8 (C-4), 35.6 (C-5), 35.4 (C-9), 35.0 (C-8).

HRMS (ES+) exact mass calculated for $[M+Na]^+$ (C₁₉H₁₇Cl₃N₂NaO₄)⁺ requires *m/z* 465.0146, found *m/z* 465.0141.

2.13 Synthesis and characterisation of 15

Methyl 2-((3aS,5S,11bS,12S)-1,1-dichloro-2,6-dioxo-1,2,3a,4,5,6-hexahydro-5,3-ethanopyrrolo[2,3-

d]carbazol-12-yl)acetate

Trichloroacetamide (–)-2 (1 eq., 1.13 mmol, 500 mg), $CuCl^3$ (2.2 eq., 2.48 mmol, 246 mg) and TBTA (2.2 eq., 2.48 mmol, 1.358 g) was added to a Schlenk flask and evacuated under vacuum and purged with argon (3×). Thoroughly degassed and anhydrous MeCN (0.023 M, 50 mL) was added *via* syringe and the reaction allowed to stir at rt for 10 min whilst a lime green precipitate forms. The resulting suspension was heated to 55 °C (external temperature) and stirred for 30 min. The reaction mixture was cooled to rt, filtered through a sintered funnel and concentrated *in vacuo*. The resulting green oil was purified by flash column chromatography (PE:EtOAc 50:50) to give (–)-**15** as a light yellow solid (67%, 308 mg).

 $[\alpha]_{D} = -108.4$ (c 3, CDCl₃).

mp decomposition at 243 °C.

IR (film)/cm⁻¹ v_{max} 2952, 1730, 1652, 1556.

¹**H-NMR** (500 MHz, CD2Cl2) 7.80 (d, J = 7.5 Hz, 1H, H-15), 7.74 (d, J = 8.0 Hz, 1H, H-18), 7.55 (td, J = 7.5, 1.0 Hz, 1H, H-17), 7.42 (td, J = 7.5, 1.0 Hz, 1H, H-16), 4.64 (dd, J = 6.0, 1.0 Hz, 1H, H-4), 3.86 (dd, J = 14.35, 1.5 Hz, 1H, H-7a), 3.65 (s, 3H, H-11), 3.25 (dd, J = 14.5, 8.0 Hz, 1H, H-7b), 2.93–2.79 (m, 3H, H-6 & H-8 & H-9a), 2.54–2.43 (m, 1H, H-9b), 1.99 (ddd, J = 15.0, 6.0, 1.5 Hz, 1H, H-5a), 1.51 (dd, J = 15.0, 4.0 Hz, 1H, H-5b).

¹³C-NMR (126 MHz, CD2Cl2) 198.5 (C-1), 176.5 (C-2), 172.3 (C-10), 165.9 (C-12), 156.2 (C-19), 131.5 (C-17), 130.8 (C-14), 128.1 (C-16), 126.7 (C-15), 123.8 (C-18), 83.9 (C-13), 76.1 (C-3), 56.6 (C-4), 51.8 (C-11), 45.2 (C-6), 41.0 (C-8), 40.3 (C-7), 37.2 (C-9), 24.1 (C-5).

HRMS (ES+) exact mass calculated for $[M+Na]^+$ (C₁₉H₁₆Cl₂N₂NaO₄)⁺ requires *m/z* 429.0379, found *m/z* 429.03782.

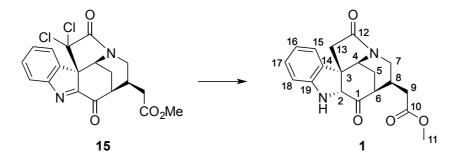
³ >99.995% putity based on trace metals basis from Sigma Aldridge.

2.14 Screening of conditions in the ATRC

C N H				━= O₂Me		X-ray S	Structure
$Entry^{a}$	TBTA eq.	CuCl eq.	Base	Base eq.	Temp $^{\circ}\mathrm{C}$	Time	Yield $\%^b$
1	0.1	0.1	_	_	$55 \ ^{\circ}\mathrm{C}$	6 h	trace
2	1	1	_	—	$55~^{\circ}\mathrm{C}$	5 h	39
3	2.2	2.2	_	_	$55~^{\circ}\mathrm{C}$	$30 \min$	67
4	3	3	—	—	$55 \ ^{\circ}\mathrm{C}$	$30 \min$	65
5	1	1	$\mathrm{Et}_{3}\mathrm{N}^{c}$	2	$55~^{\circ}\mathrm{C}$	$30 \min$	NR
6	1	1	$\mathrm{Et}_{3}\mathrm{N}^{d}$	2	$55 \ ^{\circ}\mathrm{C}$	$30 \min$	NR
7	1	1	K_2CO_3	1.1	$55~^{\circ}\mathrm{C}$	3 h	31
8	1	1	Cs_2CO_3	1.1	$55~^{\circ}\mathrm{C}$	3 h	26
9	1	1	TBTA	1.1	$55~^{\circ}\mathrm{C}$	5h	43

Table 2: Atom transfer radical cyclisation of indole 2.

^{*a*}Reaction conditions: **2** (1 eq.), CuCl, ligand, solvent, additional base, temp, time. ^{*b*}Isolated yield after flash column chromatography.


 $^{c}\text{Et}_{3}N$, CuCl and TBTA added from the beginning of the reaction

 $^{d}\text{Et}_{3}\text{N}$ after the formation of the CuCl \cdot TBTA complex.

2.15 Synthesis and characterisation of 1

Methyl 2-((3aS,5S,6aR,11bS,12S)-2,6-dioxo-1,2,3a,4,5,6,6a,7-octahydro-5,3-ethanopyrrolo[2,3-

d]carbazol-12-yl)acetate

To a solution of (–)-15 (1 eq., 0.49 mmol, 200 mg) in MeOH (8 ml) in a presurisable vessel was added activated zinc powder⁴ (30 eq., 14.8 mmol, 964 mg) and AcOH (30 eq., 14.8 mmol, 844 mL). The reaction vessel was sealed and heated to 85 °C for 18 h. The reaction was vented every 4–6 h to realease H₂ gas generated in the reaction. After the reaction was complete, the reaction mixture was diluted with EtOAc (30 mL) and filtered through a sintered funnel, concentrated *in vacuo* and purified by flash column chromatography (elutes with EtOAc) to give (–)-1 as a white solid (78%, 130 mg).

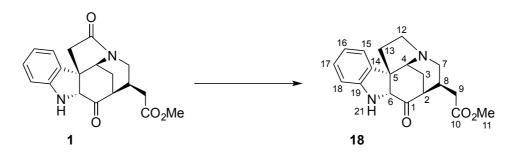
 $[\alpha]_{D} = -42.4 \text{ (c } 2.9, \text{CDCl}_3)$

mp 234–236 °C.

IR (film)/cm⁻¹ v_{max} 3344, 2951, 1728 (shoulder), 1707, 1687.

¹**H-NMR** (500 MHz, CDCl₃) 7.21–7.14 (m, 2H, H-15 & H-17), 6.88 (td, J = 7.5, 1.0 Hz, 1H, H-16), 6.72 (dd, J = 8.0, 1.0 Hz, 1H, H-18), 4.21 (d, J = 5.0 Hz, 1H, N–H), 3.91 (d, J = 6.0 Hz, 1H, H-4), 3.88 (d, J = 4.8 Hz, 1H, H-2), 3.76–3.69 (m, 1H, H-7a), 3.71 (s, 3H, H-11), 3.14 (d, J = 16.0 Hz, 1H, H-13a), 3.13–3.06 (m, 1H, H-7b), 2.89–2.73 (m, 3H, H-6 & H-8 & H-9a), 2.50–2.44 (m, 2H, H-5a & H-9b), 2.42 (d, J = 16.0 Hz, 1H, H-13b), 1.94 (dd, J = 14.5, 6.0, Hz, 1H, H-5b).

¹³C-NMR (500 MHz, CDCl₃) 208.3 (C-1), 172.9 (C-10 or C-12), 172.8 (C-10 or C-12), 150.7 (C-19), 129.6 (C-15 or C-17), 126.7 (C-14), 123.3 (C-15 or C-17), 120.2 (C-16), 111.0 (C-18), 73.4 (C-2), 60.2 (C-4), 56.9 (C-3), 51.7 (C-11), 43.9 (C-13), 41.2 (C-8), 38.8 (C-6), 38.5 (C-7), 37.8 (C-9), 22.8 (C-5).


HRMS (ES+) exact mass calculated for $[M+Na]^+$ (C₁₉H₂₀N₂NaO₄)⁺ requires *m/z* 363.1315, found *m/z* 363.1314.

⁴ Zn powder washed with 2 M HCl, water, acetone and ether and subsequently dried under vacuum.

2.16 Synthesis and characterisation of 18

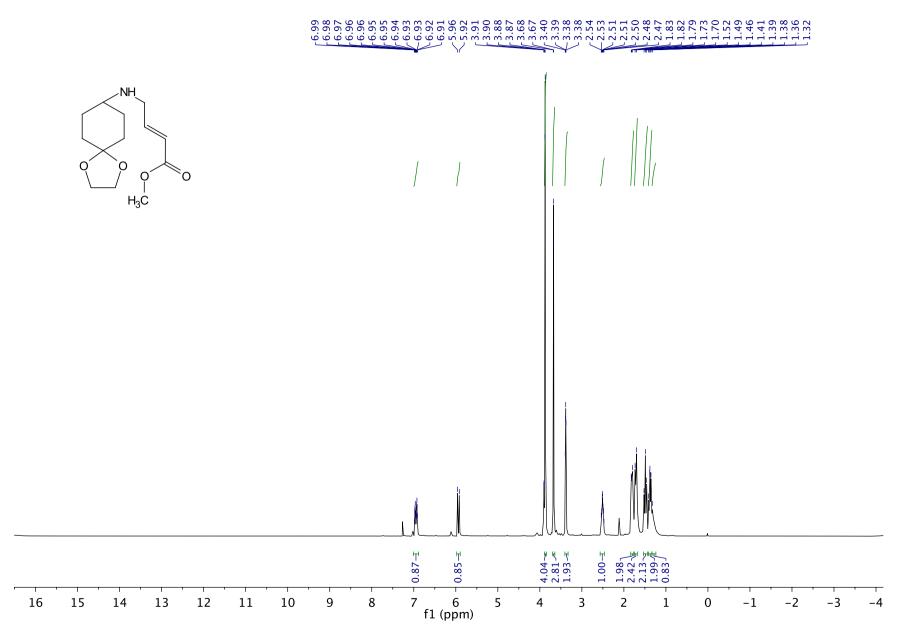
Methyl [(3aS,5S,6aR,11bS,12S)-6-oxo-1,2,3a,4,5,6,6a,7-octahydro-3,5-ethanopyrrolo[2,3-d]carbazol-

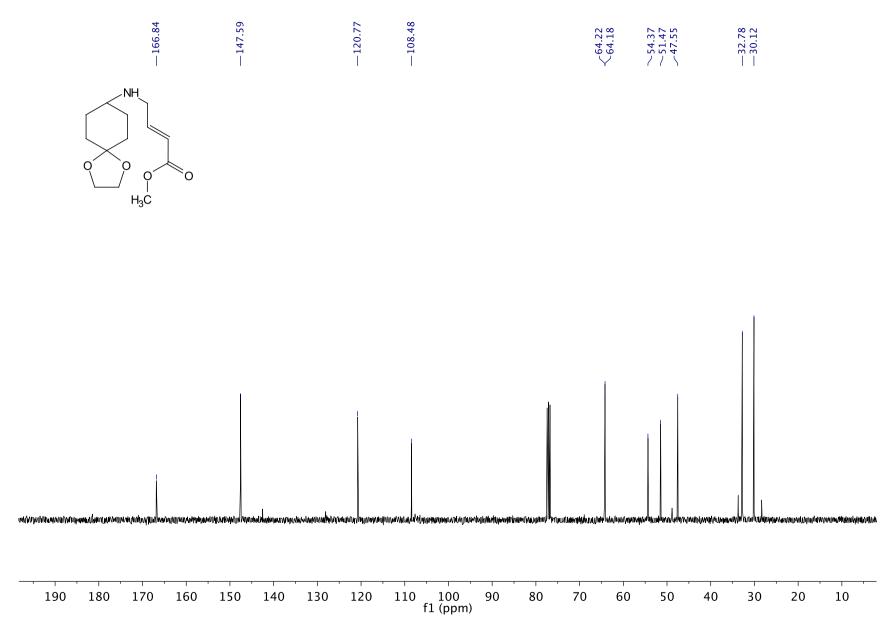
12-yl]acetate

To a solution of (–)-1 (1 eq., 0.35 mmol, 120 mg) in CH_2Cl_2 (3.5 mL) at rt was added Vaska's catalyst (5 mol%, 17.6 µmol, 13.75 mg) and TMDS (2 eq., 0.71 mmol, 95 mg, 124mL) and allowed to stir for 1 h. MeOH (3.5 mL) was added to the reaction mixture and when effervescence stopped, NaBH₃CN (0.5 eq., 0.175 mmol, 11 mg) was added followed by glacial AcOH (1 eq., 0.35 mmol, 22.75 mg, 21mL) and allowed to stir for 12 hours. 1 M NaOH was added to the reaction until pH 10 was obtained and was subsequently extracted with EtOAc. The combined organic layers were dried over Na₂SO₄, concentrated *in vacuo*, and purified by flash column chromatography (elutes with CHCl₃/MeOH 95:5) affording (–)-**18** as a yellow solid (78%, 75 mg).

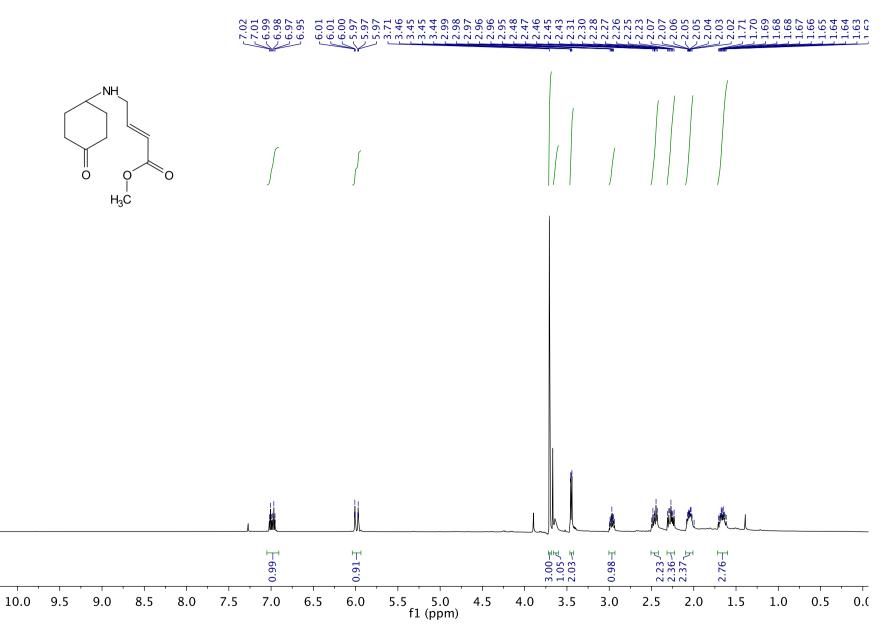
 $[\alpha]_{\mathbf{D}} = -75.1 \text{ (c } 3.1, \text{CDCl}_3).$

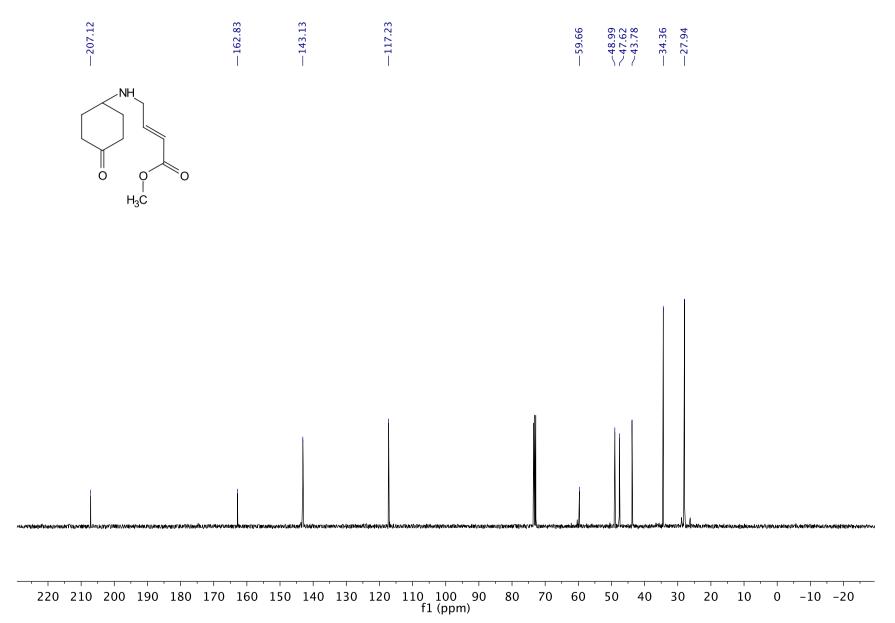
mp 181–183 °C.

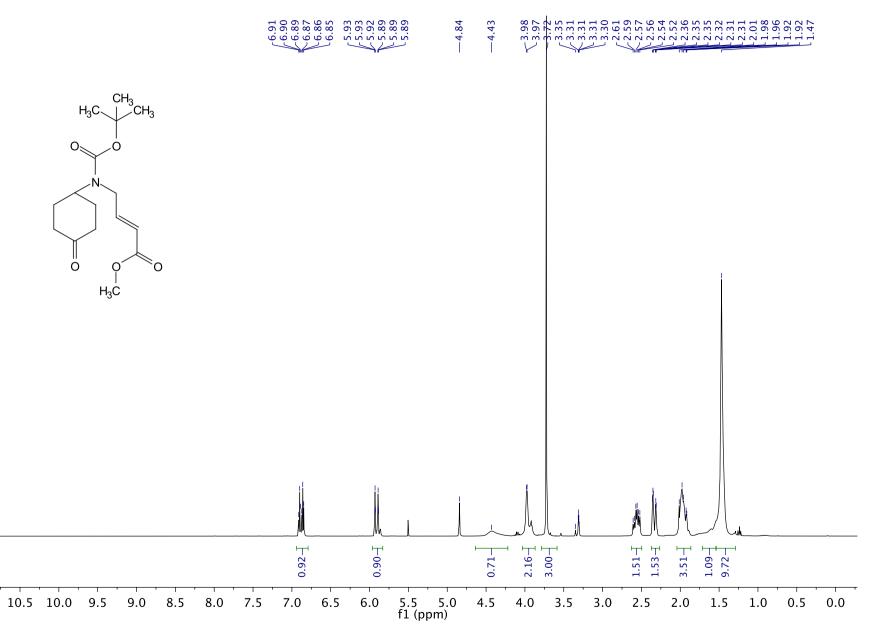

IR (film)/cm⁻¹ v_{max} 3360, 2952, 2362, 2342, 1734, 1703, 1605.

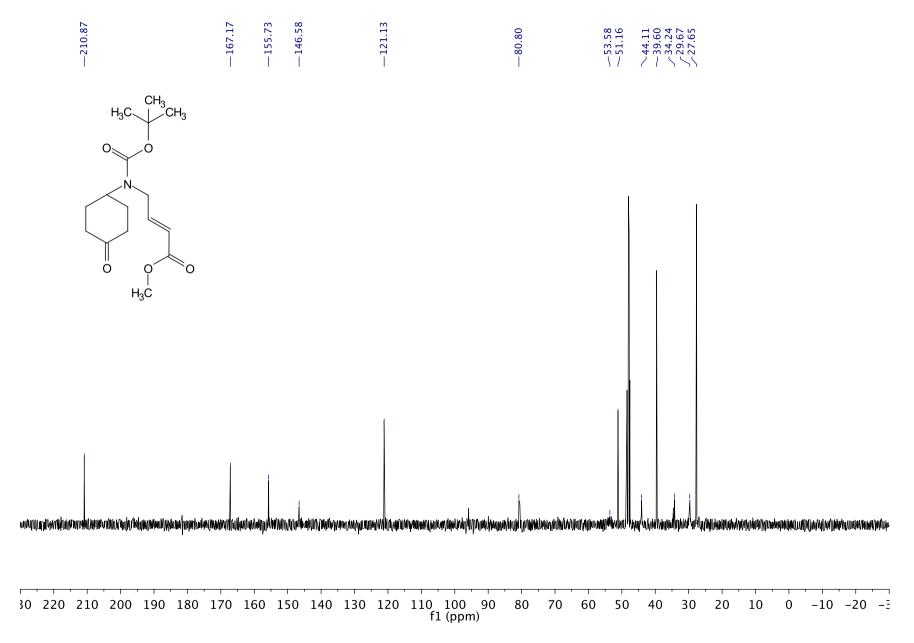

¹**H-NMR** (500 MHz, CDCl₃) 7.08–7.03 (m, 2H, H-15 & H-17), 6.80 (td, J = 7.5, 1.0 Hz, 1H, H-16), 6.65 (dt, J = 7.5, 1.0 Hz, 1H, H-18), 4.66 (d, J = 2.5 Hz, 1H, N–H), 3.69 (s, 3H, H-11), 3.62 (d, J = 2.5 Hz, 1H, H-6), 3.30 (t, J = 3.0 Hz, 1H, H-4), 3.23 (dt, J = 12.5, 9.5 Hz, 1H, H-12a), 3.07 (ddd, J = 12.0, 5.0, 1.0 Hz, 1H, H-7a), 2.97 (ddd, J = 12.5, 8.5, 2.0 Hz, 1H, H-12b), 2.62–2.59 (m, 1H, H-2), 2.58–2.51 (m, 1H, H-8), 2.50–2.44 (m, 1H, H-13a), 2.44–2.39 (m, 1H, H-9a), 2.29–2.25 (m, 1H, H-13b), 2.24–2.19 (m, 1H, H-3a), 2.13 (dd, J = 16.0, 7.0 Hz, 1H, H-9a), 2.06 (t, J = 12.5 Hz, 1H, H-7b), 1.99 (dt, J = 14.0, 3.0 Hz, 1H, H-3b). ¹³C-NMR (126 MHz, CDCl₃) 212.31 (C-1), 172.11 (C-10), 149.37 (C-19), 133.54 (C-14), 128.27 (C-17), 122.34 (C-15), 120.02 (C-16), 109.81 (C-18), 76.49 (C-6), 64.83 (C-4), 55.51 (C-5), 54.72 (C-12), 53.11 (C-7), 51.96 (C-11), 44.93 (C-2), 43.65 (C-13), 36.68 (C-9), 36.11 (C-8), 26.43 (C-3). **HRMS** (ES+) exact mass calculated for $[M+H]^+$ (CuHa:NaO)⁺ requires *m*/7 327.1703 found *m*/7

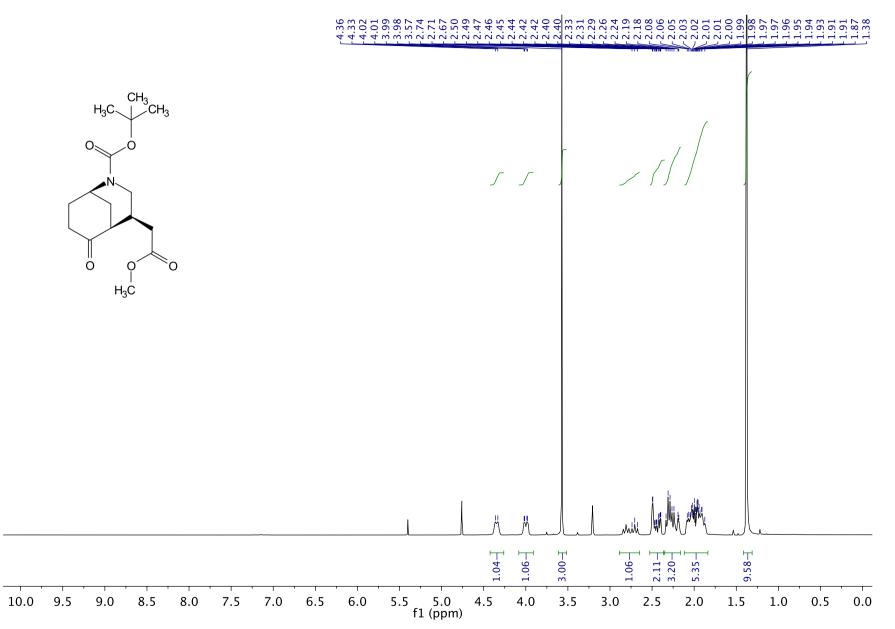
HRMS (ES+) exact mass calculated for $[M+H]^+$ $(C_{19}H_{23}N_2O_3)^+$ requires *m/z* 327.1703, found *m/z* 327.1704.

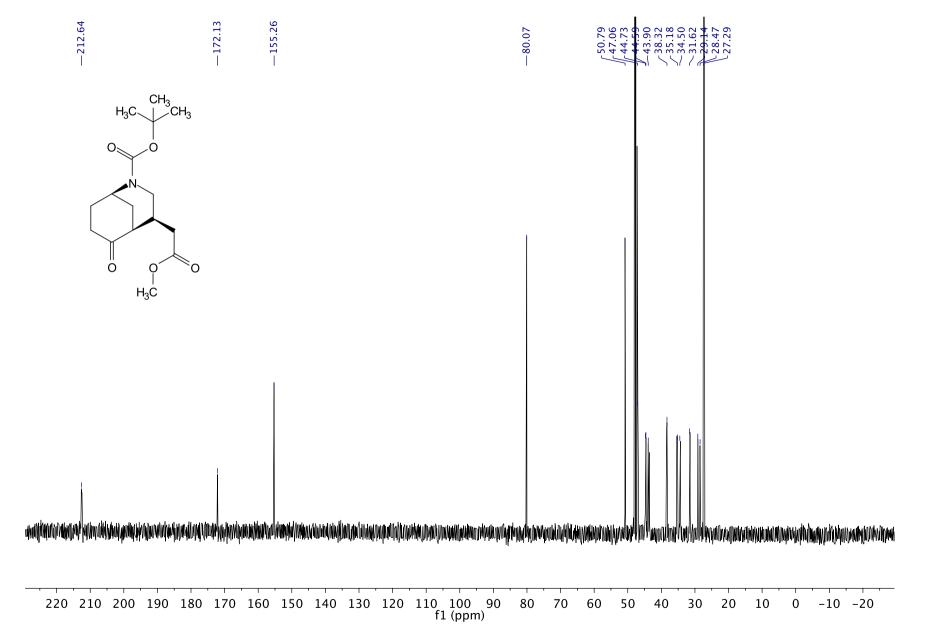

3. NMR Spectra and HPLC traces

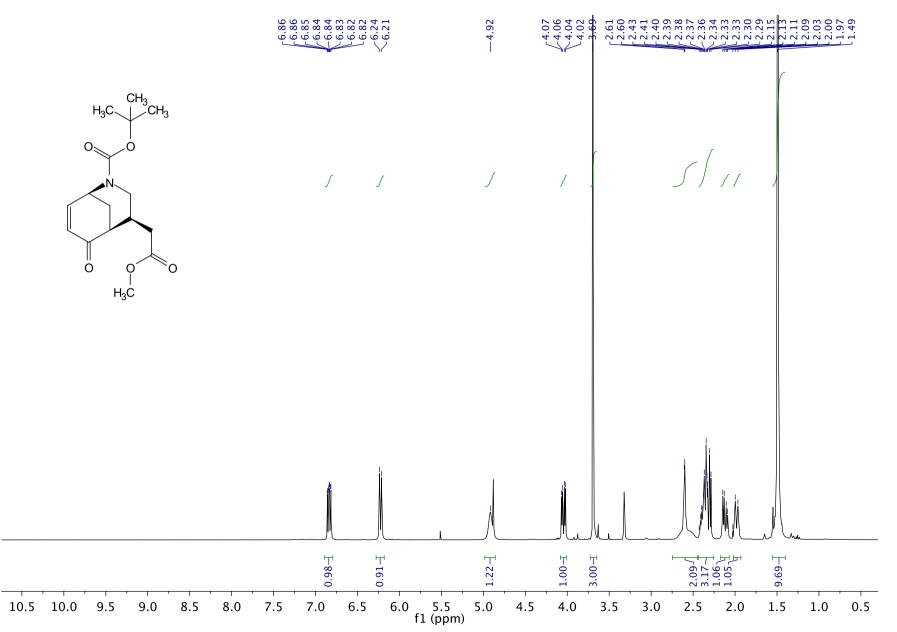


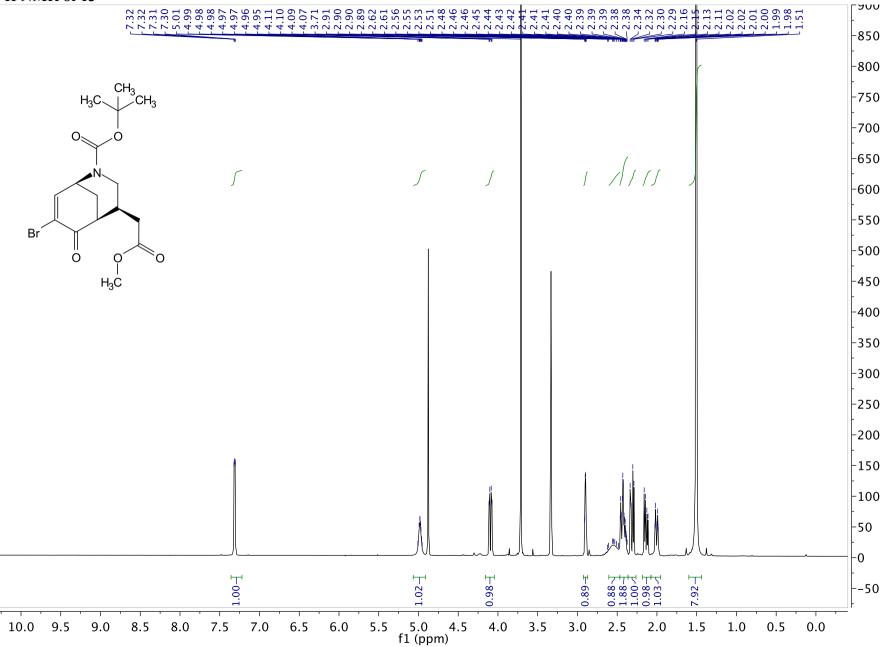


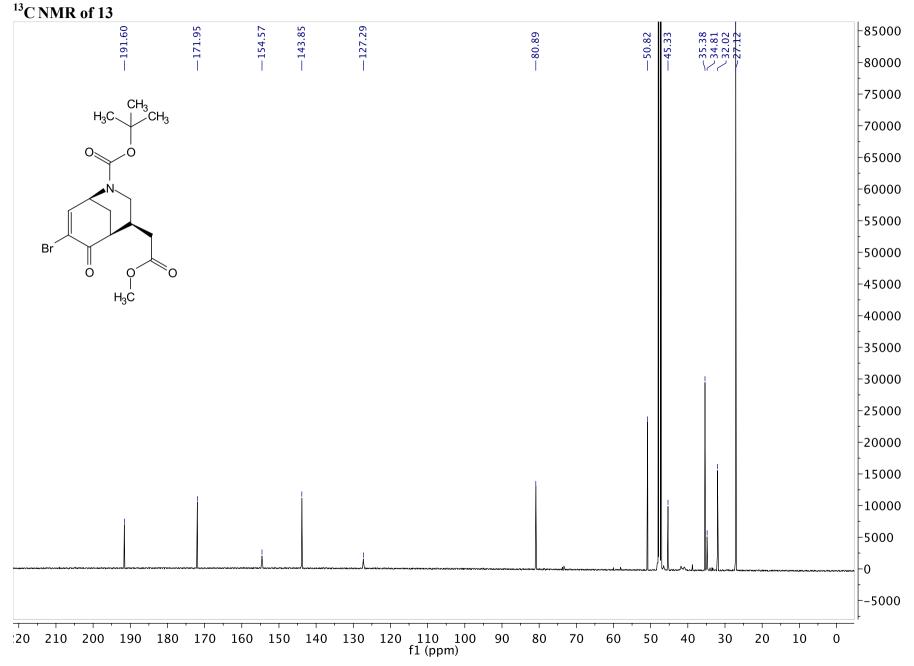


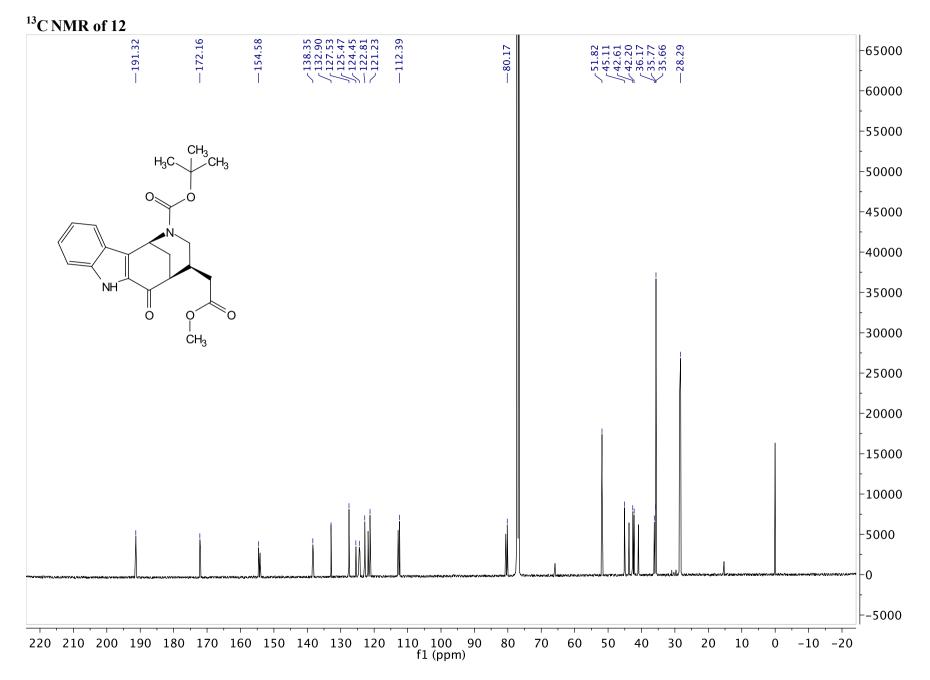


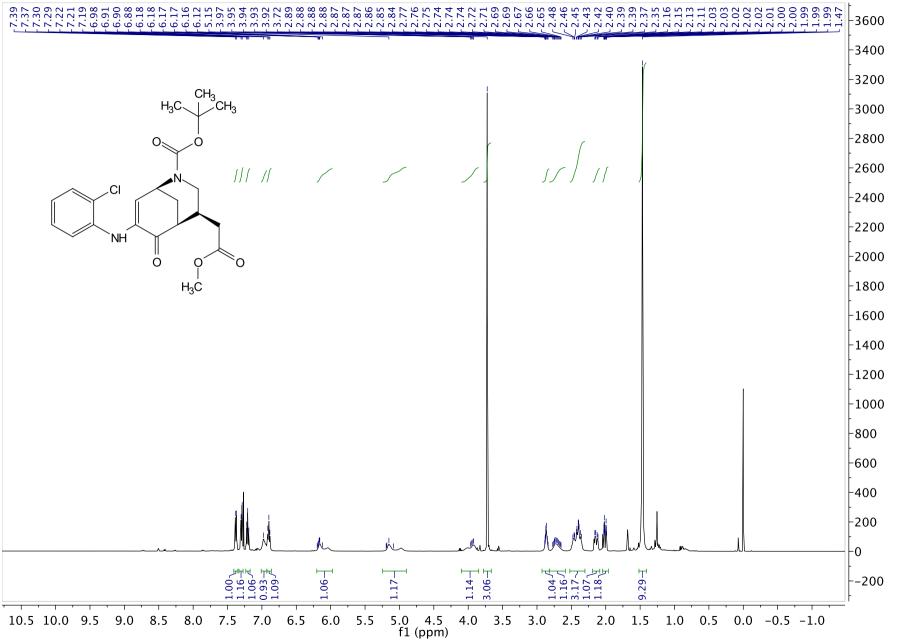


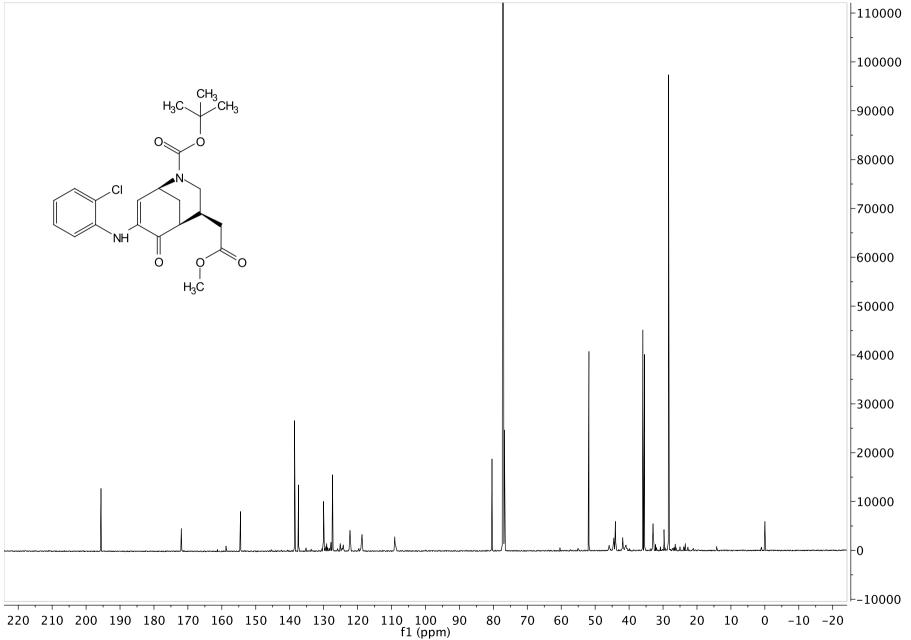


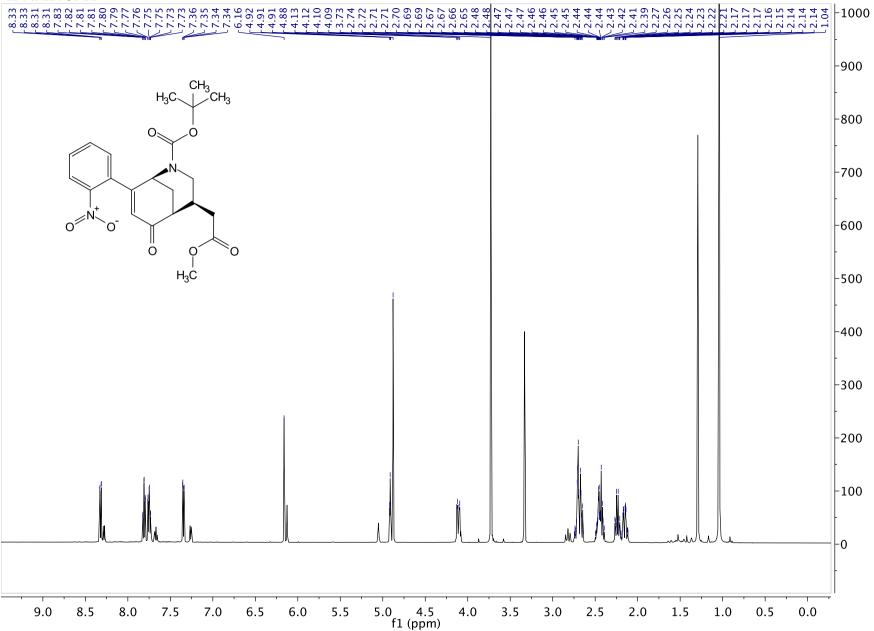


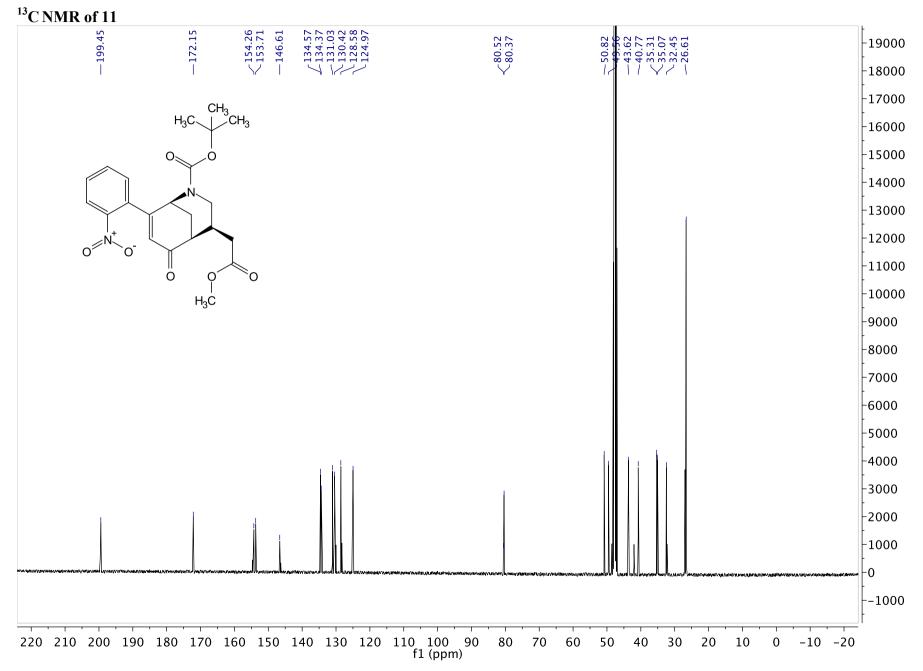


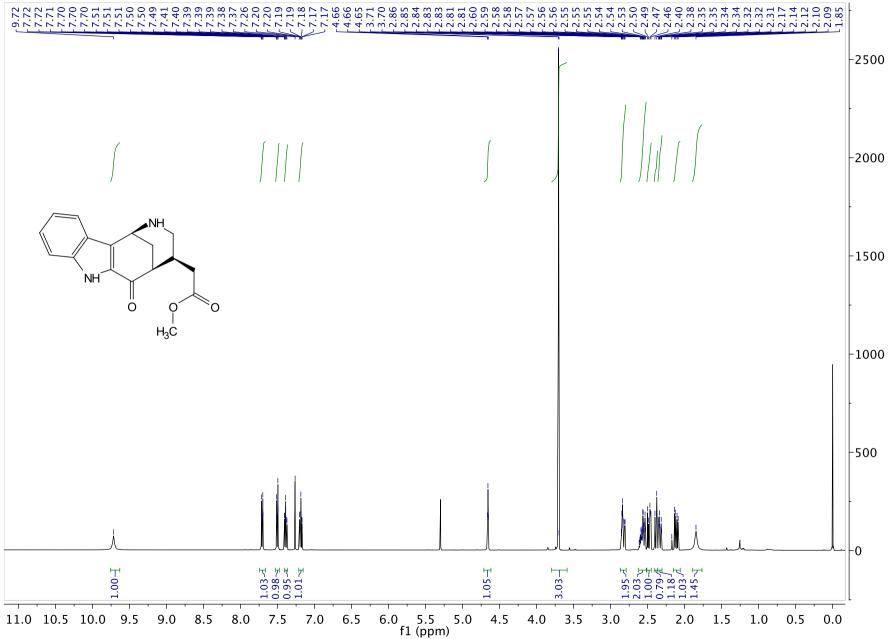


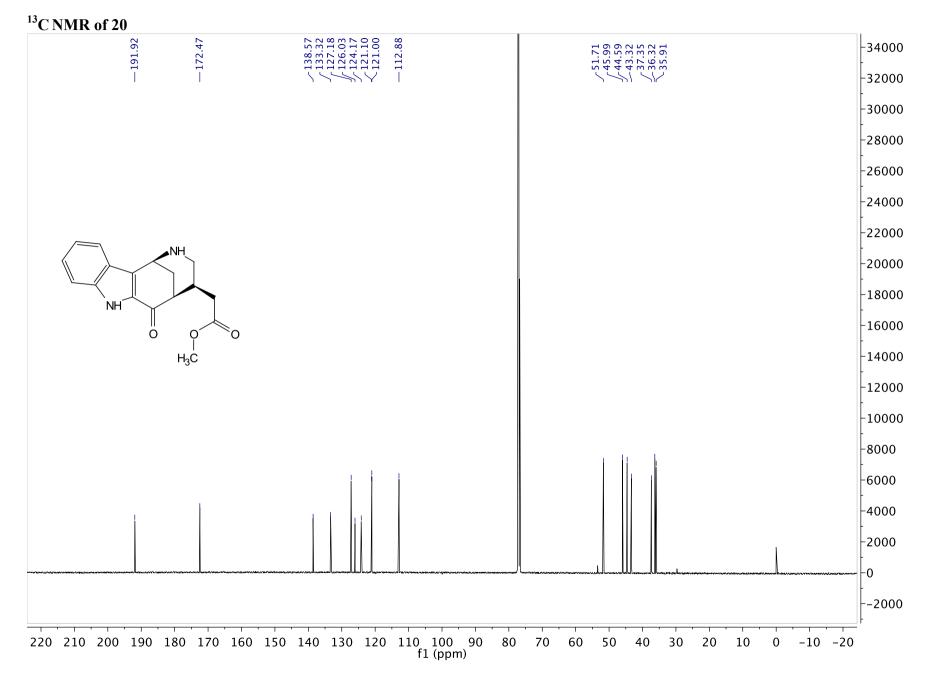


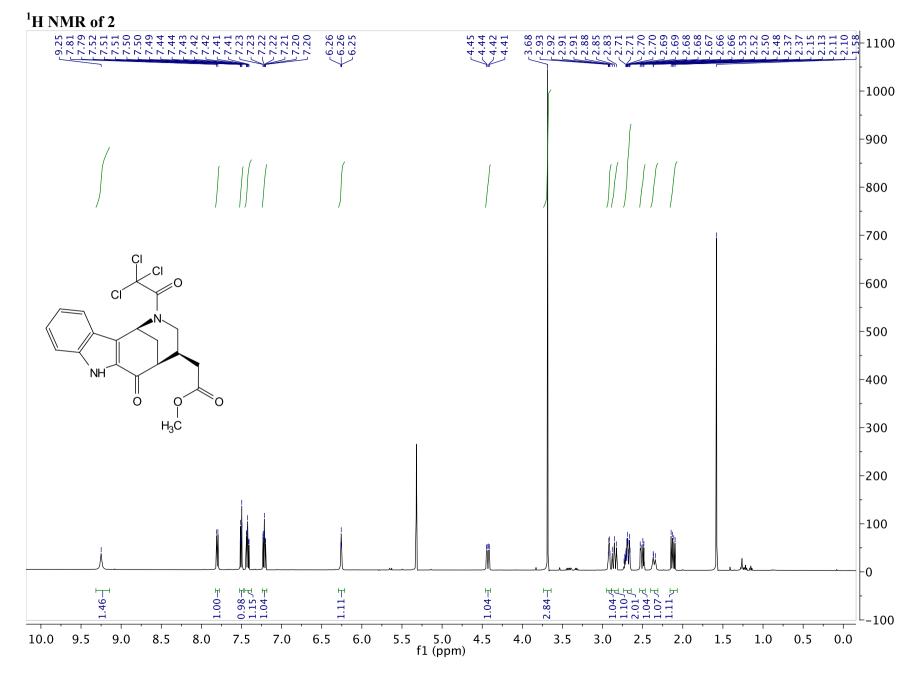


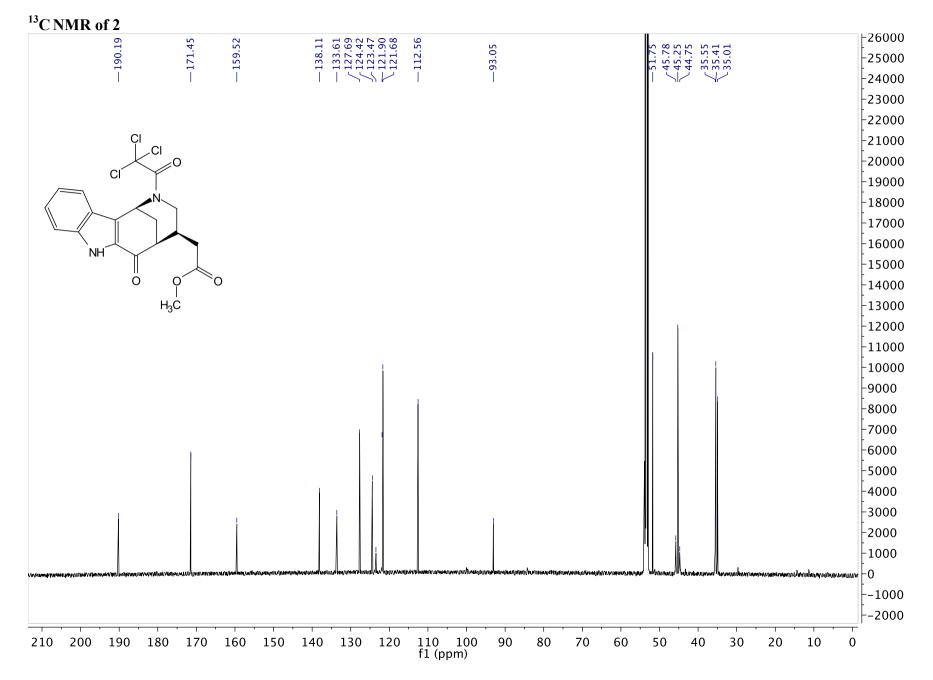


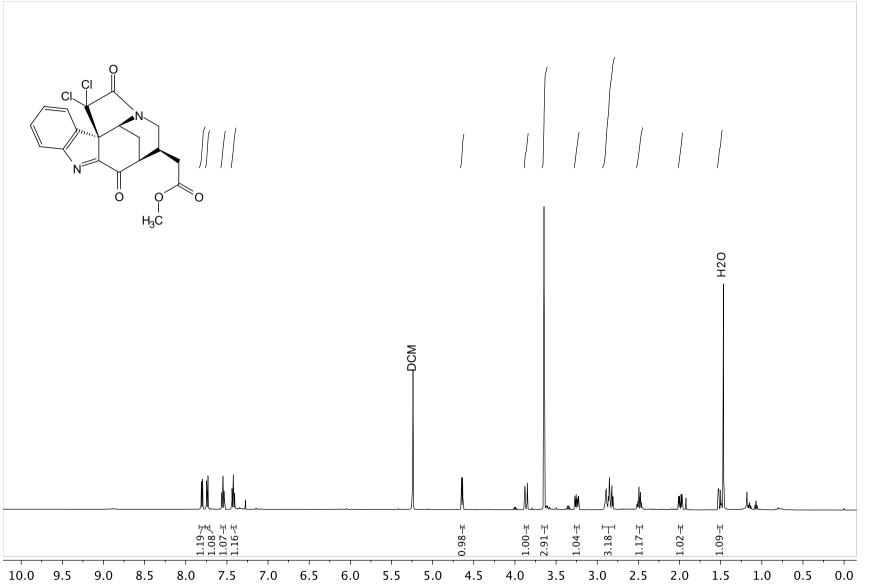


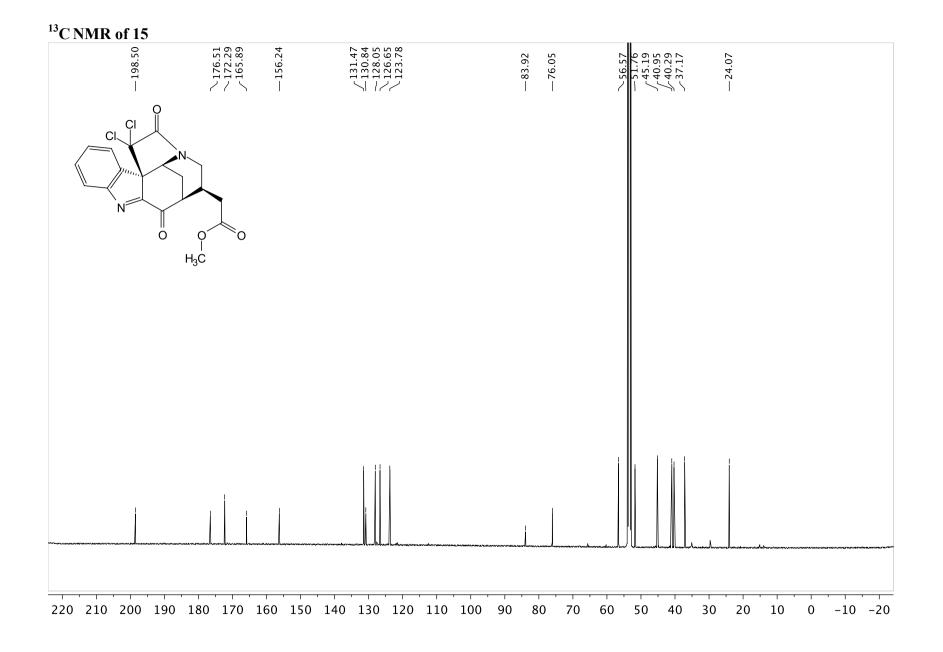


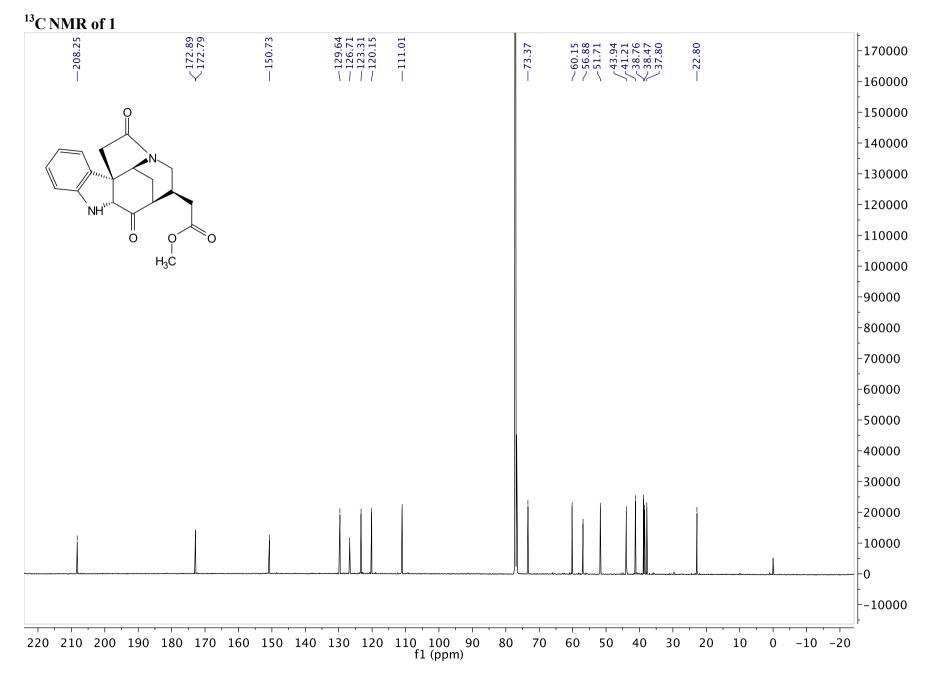


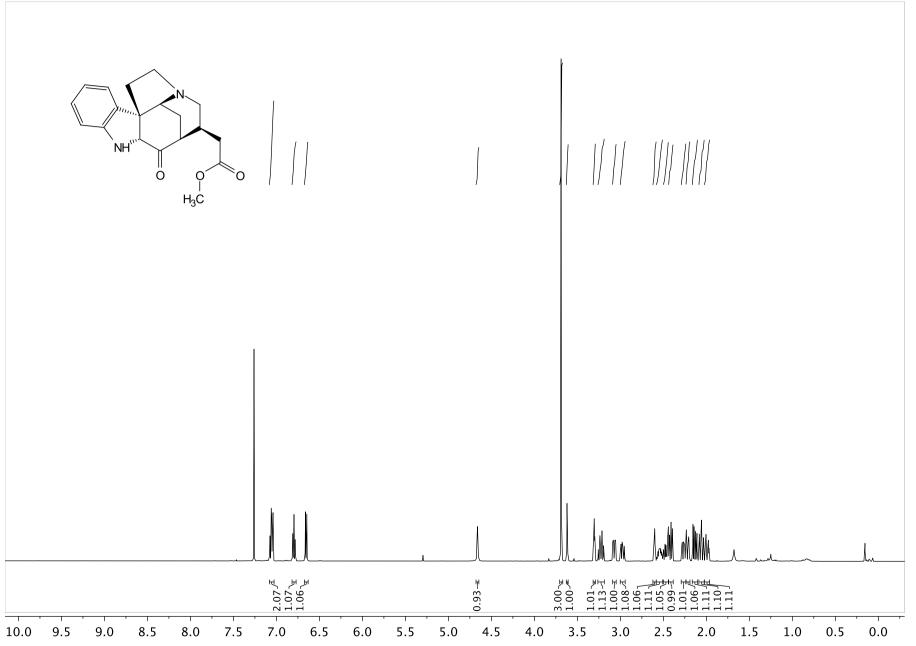


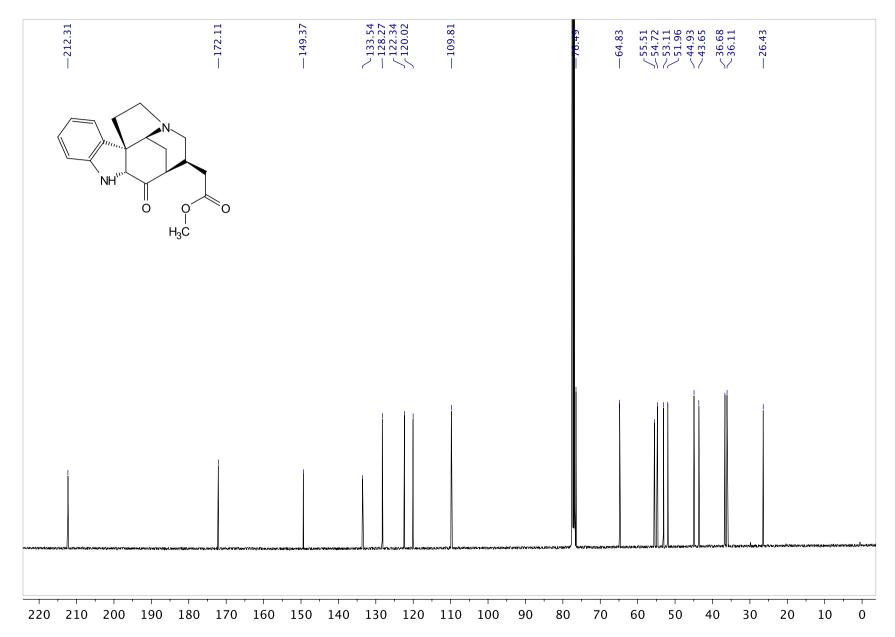


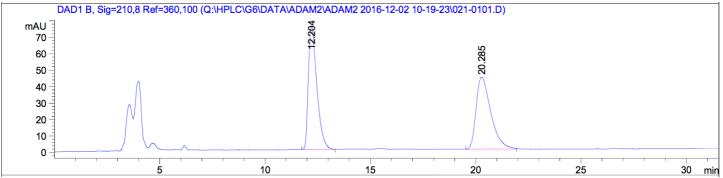


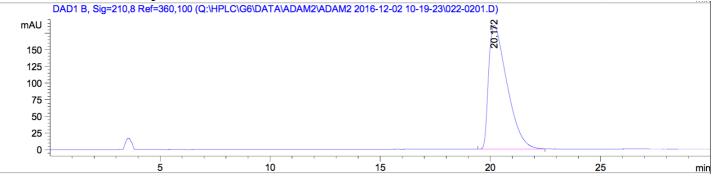











HPLC trace of racemic 9

Signal 2: DAD1 B, Sig=210,8 Ref=360,100

Peak #	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %
1	12.204	BB	0.4325	2105.58130	74.77023	49.6720
2	20.285	BB	0.7526	2133.38574	43.77039	50.3280
Total	s:			4238.96704	118.54062	

HPLC trace of enantiopure 9

Signal 2: DAD1 B, Sig=210,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
				1		I I
				1.07678e4		

Totals: 1.07678e4 185.60228