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Additional Details for the Fischer-Tropsch Synthesis Reaction 

The rate of individual surface reaction events, such as CO* inserting into CH3*, are calculated using the 

familiar equation from Transition State Theory (TST): 

(S1) 

𝑘 =
𝑘𝐵𝑇

ℎ
𝑒

[
∆𝑆≠

𝑅
]
𝑒

[−
∆𝐸≠

𝑅𝑇
]
 

where 𝑘 is the rate,  𝑘𝐵 is the Boltzmann constant, 𝑇 is the temperature, ℎ is Plank’s constant, ∆𝑆≠ and 

∆𝐸≠ are the entropy change and energy change between the reactant state and transition state, and 𝑅 

is the ideal gas constant. Molecular adsorption events, such as gas phase CO adsorbing on to a metal 

site, are assumed to be non-activated processes and the rate constants are calculated from collision 

theory using: 

(S2) 

𝑘 =
𝑃𝑖𝐴𝑆𝑖

√2𝜋𝑀𝑖𝑅𝑇
 

Where 𝑃𝑖 is the gas phase pressure of reactant 𝑖, 𝐴 is the cross-sectional area of the reactive site, 𝑆𝑖 is 

the sticking coefficient of reactant 𝑖 (assumed to be unity), and 𝑀𝑖 is the molecular weight of reactant 𝑖. 

To ensure that microscopic reversibility is preserved, the rate constant of the reverse reactions for all 

processes are calculated using: 

(S3) 

𝑘𝑟𝑒𝑣 = 𝑘𝑓𝑜𝑟𝐾𝑒𝑞
−1 = 𝑘𝑓𝑜𝑟𝑒
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𝑅
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where 𝑘𝑟𝑒𝑣 is the rate constant of the reverse reaction, 𝑘𝑓𝑜𝑟  is the forward reaction rate constant, 𝐾𝑒𝑞 is 

the equilibrium constant of the process, and ∆𝑆 and ∆𝐸 are the differences in entropy and energy 

between the reactant and product state of the forward reaction. 

The Kinetic Monte Carlo simulation algorithm was carried out using a code recently developed to model 

catalytic reactions occurring on metal nanoclusters. The details of this model will be elaborated in a 

subsequent manuscript. Briefly, the catalyst is modeled as a 4.2 nm cubo-octahedral particle built out of 

an infinite ruthenium lattice (shown in Figure S1). The surface reactions are allowed to occur on the 

exposed (111) terraces of the nanoparticle, consistent with theoretical and experimental observations 

[46,52]. This particle consists of 2406 Ruthenium atoms, with 752 atoms on the surface of the particle 

and 488 of them residing on the exposed 111 terraces. The surface bound intermediates CO*, CHx* (x=1, 

2, 3), and C2Hy* (y=0, 1, 2, 3) occupy a single site. Larger intermediates such as *R-CO* and *R-COH* 

(R=H, CH3) sit di-sigma and block 2 adjacent surface atop sites. Theoretical investigations have shown 

that surface hydrogen species (H*) prefer to sit in the 3-fold fcc sites in between the ruthenium surface 

atoms and interact very weakly with all nearby intermediates. This is consistent with experimental 

infrared spectroscopy studies that suggest the presence of chemisorbed surface hydrogen does not 

inhibit carbon monoxide uptake [52]. In addition, hydrogen represents a minority species on the surface 

under all conditions of practical interest. We have therefore chosen to model all hydrogen addition and 

elimination reaction as referenced back to the gas phase molecular hydrogen in place of modeling H* 

explicitly. The rate constants for hydrogen addition reactions are calculated using: 

(S4) 
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where 𝑃𝐻2
 is the partial pressure of hydrogen, Δ𝐸𝐻2

 is the adsorption energy of H2, and 𝑆𝐻2
 is the 

entropy of gas phase H2.  

 

 

a) b) 



Figure S1. Model 4.2 nm metal particle consisting of 2406 Ruthenium atoms, shown both (a) bare and 

(b) at 1ML coverage of carbon monoxide. CO adsorption and desorption events occur at all surface 

metal atoms. The Fischer-Tropsch synthesis reaction steps proceeds on the exposed (111) terraces. 

The kinetic inputs to the simulation have been loosely adopted from the DFT energetics calculated in ref 

47. The activation barriers have been modified to more closely match experimental values; however the 

overall mechanism and rate-limiting step remain the same. A summary of the energetic and entropic 

barriers for each elementary reaction is shown in Table 1. For simplicity, the effects of lateral 

interactions on the activation barriers are not included, however this coarse-graining algorithm could 

easily be extended to systems where repulsive interactions influence kinetics. We also briefly note that 

the intrinsic forward and reverse rate constants for each reaction include a factor describing the number 

of nearest-neighbor sites that can facilitate the reaction. This factor is specific to the lattice being used 

to model the reactions and is necessary to match the KMC simulation data with the mean-field analytical 

model. Atop sites on (111) terraces have 6 nearest neighbor atop sites (included for additions between 

atop-bound intermediates) and 3 nearest neighbor 3-fold sites (used for additions and removal of 

hydrogen). 

Table S1. Elementary reactions along with energetic and entropic changes between the reactant state, 

transition state, and product state. 

 Reaction ∆𝑬≠ ∆𝑺≠ ∆𝑬 ∆𝑺 

1 𝐶𝑂(𝑔) + ∗  ⇌  𝐶𝑂∗ 0.0 0.0 -80.0 -163.5 

2 
𝐶𝑂∗ + ∗ +

1

2
𝐻2(𝑔)  ⇌   ∗𝐻𝐶𝑂∗ 

37.2 -118.7 25.2 -118.7 

3 
 ∗𝐻𝐶𝑂∗ +

1

2
𝐻2(𝑔)  ⇌   ∗𝐻𝐶𝑂𝐻∗ 

38.0 -71.7 5.6 -71.7 

4  ∗𝐻𝐶𝑂𝐻∗  ⇌  𝐶𝐻∗ + 𝑂𝐻∗ 17.2 0.0 -43.8 0.0 

5 
𝐶𝐻∗ +

1

2
𝐻2(𝑔)  ⇌  𝐶𝐻2

∗ 
25.0 -71.7 -10.0 -71.7 

6 
𝐶𝐻2

∗ +
1

2
𝐻2(𝑔)  ⇌  𝐶𝐻3

∗ 
25.0 -71.7 -10.0 -71.7 

7 
𝐶𝐻3

∗ +
1

2
𝐻2(𝑔)  →  𝐶𝐻4 (𝑔) + ∗ 

25.0 -71.7 - - 

8 𝐶𝑂∗ + 𝐶𝐻3
∗  →   ∗𝐶𝐻3𝐶𝑂∗ 30.0 -47.0 -38.0 -47.0 

9 
 ∗𝐶𝐻3𝐶𝑂∗  +

1

2
𝐻2(𝑔) →   ∗𝐶𝐻3𝐶𝑂𝐻∗ 

20.0 -71.7 -40.0 -71.7 

10  ∗𝐶𝐻3𝐶𝑂𝐻∗  →  𝐶𝐻3𝐶∗ + 𝑂𝐻∗ 20.0 0.0 -40.0 0.0 

11 
𝐶𝐻3𝐶∗ +

1

2
𝐻2(𝑔)  ⇌ 𝐶𝐻3𝐶𝐻∗ 

25.0 -71.7 -10.0 -71.7 

12 
𝐶𝐻3𝐶𝐻∗ +

1

2
𝐻2(𝑔)  ⇌ 𝐶𝐻3𝐶𝐻2

∗ 
25.0 -71.7 -10.0 -71.7 

13 
𝐶𝐻3𝐶𝐻2

∗ +
1

2
𝐻2(𝑔)  → 𝐶𝐻3𝐶𝐻3 (𝑔) +∗ 

25.0 -71.7 - - 

14 
𝑂𝐻∗ +

1

2
𝐻2(𝑔)  → 𝐻2𝑂(𝑔) +∗ 

20.0 -71.7 - - 

 

 



 

 

 

Mean-Field Kinetic Model of the Fischer-Tropsch Synthesis Process 

The overall scheme for the Ficher-Tropsch Synthesis process is shown in Figure S2 and is reproduced 

from the main text Figure 5. Initially, gas phase CO adsorbs on to the surface. Assuming that CO* is 

the most abundant surface intermediate, and that CO* is quasi-equilibrated with the gas phase, 

the surface concentration of CO* and free sites * can be represented as: 

(S5) 

[𝐶𝑂∗] =
𝐾𝐶𝑂𝑃𝐶𝑂

1 + 𝐾𝐶𝑂𝑃𝐶𝑂
 

(S6) 

[∗] =
1

1 + 𝐾𝐶𝑂𝑃𝐶𝑂
 

Hydrogen adsorbs noncompetitively from the gas phase and participates in multiple subsequent 

hydrogen addition steps. Because hydrogen is equilibrated with the surface at all conditions examined in 

this study and the concentration is low, the surface hydrogens are references back to the gas phase 

reactants by: 

(S7) 

[𝐻∗] ≈ √𝐾𝐻2
𝑃𝐻2

 

The rate of the unequilibrated hydrogen addition to the *HCO* species is related to the surface 

concentration of CO* and hydrogen pressure using the equilibrium of the first two mechanistic steps. 

(S8) 

𝑟3 = 𝑘3√𝑃𝐻2
[ ∗𝐻𝐶𝑂∗] = 𝑘3𝐾2𝐾1𝑃𝐻2

[𝐶𝑂∗][∗] 

Substituting the results from eqs. (S5) and (S6) into eq. (S6) leads to the rate of CO-activation presented 

in eq. (14) of the main text: 

(S9) 

𝑟3 =
𝑘3𝐾2𝐾1𝑃𝐻2

𝑃𝐶𝑂

(1 + 𝐾1𝑃𝐶𝑂)2
 

The selectivity to methane is the ratio of the methane production to methane and ethane production in 

the FTS reaction. Both the hydrogen addition to CH3 and the hydrogen addition to CH3CH2 irreversibly 

produce methane and ethane, respectively. However, we observe that the CO insertion into CH3 is 



unequilibrated and essentially always leads to the production of ethane. Therefore, the rate of ethane 

production is equal to the rate of the CO insertion into surface CH3. The selectivity to methane is 

therefore: 

(S10) 

𝑋𝐶𝐻4
=

𝑟7

𝑟7 + 𝑟8
=

𝑘7√𝑃𝐻2
[𝐶𝐻3

∗]

𝑘7√𝑃𝐻2
[𝐶𝐻3

∗] + 𝑘8[𝐶𝐻3
∗][𝐶𝑂∗]

=  
𝑘7√𝑃𝐻2

𝑘7√𝑃𝐻2
+ 𝑘8[𝐶𝑂∗]

 

Substituting the results from eqs. (S5) and (S6) into eq. (S10) leads to the selectivity to methane 

presented in eq. (15) of the main text: 

(S11) 

𝑋𝐶𝐻4
=

𝑟7

𝑟7 + 𝑟8
=  

𝑘7√𝑃𝐻2

𝑘7√𝑃𝐻2
+

k8𝐾1𝑃𝐶𝑂
1 + 𝐾1𝑃𝐶𝑂

 

 

   

 

 

 

 

 

 

Figure S2. Reaction network for Fischer-Tropsch synthesis.   



 

Optional Subroutines to Improve Efficiency 
The procedure described in the main text of unscaling all reactions and re-equilibrating the quasi-

equilibrated reactions after an unequilibrated reaction event rigorously ensures simulation accuracy. 

However, this also significantly reduces the simulation efficiency during the initial approach to 

equilibrium where many fast processes are still considered unequilibrated. To improve the efficiency, 

one can optionally bypass the reaction unscaling if the unequilibrated process belongs to the same 

reaction channel as the previous unequilibrated process executed. If the unequilibrated process just 

executed belongs to the same reaction channel as the last unequilibrated reaction executed before it, 

then it is likely that the rates of the reaction channels in the new superbasin are similar to those in the 

previous superbasin such that the previous scaling factors are still acceptable. This is due to the fact that 

the stiffness that necessitates rescaling and re-equilibration arises primarily when a fast unequilibrated 

reaction immediately follows a slow unequilibrated reaction (i.e., two different unequilibrated 

reactions). 

If the reactions are not unscaled, due to the above scenario, the scaling factors cannot be updated until 

the reaction rates have been sampled with sufficient accuracy. We therefore use the scaling factors 

from the previous superbasin until the system has reached equilibration in the current superbasin (all of 

the quasi-equilibrated reactions with non-zero rates have executed 𝑛𝑒 times in the superbasin). At this 

point, we have adequately sampled the new superbasin and the scaling factors can be updated 

accurately using eq. Error! Reference source not found.. If the system exits the superbasin before 

equilibration has occurred and the unequilibrated process by which it exits is from the same reaction 

channel as the previous unequilibrated step, then the scaling factors for those reactions that have been 

sufficiently executed in the current superbasin are updated just prior to exiting for use in the new 

superbasin. For those quasi-equilibrated reactions that have not yet been sufficiently executed, the 

scaling factors are reset to unity. The entire unscaling procedure with scaling factor freezing is depicted 

in Figures S3 and S4. 



 

Figure S1.  Flow diagram depicting the reaction scaling procedure 
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Figure S2.  Flow diagram depicting the unscaling procedure carried out after execution of an 

unequilibrated process 
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Pseudocode for the Proposed Reaction Scaling Algorithm 

 

# Initialize step, time, scaling factors, and reaction counters 

𝑖 = 0  # simulation step 

𝑡 = 0  # simulation time 

For each reaction m in all_reactions: 

𝛼𝑚 = 0  # scaling factor 

𝑁𝑚 = 0  # 𝑛𝑒 element array containing execution history 

𝑝𝑚 = 0  # current position in array 𝑁𝑚 

𝑛𝑒,𝑚 = 0 # number of executions in current superbasin 

𝑟𝑚 = 0  # rate of forward reaction 

𝑟−𝑚 = 0 # rate of reverse reaction 

Flag reaction m as not sufficiently_executed 

Flag reaction m as unequilibrated 

Next reaction 

 

 

# Main loop 

 

Do main_loop: 

 

# Populate the Event Table 

For each site s in all_sites: 

For each reaction m in all_reactions: 

If reaction m is possible for site s and this 

configuration in the forward/reverse direction: 

Add a new event e to list all_events for reaction 

m in the forward/reverse direction with rate 

constant 𝑘𝑒 and scaling factor 𝛼𝑒 = 𝛼𝑚 

Next reaction 



Next site 

 

# calculate the rate constants of all reaction channels from 

current configuration 

For each reaction m in all_reactions: 

𝑘𝑚,𝑖 = 0 

𝑘−𝑚,𝑖 = 0 

For each event e in all_events: 

If event e is a reaction of type m in forward 

direction: 

𝑘𝑚,𝑖 = 𝑘𝑚,𝑖 + 𝑘𝑒  

If event e is a reaction of type m in reverse 

direction: 

𝑘−𝑚,𝑖 = 𝑘−𝑚,𝑖 + 𝑘𝑒  

Next event 

Next reaction 

 

# pick an event to occur at this step 

𝑅𝑁 = rand(0,1) # uniform random number between 0 and 1 

𝑘𝑠𝑢𝑚 = 0 

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0 

For each event e in all_events: 

𝑘𝑠𝑢𝑚 = 𝑘𝑠𝑢𝑚 + 𝜂𝑒𝑘𝑒 

Next event 

For each event e in all_events: 

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 +
𝛼𝑒𝑘𝑒

𝑘𝑠𝑢𝑚
 

If (𝑐𝑜𝑢𝑛𝑡𝑒𝑟 > 𝑅𝑁 × 𝑘𝑠𝑢𝑚): 

selected_event = e 

Next event 

 



# unscale reactions when an unequilibrated reaction is executed 

If selected_event is an unequilibrated reaction: 

 Nsuperbasin = 𝑖  

Call unscale_reactions() 

 

Update configuration based on selected_event 

 

# increment the reaction counters and determine 

reversibility/equilibration of selected reaction channel 

Set m to the reaction channel of selected_event 

If selected_event occurs in forward direction of reaction channel 

m: 

𝑁𝑚(𝑝𝑚) = 1 

Else: 

𝑁𝑚(𝑝𝑚) = −1 

𝑝𝑚 = mod(𝑝𝑚 + 1, 𝑛𝑒) 

𝑛𝑒,𝑚 = 𝑛𝑒,𝑚 + 1 

 

If ∑|𝑁𝑚| = 𝑛𝑒 and |∑ 𝑁𝑚| < 𝛿 𝑛𝑒: 

Flag reaction m as quasi-equilibrated 

If 𝑛𝑒,𝑚 ≥ 𝑛𝑒: 

Flag reaction m as sufficiently_executed 

Else: 

Flag reaction m as unequilibrated 

Flag reaction m as not sufficiently_executed 

 

 

 

# increment simulation time 

𝑅𝑁 = rand(0,1) # uniform random number between 0 and 1 



∆𝑡𝑖 = −
ln(𝑅𝑁)

𝑘𝑠𝑢𝑚
 

𝑡 = 𝑡 + ∆𝑡𝑖 

 

# update reaction rates 

For each reaction m in all_reactions: 

𝑟𝑚 = 𝑟𝑚 + 𝑘𝑚,𝑖Δ𝑡𝑖 

𝑟−𝑚 = 𝑟−𝑚 +  𝑘−𝑚,𝑖Δ𝑡𝑖 

Next reaction 

 

# rescale reactions every 𝑵𝒔 steps 

If (mod(𝑖, 𝑁𝑠) = 0) And (𝑖 − 𝑁𝑠𝑢𝑝𝑒𝑟𝑏𝑎𝑠𝑖𝑛) > 𝑁𝑠: 

Call scale_reactions() 

 

# increment simulation step 

𝑖 = 𝑖 + 1 

 

 

Next main_loop 

 

 

#Subroutine to unscale all reactions 

Subroutine unscale_reactions(): 

 

# reset reaction rates and counters 

For each reaction m in all_reactions: 

𝑛𝑒,𝑚 = 0 

𝑟𝑚 = 0 

𝑟−𝑚 = 0 

Flag reaction m as not sufficiently_executed 



Next reaction 

 

# unfreeze scaling factors in case they were frozen 

rescaling = true 

 

# reset or update scaling factors 

# different behavior depending on whether next unequilibrated 

reaction is identical to the last unequilibrated reaction 

If next unequilibrated reaction is different from last 

unequilibrated reaction: 

# unscale all reactions 

For each reaction m in all_reactions: 

𝛼𝑚 = 1 

Next reaction 

Else: 

# update and freeze scaling factors 

Call scale_reactions() 

rescaling = false 

 

End Subroutine 

 

 

#Subroutine to scale the reactions 

Subroutine scale_reactions() 

  

# if scaling factors are frozen, start updating them again when 

all quasi-equilibrated reactions have been sufficiently executed 

If rescaling is false: 

If all quasi-equilibrated reactions are 

sufficiently_executed: 

rescaling = true 

Else: 



Exit Subroutine 

 

# calculate the rate of escape from the current superbasin 

𝑟𝜏 = 0 

For each reaction m in all_reactions: 

If reaction m is not sufficiently_executed: 

𝑟𝜏 = 𝑟𝜏 + 𝑟𝑚 + 𝑟−𝑚 

Next reaction 

 

# calculate scaling factors 

For each reaction m in all_reactions: 

If reaction m is sufficiently_executed: 

𝛼𝑚 = min (𝑁𝑓

2 𝑟𝜏

𝑟𝑚 + 𝑟−𝑚
, 1) 

Else: 

𝛼𝑚 = 1 

Next reaction 

 

End Subroutine 

 


