Supporting Information

Tuning the Work Function of Printed Polymer Electrodes by Introducing a Fluorinated Polymer to Enhance the Operational Stability in Bottom-Contact Organic Field-Effect Transistors

Se Hyun Kim,^{a,†} Jiye Kim,^{b,†} Sooji Nam,^c Hwa Sung Lee,^{*d} Seung Woo Lee,^{*a} and Jaeyoung

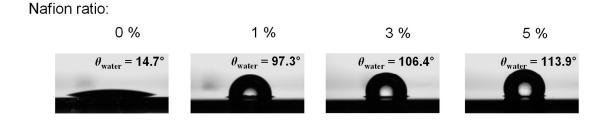
Jang*,e

^aSchool of Chemical Engineering, Yeungnam University, Gyeongsan, North Gyeongsang 38541, South Korea

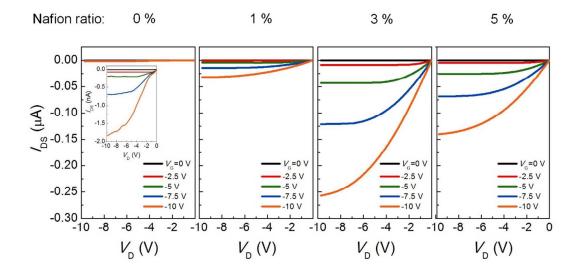
^bDepartment of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea

^cSmart I/O Control Device Research Section, Electronics and Telecommunications Research Institute, Daejeon, 305-700, Republic of Korea

^dDepartment of Chemical & Biological Engineering, Hanbat National University, Daejeon 305-719, Republic of Korea


^eDepartment of Energy Engineering, Hanyang University, Seoul, 133-791, Republic of Korea

Corresponding author information


*E-mail: jyjang15@hanyang.ac.kr, Fax: +82-2-2291-5982, Tel: +82-2-2220-2334 (J. Jang)

*E-mail: leesw1212@ynu.ac.kr (S. W. Lee)

*E-mail: hlee@hanbat.ac.kr (H. S. Lee)

Figure S1. The images of water contact angle θ_{water} for the neat PEDOT:PSS (i.e. 0% of Nafion) film and PEDOT:PSS/Nafion films with different Nafion ratios.

Figure S2. The typical drain current-drain voltage (I_D-V_D) output characteristics of the pentacene based bottom-contact OFETs with the neat PEDOT:PSS electrodes and the PEDOT:PSS/Nafion electrodes.