Supporting Information

Asymmetric [3+2] Cycloaddition of 3-Amino Oxindole-based Azomethine Ylides and α, β-Enones with Divergent Diastereocontrol on the Spiro[pyrrolidine-oxindoles]

Guodong Zhu, Qian Wei, Hongbo Chen, Yanpeng Zhang, Wen Shen, Jingping Qu, and Baomin Wang*

State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian
University of Technology, Dalian 116024, P. R. China
bmwang@dlut.edu.cn

Table of contents

1. General Information S3
2. Screening of Optimal Reaction Conditions and Substrate Scope S4-S7
3. General Procedure for Synthesis of the Products S8-S9
4. Characterization Data S10-S26
5. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra. S27-S72
6. Copies of HPLC Chromatographs S73-S116
7. Crystal Data of 5cfa and 5can' and Proposed Stereocontrol Model S117-S119
8. References S119

1. General Information

All reactions were carried out in Schlenk tube under a dry argon atmosphere. All solvents were purified and dried according to standard methods prior to use. Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Flash chromatography was carried out utilizing silica gel 200-300 mesh. ${ }^{1} \mathrm{H}$ NMR, ${ }^{19}$ F NMR spectra were recorded on a Bruker Avance II 400 MHz and Bruker Avance III 471 MHz respectively, ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance II 101 MHz or Bruker Avance III 126 MHz . The solvent used for NMR spectroscopy was CDCl_{3}, using tetramethylsilane as the internal reference. Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift $(\delta$, ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet or unresolved, $\mathrm{br}=$ broad singlet, dd $=$ double doublet, coupling constants in Hz , integration). Data for ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR are reported in terms of chemical shift (δ, ppm). HRMS (ESI) was determined by a HRMS/MS instrument (LTQ Orbitrap XL TM). Enantiomeric excess values were determined by HPLC employing a chiral column on Agilent 1100 series. Optical rotations were reported as follows: $[\alpha]_{\mathrm{D}}^{\mathrm{T}}(\mathrm{c} \mathrm{g} / 100 \mathrm{~mL}$, solvent). The absolute configurations of 5cfa and 5can' were assigned by the X-ray analysis. All the aldehydes were commercially obtained and recrystallized or distilled prior to use. 3-Amino oxindole hydrochlorides ${ }^{1}$ and α, β-unsaturated enones ${ }^{2}$ were prepared according to literature methods.

2. Screening of Optimal Reaction Conditions and Substrate Scope

Table S1. Screening of the Optimal Reaction Conditions ${ }^{a}$

${ }^{a}$ The reaction was carried out on a 0.1 mmol scale, $\mathbf{1}(10 \mathrm{~mol} \%)$ in $1.0 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$, the ratio of 2/3a/4a was $1 / 1.2 / 1.1 .{ }^{b}$ Isolated yield. ${ }^{c}$ The rr was determined by ${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture. ${ }^{d}$ The $e e$ was determined by chiral HPLC. ${ }^{e}$ Without $3 \AA$ MS. ${ }^{\ddagger}$ At $35^{\circ} \mathrm{C}$.

Table S2. Screening of the Catalyst Loading in the Reaction ${ }^{a}$

${ }^{a}$ The reaction was carried out on a 0.1 mmol scale, $\mathbf{1 d}(\mathrm{x} \mathrm{mol} \%)$ in $1.0 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$, the ratio of $\mathbf{2 c} / \mathbf{3} \mathbf{a} / \mathbf{4}$ a was $1 / 1.2 / 1.1$. ${ }^{b}$ Isolated yield. ${ }^{c}$ The rr was determined by ${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture. ${ }^{d}$ The $e e$ was determined by chiral HPLC.

Scheme S1. Substrate Scope of 3-Amino Oxindole Hydrochlorides and Aldehydes.

5baa
$120 \mathrm{~h}, 83 \%$ yield, 8:1 rr, 94% ee, 80% ee

5cfa
$86 \mathrm{~h}, 99 \%$ yield, 8:1 rr, 95\% ee, 91\% ee MeO

$B n$
5cja
$120 \mathrm{~h}, 50 \%$ yield, $11: 1$ rr, 90% ee, -

5daa
$85 \mathrm{~h}, 99 \%$ yield,
$4: 1 \mathrm{rr}, 92 \%$ ee, 81% ee

5cca
82 h, 99\% yield,
9:1 rr, 97\% ee, -

5cha
$120 \mathrm{~h}, 99 \%$ yield,
10:1 rr, 95\% ee, 82\% ee

5cla
84 h, 87% yield, > 20:1 rr, 94\% ee, 82% ee

5cea
$82 \mathrm{~h}, 96 \%$ yield, 8:1 rr, 96% ee, 92% ee

5cia
84 h, 99% yield, 9:1 rr, 94\% ee, -

5cma
$120 \mathrm{~h}, 99 \%$ yield, $3: 1$ rr, 56% ee, -

5eaa
$85 \mathrm{~h}, 97 \%$ yield,
16:1 rr, 93% ee, 45% ee

Scheme S2. Substrate Scope of $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Enones.

3. General Procedure for Synthesis of the Products

General Procedure for the Synthesis of Spiro[pyrrolidin-2,3'-oxindoles] (5)

In a Schlenk tube, 3-amino oxindole hydrochloride $2(0.2 \mathrm{mmol}), \mathrm{NaHCO}_{3}(0.3 \mathrm{mmol}), \alpha, \beta$-enone $4(0.22 \mathrm{mmol})$, and catalyst $(0.02 \mathrm{mmol})$ were added into $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ under a dry argon atmosphere at $35{ }^{\circ} \mathrm{C}$. Then, aldehyde $3(0.24 \mathrm{mmol})$ was added and the reaction solution was stirred at the same temperature. After the reaction was complete (monitored by TLC), the crude product was purified by column chromatography (ethyl acetate/petroleum ether $=1 / 20$ to $1 / 4$) on silica gel to give the product 5.

The Method for the Synthesis of 3,4-Dihydrospiro[pyrrol-2,3'-oxindoles]

A reaction tube was charged with $5(0.1 \mathrm{mmol})$ and dioxane $(1 \mathrm{~mL})$, then DDQ $(0.15 \mathrm{mmol})$ was added at room temperature. The reaction was stirred until it was complete (monitored by TLC), then the crude product was purified by column chromatography (ethyl acetate/petroleum ether $=1 / 8$) on silica gel to give the product 6 .

The Method for the Synthesis the Epimer of Spiro[pyrrolidin-2,3'-oxindole] (5caa) from Dihydrospiro[pyrrol-2,3'-oxindole] (7caa)

A reaction tube was charged with $\mathbf{6 c a a}(0.1 \mathrm{mmol})$ and 1 mL the mixture solvent $\left(\mathrm{AcOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ $=1: 1)$ at $0{ }^{\circ} \mathrm{C}$, then $\mathrm{NaBH}_{3} \mathrm{CN}(0.3 \mathrm{mmol})$ was added at the same temperature. The reaction was stirred until it was complete (monitored by TLC), then the crude product was purified by column chromatography (ethyl acetate/petroleum ether $=1 / 8$) on silica gel to give the product $\mathbf{7 c a a}$ with 90% $(48 \mathrm{mg})$ yield.

Procedure for Gram-scale Reaction

In a Schlenk tube, 3-amino oxindole hydrochloride $\mathbf{2 c}(2.2 \mathrm{mmol})$, BPA $\mathbf{1 g}(0.22 \mathrm{mmol})$, chalcone $\mathbf{4 a}(2.42 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(3.3 \mathrm{mmol})$ were added in $\mathrm{Et}_{2} \mathrm{O}(22 \mathrm{~mL})$ under an argon atmosphere at 35 ${ }^{\circ} \mathrm{C}$. Then, benzaldehyde $\mathbf{3 a}(2.64 \mathrm{mmol})$ was added and the solution was stirred at the same temperature for 65 h . The crude product was purified by column chromatography (ethyl acetate/petroleum ether = $1 / 20$ to $1 / 4$) on silica gel to give the product 5caa with 95% (1.02g) yield.

Procedure for the Synthesis of Compounds 8, 9 and 10

In a tube, the spiro[indoline-3,2'-pyrrolidin]-2-one 5caa (0.2 mmol) was added in THF (2 mL) at $10{ }^{\circ} \mathrm{C}$. Then, m-CPBA (0.2 mmol) was added at the same temperature and the reaction solution was stirred for 5 h . The solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 8$ to $1 / 4$) to afford product $\mathbf{8}$ with 92% (101 mg) yield.

In a tube, the spiro[indoline-3,2'-pyrrolidin]-2-one $\mathbf{8}(0.2 \mathrm{mmol})$ was added in THF (2 mL) at 35 ${ }^{\circ} \mathrm{C}$, then m-CPBA (0.3 mmol) was added. The reaction mixture was stirred for 20 h . The solvent was evaporated under reduced pressure, and the crude product was purified by silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 8$ to $1 / 2$) to afford product 9 with 90% (99 mg) yield.

In a tube, the nitrone derivative $9(0.2 \mathrm{mmol})$ and dimethyl acetylenedicaroxylate $(0.24 \mathrm{mmol})$ were added in toluene (2 mL) at room temperature. The reaction mixture was stirred at $85{ }^{\circ} \mathrm{C}$ for 6 h . The crude product was purified by silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 4)$ to afford product 10 with $86 \%(119 \mathrm{mg})$ yield, $96 \% e e$ and $3: 1 \mathrm{dr}$. After the recrystallization of the crude product $\mathbf{1 0}$ through ethyl acetate and petroleum ether, almost single diastereoisomer was obtained with 64% yield, $97 \% e e$ and $>20: 1 \mathrm{dr}$.

4. Characterization Datas

5baa
(2S,3R,4S,5R)-4-Benzoyl-1'-methyl-3,5-diphenylspiro[pyrrolidin-2,3'-oxin dole]
Yield: 83% (76 mg); 8:1 rr; White solid, $\mathrm{mp}: 169-171^{\circ} \mathrm{C}$, $94 \% e e .[\alpha]_{\mathrm{D}}^{13}=44.1$ (c $0.42, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.20(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.00(\mathrm{~m}, 8 \mathrm{H}), 6.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.76-5.67(\mathrm{~m}$, $2 \mathrm{H}), 4.60-4.52(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 198.0,179.4,143.7,141.5,137.9,135.0,132.8,129.6,129.2,128.4,128.3,127.9,127.8$, 127.7, 127.4, 127.3, 127.4, 127.3, 123.5, 123.0, 107.9, 72.8, 62.2, 55.3, 52.9, 25.6; HRMS (ESI) for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 459.2067, found 459.2051. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n -hexane:i-propanol $=70: 30,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}($ major $)=$ $25.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=37.2 \mathrm{~min}$.

(2S,3R,4S,5R)-4-Benzoyl-1'-benzyl-3,5-diphenylspiro[pyrrolidin-2,3'-oxin dole]
Yield: $99 \%(106 \mathrm{mg}) ; 9: 1 \mathrm{rr}$; White solid, $\mathrm{mp}: 88-90^{\circ} \mathrm{C}, 96 \% e e .[\alpha]_{\mathrm{D}}^{13}=92.8$ (c $1.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.18-$ $7.01(\mathrm{~m}, 13 \mathrm{H}), 6.46(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{t}, J=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.0,179.4$, $143.2,141.5,137.9,135.2,135.1,132.9,129.6,129.4,128.7,128.4,128.3,128.2,127.8,127.5,127.2$, $126.5,123.8,123.1,109.3,72.6,62.1,54.8,52.9,43.5$; HRMS (ESI) for $\mathrm{C}_{37} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 535.2380, found 535.2364. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column. (n-hexane:i-propanol $=95: 5,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}($ major $)=18.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}(\operatorname{minor})=$ 30.0 min.

(2S,3R,4S,5R)-4-Benzoyl-1'-benzyl-5-(4-chlorophenyl)-3-phenylspiro[pyrr olidin-2,3'-oxindole]
Yield: $99 \%(112 \mathrm{mg})$; 9:1 rr; White solid, mp: 101-103 ${ }^{\circ} \mathrm{C}$, 97% ee. $[\alpha]_{\mathrm{D}}^{13}=$ 72.5 (c 1.02, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.73(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21$ $-7.02(\mathrm{~m}, 14 \mathrm{H}), 6.46(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{t}, J=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=$ $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 197.9,179.3,143.1,140.1,137.8,135.0,134.9,133.1,129.7,129.4$, 128.7, 128.5, 128.3, 128.1, 127.9, 127.6, 127.2, 126.5, 123.8, 123.2, 109.4, $72.5,61.2,54.5,52.5,43.5$; HRMS (ESI) for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{ClN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 569.1990, found 569.1970. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane:i-propanol $=$ $70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}($ major $)=9.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=20.3 \mathrm{~min}$.

5cea
(2S,3R,4S,5R)-4-Benzoyl-1'-benzyl-5-(4-bromophenyl)-3-phenylspiro[pyrro lidin-2,3'-oxindole]
Yield: $96 \%(118 \mathrm{mg}) ; 8: 1 \mathrm{rr}$; White solid, mp: $99-101{ }^{\circ} \mathrm{C}, 96 \% e e .[\alpha]_{\mathrm{D}}^{13}=59.1$ (c $0.88, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.05$ $(\mathrm{m}, 14 \mathrm{H}), 6.47(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.36(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{t}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.70(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.21(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $197.9,179.3,143.1,140.6,137.7,135.0,134.8,133.1,130.8,130.1,129.4$, 128.7, 128.5, 128.4, 128.3, 128.1, 127.5, 127.2, 126.5, 123.8, 123.2, 121.4, 109.4, 72.5, 61.2, 54.5, 52.4, 43.5; HRMS (ESI) for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{BrN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 613.1485, found 613.1463. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane:i-propanol $=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}($ major $)=10.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=21.4 \mathrm{~min}$.

5cfa
(2S,3R,4S,5R)-4-Benzoyl-1'-benzyl-5-(2-bromophenyl)-3-phenylspiro[pyrro lidin-2,3'-oxindole]
Yield: 99% (121 mg); 8:1 rr; White solid, mp: $89-91{ }^{\circ} \mathrm{C}$, $95 \% \mathrm{ee} .[\alpha]_{\mathrm{D}}^{13}=100.6$ (c $0.76, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.73-$ $7.66(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.06(\mathrm{~m}, 11 \mathrm{H})$, $6.94(\mathrm{td}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.43-6.31(\mathrm{~m}, 2 \mathrm{H}), 5.72$ $(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.4,178.9$, $143.1,134.0,137.6,135.2,132.8,132.0,130.8,129.4,129.3,128.8,128.6$, $128.4,128.3,128.1,127.5,127.2,126.5,124.1,124.0,123.1,109.2,72.5,60.3,56.2,52.1,43.4$; HRMS (ESI) for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{BrN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 613.1485, found 613.1470. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane:i-propanol $=70: 30,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}($ major $)=25.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=11.8 \mathrm{~min}$

5cga
(2S,3R,4S,5R)-4-Benzoyl-1'-benzyl-5-(4-nitrophenyl)-3-phenylspiro[pyrroli din-2,3'-oxindole]
Yield: $99 \%(115 \mathrm{mg}) ; 5: 1 \mathrm{rr}$; Yellow solid, mp: 217-219 ${ }^{\circ} \mathrm{C}$, $99 \% e e .[\alpha]_{\mathrm{D}}^{13}=$ $53.6\left(c 0.79, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.82(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.04(\mathrm{~m}, 10 \mathrm{H}), 6.49(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.39(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.96-5.79(\mathrm{~m}, 2 \mathrm{H}), 5.04(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.25(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.5$, $179.2,149.3,147.2,143.1,137.5,134.9,134.4,133.5,129.6,129.2,129.0$, 128.7, 128.5, 128.2, 128.1, 127.7, 127.2, 126.5, 123.9, 123.3, 122.9, 109.5, 72.6, 61.0, 54.5, 52.2, 43.5; HRMS (ESI) for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$calcd 580.2231, found 580.2211. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane:i-propanol $=$ $70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}($ major $)=12.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=48.6 \mathrm{~min}$.

5cha
(2S,3R,4S,5R)-4-Benzoyl-1'-benzyl-3-phenyl-5-(p-tolyl)spiro[pyrrolidin-2, 3'-oxindole]
Yield: 99% (109 mg); 10:1 rr; White solid, mp: 92-94 ${ }^{\circ} \mathrm{C}$, $95 \% e e .[\alpha]_{\mathrm{D}}^{13}=84.9$ (c $0.95, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.75$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-$ $7.02(\mathrm{~m}, 12 \mathrm{H}), 6.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 1 \mathrm{H})$, 2.18 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.1, 179.4, 143.2, 138.5, 137.9, $137.0,135.2,135.1,132.8,129.7,129.3,128.6,128.5,128.4,128.3,128.2$, 128.1, 127.4, 127.1, 126.5, 123.8, 123.1, 109.3, 72.6, 62.0, 54.8, 52.9, 43.5, 21.1; HRMS (ESI) for $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 549.2537, found 549.2518. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n -hexane:i-propanol $=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}($ major $)=$ $10.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=20.6 \mathrm{~min}$.

5cia
(2S,3R,4S,5R)-4-Benzoyl-1'-benzyl-3-phenyl-5-(m-tolyl)spiro[pyrrolidin-2 ,3'-oxindole]
Yield: 99% (109 mg); 9:1 rr; White solid, mp: $88-90^{\circ} \mathrm{C}$, $94 \% \mathrm{ee} .[\alpha]_{\mathrm{D}}^{13}=98.6$ (c $0.93, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{dd}, J=7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.77-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-$ $6.95(\mathrm{~m}, 13 \mathrm{H}), 6.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~s}$, 1 H), 2.11 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.1, 179.4, 143.2, 141.3, 138.1, 137.2, 135.2, 135.1, 132.7, 129.7, 129.3, 128.7, 128.3, 128.2, 127.8, 127.4, 127.1, 126.5, 125.3, $123.8,123.1,109.3,72.6,62.1,54.7,53.0,43.5,21.3$; HRMS (ESI) for $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 549.2537, found 549.2520. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n -hexane:i-propanol $=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}($ major $)=12.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=9.6$ min.

5cja
(2S,3R,4S,5R)-4-Benzoyl-1'-benzyl-5-(4-methoxyphenyl)-3-phenylspiro[p yrrolidin-2,3'-oxindole]
Yield: 50% (56 mg); 11:1 rr; White solid, mp: $95-97{ }^{\circ} \mathrm{C}, 90 \% e e .[\alpha]_{\mathrm{D}}^{13}=83.4$ (c $0.41, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{dd}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.77-7.72$ (m, 2H), $7.44(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-$ $7.04(\mathrm{~m}, 12 \mathrm{H}), 6.62(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}$, 3H), 2.66 (br, 1H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.1,179.4,158.8,143.1$, $137.9,135.2,135.1,133.5,132.8,129.6,129.4,129.3,128.6,128.4,128.3$, 128.1, 127.4, 127.1, 126.5, 123.7, 123.1, 113.2, 109.3, 72.5, 61.6, 55.2, 54.7, 52.8, 43.4; HRMS (ESI) for $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calcd 565.2486, found 565.2469. Enantiomeric excess was determined by

HPLC with a Chiralpak OD-H column. (n-hexane:i-propanol $=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}$ $($ major $)=9.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=11.4 \mathrm{~min}$.

(2S,3R,4S,5R)-4-Benzoyl-1'-benzyl-5-(naphthalen-2-yl)-3-phenylspiro[py rrolidin-2,3'-oxindole]
Yield: $99 \%(116 \mathrm{mg})$; $16: 1 \mathrm{rr}$; White solid, $\mathrm{mp}: 83-85{ }^{\circ} \mathrm{C}, 98 \% e e .[\alpha]_{\mathrm{D}}^{13}=$ $69.9\left(c 0.91, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.67(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-$ $7.31(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.04(\mathrm{~m}, 9 \mathrm{H}), 6.46(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.79-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 198.1,179.4,143.2,138.9,137.9,135.1,132.9,132.8$, $129.6,129.4,128.7,128.5,128.3,128.2,127.9,127.6,127.5,127.2,126.5$, 126.2, 125.8, 125.7, 123.9, 123.2, 109.4, 72.7, 62.2, 54.8, 52.9, 43.5; HRMS (ESI) for $\mathrm{C}_{41} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$calcd 585.2537, found 585.2518. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane:i-propanol $=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}($ major $)=11.3 \mathrm{~min}$, $\mathrm{t}_{\mathrm{R}}($ minor $)=18.8 \mathrm{~min}$.

Bn
5cla
(2S,3R,4S,5R)-4-Benzoyl-1'-benzyl-3-phenyl-5-(thiophen-2-yl)spiro[pyrro lidin-2,3'-oxindole]
Yield: $87 \%(94 \mathrm{mg})$; $>20: 1 \mathrm{rr}$; White solid, mp : $95-97^{\circ} \mathrm{C}$, 94% ee. $[\alpha]_{\mathrm{D}}^{13}=$ 89.4 (c $0.99, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95-7.93(\mathrm{~m}, 2 \mathrm{H})$, $7.89(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-$ 7.11 (m, 5H), $7.10-6.99(\mathrm{~m}, 6 \mathrm{H}), 6.66(\mathrm{dd}, J=5.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.37-6.34(\mathrm{~m}, 2 \mathrm{H}), 5.97(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{t}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.01(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.99(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 196.5,179.3,147.8,143.0,137.7,135.0,134.6$, $133.2,129.8,129.4,128.7,128.5,128.4,128.0,127.5,127.2,126.5,124.9,124.4,124.2,123.3,109.3$, 72.1, 57.6, 53.8, 52.2, 43.6; HRMS (ESI) for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$calcd 541.1944, found 541.1928. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane:i-propanol $=$ $70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}($ major $)=13.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=16.6 \mathrm{~min}$.

5cma
(2S,3R,4S,5S)-4-Benzoyl-1'-benzyl-5-cyclohexyl-3-phenylspiro[pyrrolidin-2,3'-oxindole]
Yield: $99 \%(107 \mathrm{mg}) ; 3: 1 \mathrm{rr}$; Pale yellow solid, mp: 78-80 ${ }^{\circ} \mathrm{C}, 56 \% e e .[\alpha]_{\mathrm{D}}^{13}=$ 47.9 (c $0.66, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08-8.01(\mathrm{~m}, 2 \mathrm{H})$, 7.66 (dd, $J=7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.497 .45(\mathrm{~m}, 2 \mathrm{H}), 7.17-$ $7.02(\mathrm{~m}, 8 \mathrm{H}), 6.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.38 \quad 6.31$ (m, 1H), $5.51(\mathrm{t}, J=10.0,1 \mathrm{H}), 5.00(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dd}, J=9.5,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 1 \mathrm{H})$, $1.97(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 2 \mathrm{H}), 1.45-1.34(\mathrm{~m}, 3 \mathrm{H})$,
$1.18-1.00(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.1,179.1,143.0,138.1,135.5,135.2,133.2$, $130.5,129.1,128.9,128.6,128.3,128.2,127.9,127.3,127.1,126.5,123.5,123.0,109.1,72.6,64.4$, $57.4,51.4,43.5,40.7,32.1,27.8,26.3,26.0$; HRMS (ESI) for $\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 541.2850, found 541.2835. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. $(\mathrm{n}$-hexane: i -propanol $=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}($ major $)=11.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=7.7 \mathrm{~min}$.

(2S,3R,4S,5R)-4-Benzoyl-1'-benzyl-5'-methyl-3,5-diphenylspiro[pyrrol idin-2,3'-oxindole]
Yield: $99 \%(109 \mathrm{mg}) ; 4: 1 \mathrm{rr}$; White solid, mp: $88-90^{\circ} \mathrm{C}$, 92% ee. $[\alpha]_{\mathrm{D}}^{13}=$ $114.3\left(c 0.82, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76-7.69(\mathrm{~m}, 2 \mathrm{H})$, $7.63(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.01(\mathrm{~m}$, $11 \mathrm{H}), 6.91(\mathrm{dd}, J=7.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J$ $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.2,179.3,141.5,140.8,137.9,135.3,135.2,132.8,132.7,129.6,128.6$, $128.4,128.3,128.2,127.8,127.5,127.4,127.1,126.5,124.5,109.1,72.7,62.2,54.8,52.9,43.5,21.3$; HRMS (ESI) for $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 549.2537, found 549.2519. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane:i-propanol $=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}($ major $)=13.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=8.5 \mathrm{~min}$.

(2S,3R,4S,5R)-4-Benzoyl-1'-benzyl-5'-fluoro-3,5-diphenylspiro[pyrrol idin-2,3'-oxindole]
Yield: $97 \%(107 \mathrm{mg}) ; 16: 1 \mathrm{rr}$; White solid, mp: 104-106 ${ }^{\circ} \mathrm{C}$, $92 \% e e .[\alpha]_{\mathrm{D}}^{13}$ $=84.9\left(c 0.91, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78-7.66(\mathrm{~m}$, $2 \mathrm{H}), 7.56(\mathrm{dd}, J=7.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.24$ $(\mathrm{m}, 4 \mathrm{H}), 7.19-7.03(\mathrm{~m}, 11 \mathrm{H}), 6.80(\mathrm{td}, J=8.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{dd}, J=8.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.86-5.70(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{~d}, J$ $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 197.8,179.2,159.7(J=242.4 \mathrm{~Hz}), 158.5,141.2,139.0(J=2.0 \mathrm{~Hz}), 137.8,134.8,132.86(\mathrm{~s})$, $131.60(J=7.5 \mathrm{~Hz}), 128.7,128.5,128.4,128.3,128.2128 .2,127.8,127.6,127.3,126.5,115.61(J=$ $24.2 \mathrm{~Hz}), 111.86(J=24.2 \mathrm{~Hz}), 109.98(J=7.9 \mathrm{~Hz}), 72.8,62.0,54.9,52.7,43.6 ;{ }^{19}$ F NMR (470 MHz , CDCl_{3}) δ-119.43; HRMS (ESI) for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{FN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 553.2286, found 553.2270. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane:i-propanol $=$ $70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}($ major $)=12.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=8.1 \mathrm{~min}$.

(2S,3R,4S,5R)-4-benzoyl-1'-Benzyl-3-(4-fluorophenyl)-5-phenylspir o[pyrrolidin-2,3'-oxindole]
Yield: 99% (109 mg); 8:1 rr; White solid, mp: $103-105^{\circ} \mathrm{C}, 95 \% ~ e e .[\alpha]_{D}^{13}$ $=68.5\left(c 1.12, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{dd}, J=7.0$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.25$ $(\mathrm{m}, 4 \mathrm{H}), 7.20-6.99(\mathrm{~m}, 10 \mathrm{H}), 6.72(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=6.7$
$\mathrm{Hz}, 2 \mathrm{H}), 6.45-6.38(\mathrm{~m}, 1 \mathrm{H}), 5.82-5.67(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.23(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.9,179.2,162.3(J=247.5$ $\mathrm{Hz}), 161.1,143.2,141.3,137.7,135.0,132.9,130.9(J=3.0 \mathrm{~Hz}), 129.7(J=8.1 \mathrm{~Hz}), 129.5,129.4$, $128.6,128.4,128.3,127.8,127.5,126.5,123.8,123.2,115.4,115.3(J=22.2 \mathrm{~Hz}), 109.3,72.5,62.0$, 54.0, 53.0, 43.5; ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-115.03$; HRMS (ESI) for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{FN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 553.2286, found 553.2267. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column. (n-hexane:i-propanol $=70: 30,0.8 \mathrm{~mL} / \min , \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}($ major $)=8.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=9.7$ min.

5cac
(2S,3R,4S,5R)-4-Benzoyl-1'-benzyl-3-(3,4-dichlorophenyl)-5-phenyls piro[pyrrolidin-2,3'-oxindole]
Yield: $99 \%(119 \mathrm{mg}) ; 4: 1 \mathrm{rr}$; White solid, mp: $163-165^{\circ} \mathrm{C}$, 95% ee. $[\alpha]_{\mathrm{D}}^{13}$ $=130.6\left(c 0.80, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-7.75(\mathrm{~m}$, $1 \mathrm{H}), 7.74-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $2 H), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 6 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.87$ (dd, $J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.62(\mathrm{~m}, 2 \mathrm{H}), 6.52-6.44(\mathrm{~m}, 1 \mathrm{H}), 5.79$ $-5.60(\mathrm{~m}, 2 \mathrm{H}), 5.08(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 1 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.6,178.9,143.1,141.1,137.5,135.8,135.0,133.1,132.4,131.6$, $130.3,130.0,129.7,128.9,128.8,128.4,128.3,127.8,127.6,127.5,126.5,123.7,123.4,109.5,72.2$, 62.0, 53.7, 53.1, 43.7; HRMS (ESI) for $\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 603.1601, found 603.1581. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane:i-propanol $=$ $70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}($ major $)=8.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=10.2 \mathrm{~min}$.

5cad

(2S,3R,4S,5R)-4-Benzoyl-1'-benzyl-3-(4-bromophenyl)-5-phenylspi ro[pyrrolidin-2,3'-oxindole]

Yield: 96% (121 mg); 6:1 rr; White solid, mp: $179-181^{\circ} \mathrm{C}$, 96% ee. $[\alpha]_{\mathrm{D}}^{13}=115.5\left(c 0.96, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ $-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.06(\mathrm{~m}, 10 \mathrm{H}), 6.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.60$ $6.48(\mathrm{~m}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.66(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 197.8,179.1,143.1,141.3,137.6,135.0,134.3,133.0,131.5,129.9,129.5,129.2,128.8$, $128.4,128.3,128.3,127.8,127.6,127.4,126.5,123.8,123.3,121.6,109.4,72.3,62.0,54.1,52.9,43.6$; HRMS (ESI) for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{BrN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 613.1485, found 613.1475. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column. (n-hexane:i-propanol $=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}) \mathrm{t}_{\mathrm{R}}($ major $)=8.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=10.2 \mathrm{~min}$.

5cae
(2S,3R,4S,5R)-4-Benzoyl-1'-benzyl-3-(4-nitrophenyl)-5-phenylspi ro[pyrrolidin-2,3'-oxindole]
Yield: $99 \%(115 \mathrm{mg}) ; 4: 1 \mathrm{rr}$; White solid, mp: $179-181^{\circ} \mathrm{C}, 96 \%$ ee. $[\alpha]_{\mathrm{D}}^{13}=115.5\left(c 0.96, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.02(\mathrm{~m}, 12 \mathrm{H}), 6.64(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.58-6.49(\mathrm{~m}, 1 \mathrm{H}), 5.885 .66(\mathrm{~m}, 2 \mathrm{H}), 4.94(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.72(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $197.5,178.7,147.3,143.0,140.9,137.3,135.1,133.2,129.9,129.0,128.7,128.5,128.3,127.9,127.8$, $126.8,123.8,123.5,123.4,109.4,72.2,62.0,54.4,53.1,43.6$; HRMS (ESI) for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ calcd 580.2231, found 580.2215. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n -hexane:i-propanol $=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) t_{R} (major) $=51.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=16.1 \mathrm{~min}$.

5caf
(2S,3R,4S,5R)-4-Benzoyl-1'-benzyl-5-phenyl-3-(p-tolyl)

spiro[pyrrolidin-2,3'-oxindole]

Yield: $99 \%(108 \mathrm{mg}) ; 10: 1 \mathrm{rr}$; White solid, $\mathrm{mp}: 180-182^{\circ} \mathrm{C}, 96 \% e e .[\alpha]_{\mathrm{D}}^{13}$ $=120.6\left(c 0.96, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.28$ (m, 4H), 7.19-7.01 (m, 8H), 6.97 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 6.50(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{t}, J=10.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=$ $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $198.1,179.5,143.2,141.6,137.9,136.9,135.2,132.8,132.1,129.7,129.3,129.1,128.5,128.4,128.3$, $128.0,127.8,127.5,127.2,126.6,123.8,123.1,109.3,72.6,62.1,54.5,53.0,43.5,21.2$; HRMS (ESI) for $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 549.2537, found 549.2524. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane:i-propanol $=70: 30,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) t_{R} $($ major $)=16.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=15.7 \mathrm{~min}$.

5cag
(2S,3R,4S,5R)-4-benzoyl-1'-Benzyl-5-phenyl-3-(m-tolyl)spiro[pyrrolidin -2,3'-oxindole]
Yield: $99 \%(108 \mathrm{mg}) ; 10: 1 \mathrm{rr}$; White solid, mp: $93-95^{\circ} \mathrm{C}, 94 \% e e .[\alpha]_{\mathrm{D}}^{13}=$ 89.9 (c 1.03, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 4 \mathrm{H})$, $7.20-7.02(\mathrm{~m}, 8 \mathrm{H}), 6.99-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J$ $=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}$, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.1,179.5,143.2,141.5$, $137.8,135.2,135.0,132.8,129.7,129.3,128.7,128.6,128.4,128.3,127.8,127.5,127.2,126.4,125.2$, $123.8,123.1,109.3,72.6,62.1,54.7,52.8,43.5,21.4$; HRMS (ESI) for $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 549.2537, found 549.2525. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H
column. (n-hexane:i-propanol $=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ major $)=8.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=$ 14.8 min .

5cah
(2S,3R,4S,5R)-4-Benzoyl-1'-benzyl-3-(4-methoxyphenyl)-5-phen ylspiro[pyrrolidin-2,3'-oxindole]
Yield: $99 \%(112 \mathrm{mg}) ; 16: 1 \mathrm{rr}$; White solid, $\mathrm{mp}: 188-190^{\circ} \mathrm{C}, 95 \%$ ee. $[\alpha]_{\mathrm{D}}^{13}=126.3\left(c 0.83, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) δ $7.80(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.02(\mathrm{~m}, 8 \mathrm{H}), 6.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.58(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.36(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-5.70(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}$, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 198.0, 179.5, 159.0, 143.2, 141.6, 137.9, 135.1, 132.9, 129.8, 129.3, 129.1, 128.5, 128.4, 128.3, 127.8, $127.5,127.2,127.1,126.5,123.8,123.1,113.8,109.3,72.6,62.0,55.0,54.1,52.9,43.4$; HRMS (ESI) for $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calcd 565.2486, found 565.2473. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column. (n-hexane:i-propanol $=70: 30,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ major $)=14.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=16.7 \mathrm{~min}$

5cai
(2S,3R,4S,5R)-4-benzoyl-1'-Benzyl-3-(2-methoxyphenyl)-5-phenylspiro[pyrrolidin-2,3'-oxindole]
Yield: $98 \%(111 \mathrm{mg}) ; 8: 1 \mathrm{rr}$; White solid, mp: $94-96^{\circ} \mathrm{C}, 91 \% e e .[\alpha]_{\mathrm{D}}^{13}=$ 90.4 (c $0.73, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.18-6.99(\mathrm{~m}, 9 \mathrm{H}), 6.76(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.61$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.86-$ $5.66(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J$ $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 198.4,179.7,158.4,142.8$, $141.5,138.0,135.3,132.7,129.7,128.7,128.6,128.4,128.3,128.2,128.1,127.8,127.5,127.4,127.1$, $126.5,125.0,124.1,122.4,120.6,110.7,108.8,72.5,62.5,55.0,53.9,46.2,43.4$; HRMS (ESI) for $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calcd 565.2486, found 565.2674. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n -hexane:i-propanol $=90: 10,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} (major) $=$ $33.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=38.3 \mathrm{~min}$.

5caj
(2S,3S,4S,5R)-4-benzoyl-1'-Benzyl-5-phenyl-3-(thiophen-2-yl)spiro[pyrro

lidin-2,3'-oxindole]

Yield: $99 \%(107 \mathrm{mg}) ; 16: 1 \mathrm{rr}$; White solid, mp: 103-105 ${ }^{\circ} \mathrm{C}$, $94 \% e e .[\alpha]_{\mathrm{D}}^{13}=$ 70.9 (c 0.98, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-7.75(\mathrm{~m}, 1 \mathrm{H})$, $7.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.11(\mathrm{~m}, 5 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.96(\mathrm{~d}, J=$ $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.63(\mathrm{~m}, 3 \mathrm{H}), 6.49-6.46(\mathrm{~m}, 1 \mathrm{H})$, $5.78-5.64(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.93-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J$
$=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.7,179.0,143.6,141.1,138.5,137.7$, 135.2, 133.0, 129.6, 129.1, 128.7, 128.5, 128.4, 128.3, 127.8, 127.6, 127.3, 126.8, 126.7, 125.2, 124.1, 123.9, 123.2, 109.3, 72.1, 61.9, 54.7, 50.2, 43.5; HRMS (ESI) for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$calcd 541.1944, found 541.1934. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane:i-propanol $=90: 10,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ major $)=52.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}(\operatorname{minor})=$ 61.2 min.

(2S,3R,4S,5R)-4-benzoyl-1'-Benzyl-3-(naphthalen-1-yl)-5-phenylspiro[p yrrolidin-2,3'-oxindole]
Yield: $99 \%(116 \mathrm{mg}) ; 12: 1 \mathrm{rr}$; White solid, $\mathrm{mp}: 101-103^{\circ} \mathrm{C}$, 95% ee. $[\alpha]_{\mathrm{D}}^{13}=$ 21.9 (c 0.93, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.99(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.60(\mathrm{~m}, 4 \mathrm{H})$, $7.40-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.14-7.02(\mathrm{~m}, 5 \mathrm{H}), 6.98(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.10(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{t}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 1 \mathrm{H}){ }^{13}{ }^{13} \mathrm{C}$ NMR (101 MHz , $\operatorname{CDCl} 3) \delta 198.8,179.8,142.9,141.1,137.9,135.0,133.8,132.7,132.3,129.5,129.3,128.5,128.4$, $128.3,128.2,128.0,127.9,127.5,127.1,126.4,125.6,125.3,124.9,124.2,123.8,122.8,109.2,73.0$, 62.8, 56.1, 48.6, 43.4; HRMS (ESI) for $\mathrm{C}_{41} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 585.2537, found 585.2523. Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column. (n-hexane:i-propanol $=$ $70: 30,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ major $)=18.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=22.3 \mathrm{~min}$.

(2S,3R,4S,5R)-1'-Benzyl-4-(4-fluorobenzoyl)-3,5-diphenylspiro[p yrrolidin-2,3'-oxindole]
Yield: $99 \%(109 \mathrm{mg}) ; 7: 1 \mathrm{rr}$; White solid, mp: 107-109 ${ }^{\circ} \mathrm{C}, 96 \% e e$. $[\alpha]_{\mathrm{D}}^{13}=82.1\left(c 1.16, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=8.5,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.18-7.02(\mathrm{~m}, 13 \mathrm{H}), 6.97(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.35(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.66(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.71(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta 196.5,179.3,165.6(\mathrm{~J}=255.5 \mathrm{~Hz}), 143.2,141.3,135.1$, $134.32(\mathrm{~J}=2.9 \mathrm{~Hz}), 130.88(\mathrm{~J}=9.3 \mathrm{~Hz}), 129.5,129.4,128.7,128.5,128.4,128.1,127.9,127.6,127.6$ $(\mathrm{J}=10.1 \mathrm{~Hz}), 126.5,123.8,123.2,115.5(\mathrm{~J}=22.2 \mathrm{~Hz}), 115.3,109.4,72.6,62.1,54.7,52.9,43.5 ;{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-105.44$; HRMS (ESI) for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{FN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 553.2286, found 553.2273. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column. (n -hexane:i-propanol $=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $\mathrm{t}_{\mathrm{R}}($ major $)=8.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=11.4 \mathrm{~min}$.

(2S,3R,4S,5R)-1'-Benzyl-4-(4-chlorobenzoyl)-3,5-diphenylspiro[pyrrolidin-2,3'-oxindole]
Yield: 99% (113 mg); 6:1 rr; White solid, mp: $103-105^{\circ} \mathrm{C}, 95 \%$ ee. $[\alpha]_{\mathrm{D}}^{13}=79.2\left(c 0.90, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H})$, $7.20-7.02(\mathrm{~m}, 13 \mathrm{H}), 6.46(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.83-5.65(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=9.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.9,179.3,143.1,141.3,139.2,136.2,135.0,129.7,129.4,128.7,128.5,128.4$, 128.0, 127.7, 127.6, 127.2, 126.5, 123.8, 123.2, 109.4, 72.6, 62.0, 54.6, 52.9, 43.5; HRMS (ESI) for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{ClN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 569.1990, found 569.1978. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column. (n-hexane:i-propanol $=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), tR $($ major $)=8.4 \mathrm{~min}, \mathrm{tR}($ minor $)=13.7 \mathrm{~min}$.

5can
(2S,3R,4S,5R)-1'-Benzyl-4-(4-bromobenzoyl)-3,5-diphenylspiro[pyrrolidin-2,3'-oxindole]
Yield: 95% (116 mg); 6:1 rr; White solid, mp: $105-107^{\circ} \mathrm{C}, 96 \%$ ee. $[\alpha]_{\mathrm{D}}^{13}=78.2\left(c 0.39, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.03(\mathrm{~m}, 13 \mathrm{H}), 6.48(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, 6.37 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84-5.67(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.75-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 197.1,179.3,143.1,141.2,136.6,135.0,131.6,129.7,129.4,129.3$, 128.6, 128.4, 128.1, 128.0, 127.9, 127.7, 127.6, 127.2, 126.4, 123.8, 123.2, 109.4, 72.5, 62.0, 54.6, 52.9, 43.5; HRMS (ESI) for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{BrN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 613.1485, found 613.1472. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane:i-propanol $=70: 30,0.8 \mathrm{~mL} / \mathrm{min}$, $\lambda=254 \mathrm{~nm}), \mathrm{tR}($ major $)=17.9 \mathrm{~min}, \mathrm{tR}($ minor $)=24.0 \mathrm{~min}$.

5cao
(2S,3R,4S,5R)-1'-Benzyl-4-(4-methylbenzoyl)-3,5-diphenylspiro[p yrrolidin-2,3'-oxindole]
Yield: $99 \%(109 \mathrm{mg}) ; 10: 1 \mathrm{rr}$; White solid, $\mathrm{mp}: 99-101^{\circ} \mathrm{C}$, 96% ee. $[\alpha]_{\mathrm{D}}^{13}=93.6\left(c \quad 0.88, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.19-7.00(\mathrm{~m}, 15 \mathrm{H}), 6.45(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.82(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.70(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.4,179.4,143.7,143.2,141.6,135.4$, $135.2,135.1,129.7,129.3,129.1,128.7,128.5,128.4,128.1,127.8,127.5,127.4,127.2,126.5,123.8$, 123.1, 109.3, 72.6, 62.2, 54.8, 52.6, 43.5, 21.7; HRMS (ESI) for $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 549.2537,
found 549.2523. Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column. (n-hexane:i-propanol $=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{tR}($ major $)=9.6 \mathrm{~min}, \mathrm{tR}($ minor $)=19.3 \mathrm{~min}$.

5cap
(2S,3R,4S,5R)-1'-Benzyl-4-(3-methylbenzoyl)-3,5-diphenylspiro[pyr rolidin-2,3'-oxindole]
Yield: $99 \%(109 \mathrm{mg}) ; 8: 1 \mathrm{rr}$; White solid, $\mathrm{mp}: 99-101^{\circ} \mathrm{C}, 96 \% e e .[\alpha]_{\mathrm{D}}^{13}$ $=85.6\left(c 0.91, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.24-7.02(\mathrm{~m}, 15 \mathrm{H}), 6.47(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.82(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.68(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 1 \mathrm{H})$, 2.31 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.2,179.4,143.2,141.6,138.1,138.0,135.1,133.6$, 129.7, 129.3, 128.8, 128.7, 128.4, 128.2, 128.1, 127.9, 127.5, 127.2, 126.5, 125.6, 123.8, 123.1, 109.3, 72.6, 62.1, 54.7, 52.9, 43.5, 21.3; HRMS (ESI) for $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 549.2537, found 549.2525. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column. (n-hexane:i-propanol $=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), tR (major) $=7.7 \mathrm{~min}, \mathrm{tR}$ (minor) $=8.7 \mathrm{~min}$.

5caq
(2S,3R,4S,5R)-1'-Benzyl-3,5-diphenyl-4-(thiophene-2-carbonyl)spiro[p yrrolidin-2,3'-oxindole]
Yield: $62 \%(67 \mathrm{mg})$; $5: 1 \mathrm{rr}$; White solid, $\mathrm{mp}: 196-198^{\circ} \mathrm{C}, 91 \% e e .[\alpha]_{\mathrm{D}}^{13}=$ $99.6\left(c 0.51, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.77(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, 2 H), $7.20-7.03$ (m, 14H), 6.46 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.77(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 190.5,179.3,145.6,143.1,141.1,135.0,134.9,133.8,132.0,129.5$, $129.4,128.7,128.4,128.3,128.2,127.8$, $127.6,127.5,127.2,126.4,123.9,123.2,109.3,72.6,62.5$, 54.6, 54.3, 43.4; HRMS (ESI) for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$calcd 541.1944, found 541.1934. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column. (n-hexane:i-propanol $=$ $70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), tR (major) $=8.9 \mathrm{~min}, \mathrm{tR}($ minor $)=10.8 \mathrm{~min}$.

5car
(2S,3R,4S,5R)-4-(2-Naphthoyl)-1'-benzyl-3,5-diphenylspiro[pyr rolidin-2,3'-oxindole]
Yield: 88% (103 mg); 6:1 rr; White solid, $\mathrm{mp}: 113-115^{\circ} \mathrm{C}, 91 \%$ ee. $[\alpha]_{\mathrm{D}}^{13}=95.0\left(c 0.75, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44$ $(\mathrm{s}, 1 \mathrm{H}), 8.02-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.75$ $(\mathrm{m}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=22.6,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.33-$ $7.27(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.00(\mathrm{~m}, 13 \mathrm{H}), 6.49(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.38$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=10.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.07(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.8,179.5,143.2,141.5,135.5,135.4,135.1,132.5,130.0,129.7,129.4$, $128.7,128.5,128.4,128.3,128.2,128.1,127.9,127.8,127.5,127.2,126.7,126.5,124.1,123.9,123.2$, 109.4, 72.7, 62.2, 54.8, 52.8, 43.5; HRMS (ESI) for $\mathrm{C}_{41} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 585.2537, found 585.2519. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n -hexane:i-propanol $=70: 30,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $\mathrm{tR}($ major $)=38.7 \mathrm{~min}, \mathrm{tR}($ minor $)=45.2 \mathrm{~min}$.

5cas
(2S,3R,4S,5R)-4-Acetyl-1'-benzyl-3,5-diphenylspiro[pyrrolidin-2,3'-oxindol e]
Yield: $60 \%(57 \mathrm{mg}) ; 8: 1 \mathrm{rr}$; White solid, mp: $85-87^{\circ} \mathrm{C}, 96 \% e e .[\alpha]_{\mathrm{D}}^{13}=90.5(c$ $\left.0.39, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.02(\mathrm{~m}$, $10 \mathrm{H}), 6.44(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=10.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.04(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.20(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 206.6,179.0,143.0,141.6,135.1,135.0,129.4,129.3,128.6,128.4,128.2,128.1,127.5$, $127.1,126.4,123.7,123.1,109.3,72.5,61.2,58.7,54.8,43.4,31.5$; HRMS (ESI) for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$calcd 473.2224, found 473.2214. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column. (n -hexane:i-propanol $=90: 10,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), tR (major) $=17.9$ $\min , \operatorname{tR}($ minor $)=23.5 \mathrm{~min}$.

6caa
(2S,3S,4S)-4-Benzoyl-1'-benzyl-3,5-diphenyl-3,4-dihydrospiro[pyrrol-2,3'oxindole]
Yield: $95 \%(51 \mathrm{mg})$; White solid, $\mathrm{mp}: 83-85^{\circ} \mathrm{C}$, $96 \% e e .[\alpha]_{\mathrm{D}}^{22}=-107.0(c$ $0.62, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.10$ $(\mathrm{m}, 5 \mathrm{H}), 7.05(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.46-6.43(\mathrm{~m}, 3 \mathrm{H}), 6.37(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.09(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 200.0,177.1,174.1,143.3,136.7,134.9,133.9,133.6,133.2,131.2,129.7,129.0,128.8$, $128.7,128.6,128.5,128.3,127.9,127.1,126.5,124.4,123.4,109.4,85.5,62.2,59.5,43.8$; HRMS (ESI) for $\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 533.2224, found 533.2223. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane:i-propanol $=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) tR $($ major $)=35.2 \mathrm{~min}, \mathrm{tR}($ minor $)=17.8 \mathrm{~min}$.

(2S,3R,4S)-4-Benzoyl-1'-benzyl-5-(4-bromophenyl)-3-phenyl-3,4-dihydros piro[pyrrol-2,3'-oxindole]
Yield: $91 \%(56 \mathrm{mg})$; White solid, mp: 107-109 ${ }^{\circ} \mathrm{C}$, $97 \% e e .[\alpha]_{\mathrm{D}}^{22}=-111.3(c$ $0.40, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-$ 7.54 (m, 4H), $7.46-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.10(\mathrm{~m}, 8 \mathrm{H}), 7.06(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.45(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 6.34(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.41(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 199.8,176.2,173.8,143.2,136.5,134.8,134.1,133.3,132.1,131.8$, $129.8,129.4,129.1,128.7,128.8,128.7,128.6,127.2,126.4,125.9,124.4$, 123.4, 109.5, 85.5, 62.3, 59.3, 43.8; HRMS (ESI) for $\mathrm{C}_{37} \mathrm{H}_{28} \mathrm{BrN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ calcd 613.1314, found 613.1302. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n -hexane:i-propanol $=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) tR (major) $=31.0 \mathrm{~min}, \mathrm{tR}$ $($ minor $)=36.8 \mathrm{~min}$.

6cia
(2S,3R,4S)-4-Benzoyl-1'-benzyl-3-phenyl-5-(m-tolyl)-3,4-dihydrospiro[pyr rol-2,3'-oxindole]
Yield: $95 \%(52 \mathrm{mg})$; White solid, $\mathrm{mp}: 88-90^{\circ} \mathrm{C}, 94 \% e e .[\alpha]_{\mathrm{D}}^{22}=-102.8(c$ $0.51, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) ; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.67-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 7 \mathrm{H}), 7.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $3 \mathrm{H}), 6.36(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.24(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 200.1, 177.3, 174.0, 143.3, 138.3, 136.9, 134.9, 133.8, 133.6, 133.1, 132.0, 129.7, 129.0, 128.7, 128.6, 128.3, 127.9, 127.1, 126.4, $125.4124 .4,123.4,109.4,85.4,62.1,59.5,43.8$, 21.2; HRMS (ESI) for $\mathrm{C}_{38} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 547.2380, found 547.2365. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane:i-propanol $=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}) \mathrm{tR}($ major $)=24.9 \mathrm{~min}, \mathrm{tR}($ minor $)=10.5 \mathrm{~min}$.

6cka
(2S,3R,4S)-4-Benzoyl-1'-benzyl-5-(naphthalen-2-yl)-3-phenyl-3,4-dihydr ospiro[pyrrol-2,3'-oxindole]
Yield: $95 \%(56 \mathrm{mg})$; White solid, mp: 101-103 ${ }^{\circ} \mathrm{C}$, $96 \% e e .[\alpha]_{\mathrm{D}}^{22}=-66.9(c$ $0.45, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.97 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.71-7.69$ (m, $1 \mathrm{H}), 7.60(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.17(\mathrm{~m}$, $4 \mathrm{H}), 7.12(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 5.12(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.26(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.0,177.4$, $174.0,143.3,136.9,134.9,134.7,134.0,133.5,132.6,130.4,129.8,129.5,129.4,129.1,128.9,128.8$, $128.7,128.6,128.5,128.3,127.8,127.7,127.3,127.2,126.6,126.5,124.9,124.5,123.8,123.5,109.5$,
85.3, 62.1, 59.6, 43.9; HRMS (ESI) for $\mathrm{C}_{41} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 583.2380, found 583.2364. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane:i-propanol = $70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{tR}($ major $)=41.3 \mathrm{~min}, \mathrm{tR}($ minor $)=22.3 \mathrm{~min}$.

(2S,3R,4S)-4-Benzoyl-1'-benzyl-3-phenyl-5-(thiophen-2-yl)-3,4-dihydrospi ro[pyrrol-2,3'-oxindole]
Yield: $93 \%(50 \mathrm{mg})$; White solid, mp: 203-205 ${ }^{\circ} \mathrm{C}$, $97 \% e e .[\alpha]_{\mathrm{D}}^{22}=-61.7(c$ $0.36, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.66-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J$ $=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.09(\mathrm{~m}, 8 \mathrm{H}), 7.05(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 6.88(\mathrm{t}, J=4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.42(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.33(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 199.5,173.9,170.5,143.3,134.9,134.1,133.3,130.5,129.7,129.2,128.9,128.6,128.5$, 127.9, 127.6, 127.1, 126.4, 124.5, 123.4, 109.4, 85.1, 62.5, 59.2, 43.8; HRMS (ESI) for $\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}$calcd 539.1788, found 539.1770. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane:i-propanol $=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) tR (major) $=35.7$ $\min , \operatorname{tR}($ minor $)=24.6 \mathrm{~min}$.

(2S,3R,4S)-4-Benzoyl-1'-benzyl-3-(4-fluorophenyl)-5-phenyl-3,4-dih ydrospiro[pyrrol-2,3'-oxindole]
Yield: 87% (48 mg); White solid, mp: 91-93 ${ }^{\circ} \mathrm{C}$, $97 \% \mathrm{ee} .[\alpha]_{\mathrm{D}}^{22}=-154.7$ (c $0.27, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.7 \mathrm{~Hz}$, 2H), $7.23-7.14$ (m, 5H), $7.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{t}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.51(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.30(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.8$, $177.0,173.9,162.5(J=247.5 \mathrm{~Hz}), 143.3,136.6,134.9,134.0,133.1,131.2,130.3,129.8,129.5,129.4$ $(J=3.0 \mathrm{~Hz}), 129.1,128.7,128.5,128.3,127.4,126.5,124.4,123.5,115.5(J=22.2 \mathrm{~Hz}), 109.4,85.3$, $61.5,59.6,43.8 ;{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-114.03$; HRMS (ESI) for $\mathrm{C}_{37} \mathrm{H}_{28} \mathrm{FN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 551.2129, found 551.2155. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane:i-propanol $=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{tR}($ major $)=37.6 \mathrm{~min}, \mathrm{tR}($ minor $)=$ 11.5 min .

(2S,3R,4S)-4-Benzoyl-1'-benzyl-5-phenyl-3-(m-tolyl)-3,4-dihydrospiro[pyrrol-2,3'-oxindole]
Yield: $85 \%(47 \mathrm{mg})$; White solid, $\mathrm{mp}: 88-90^{\circ} \mathrm{C}, 96 \% e e .[\alpha]_{\mathrm{D}}^{22}=-133.8(c$ $0.45, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.73(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.19-$ $6.96(\mathrm{~m}, 9 \mathrm{H}), 6.46(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.36(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J$
$=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 200.1,177.1,174.1,143.3,138.1,136.8,135.1,133.9,133.5,133.3,131.1,129.9,129.6$, $129.3,129.0,128.8,128.7,128.5,128.3,127.1,126.4,125.7,124.4,123.3,109.3,85.4,62.2,59.4,43.8$, 21.3; HRMS (ESI) for $\mathrm{C}_{38} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 547.2380, found 547.2365. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column. (n-hexane:i-propanol $=70: 30,0.4 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}) \mathrm{tR}($ major $)=17.4 \mathrm{~min}, \mathrm{tR}($ minor $)=13.1 \mathrm{~min}$.

(2S,3S,4S)-4-Benzoyl-1'-benzyl-5-phenyl-3-(thiophen-2-yl)-3,4-dihydrosp iro[pyrrol-2,3'-oxindole]
Yield: $95 \%(51 \mathrm{mg})$; White solid, mp: $82-84{ }^{\circ} \mathrm{C}$, $94 \% e e .[\alpha]_{\mathrm{D}}^{22}=-128.4(c$ $0.45, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.70$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.11(\mathrm{~m}, 5 \mathrm{H}), 7.03(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.87-6.86(m, 1H), $6.80(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.5,176.9,173.8,143.7,136.7,136.2,135.1,134.1$, 133.1, 131.2, 129.9, 129.4, 129.1, 128.9, 128.7, 128.5, 128.2, 127.3, 127.0, 126.8, 126.5, 124.7, 124.4, 123.5, 109.5, 84.8, 60.8, 57.2, 43.9; HRMS (ESI) for $\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$calcd 539.1788, found 539.1770. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n -hexane:i-propanol $=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $\mathrm{tR}($ major $)=29.2 \mathrm{~min}, \mathrm{tR}($ minor $)=22.3 \mathrm{~min}$.

(2S,3R,4S)-1'-Benzyl-4-(4-chlorobenzoyl)-3,5-diphenyl-3,4-dihyd rospiro[pyrrol-2,3'-oxindole]
Yield: $85 \%(48 \mathrm{mg})$; White solid, mp: 113-115 ${ }^{\circ} \mathrm{C}$, $94 \% e e .[\alpha]_{\mathrm{D}}^{22}=$ -115.7 (c 0.21, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.43-$ $7.37(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.10(\mathrm{~m}, 8 \mathrm{H}), 7.06(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.47-6.44(\mathrm{~m}, 3 \mathrm{H}), 6.30(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.10$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 198.9,176.7,174.0,143.3,140.6,134.9,133.4,133.2,131.2,130.1,129.7,129.6,129.4,128.7,128.6$, 128.2, 128.1, 127.1, 126.4, 124.3, 123.4, 109.4, 85.6, 62.3, 59.5, 43.8; HRMS (ESI) for $\mathrm{C}_{37} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 589.1653, found 589.1643. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column. (n-hexane:i-propanol $=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) tR $($ major $)=11.4 \mathrm{~min}, \mathrm{tR}($ minor $)=7.0 \mathrm{~min}$.

(2S,3R,4S)-4-(2-Naphthoyl)-1'-benzyl-3,5-diphenyl-3,4-dihydro spiro[pyrrol-2,3'-oxindole]
Yield: $96 \%(56 \mathrm{mg})$; White solid, $\mathrm{mp}: 225-227^{\circ} \mathrm{C}$, $92 \% e e .[\alpha]_{\mathrm{D}}^{22}=$ -37.0 (c 0.31, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55(\mathrm{~s}, 1 \mathrm{H})$, $8.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.3 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.11(\mathrm{~m}, 6 \mathrm{H}), 7.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.49-6.44(\mathrm{~m}, 3 \mathrm{H}), 5.13(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.8,177.2,174.2,143.3,135.9,135.0,134.0,133.7,133.3,132.5$, $131.1,129.8,129.7,129.1,129.0,128.8,128.6,128.3,128.0,127.8,127.1,126.5,124.4,124.1,123.4$, 109.4, 85.6, 62.4, 59.6, 43.8; HRMS (ESI) for $\mathrm{C}_{41} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 583.2380, found 583.2366. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane:i-propanol $=$ $70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{tR}($ major $)=67.1 \mathrm{~min}, \mathrm{tR}($ minor $)=25.3 \mathrm{~min}$.

(2S,3R,4S,5S)-4-Benzoyl-1'-benzyl-3,5-diphenylspiro[pyrrolidin-2,3'-oxin dole]
Yield: $90 \%(48 \mathrm{mg})$; White solid, mp: 87-89 ${ }^{\circ} \mathrm{C}$, $96 \% e e .[\alpha]_{\mathrm{D}}^{22}=-200.0(c 0.37$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.57(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.03(\mathrm{~m}$, $9 \mathrm{H}), 6.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.91-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.43-6.38(\mathrm{~m}, 3 \mathrm{H}), 5.53(\mathrm{dd}$, $J=11.8,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~d}$, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $200.0,178.7,143.0,142.0,137.4,135.1,134.0,133.1,131.3,129.3,128.7,128.6,128.4,128.3,128.1$, $128.0,127.6,127.1,126.5,123.3,123.1,109.3,72.3,68.4,60.7,56.2,43.8$; HRMS (ESI) for $\mathrm{C}_{37} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd 535.2380, found 535.2368. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane:i-propanol $=70: 30,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}) \mathrm{tR}($ major $)=$ $46.1 \mathrm{~min}, \mathrm{tR}($ minor $)=12.1 \mathrm{~min}$.

(2S,3R,4S,5R)-4-Benzoyl-1'-benzyl-1-hydroxy-3,5-diphenylspiro[pyrrol-2, 3'-oxindole]
Yield: 92% (101 mg); White solid, $\mathrm{mp}: 116-118^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{13}=109.6$ (c 0.19 , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.04(\mathrm{~m}, 13 \mathrm{H})$, $6.63(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-5.71(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{~d}$, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=16.1 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 197.8,175.3,143.9,138.8,137.5,135.1,134.8,132.7,129.6$, 129.2, 128.6, 128.5, 128.4, 128.3, 128.1, 127.7, 127.6, 127.4, 127.1, 126.5, 123.8, 122.9, 109.3, 78.2, 69.3, 49.8, 49.5, 43.3; HRMS (ESI) for $\mathrm{C}_{37} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calcd 551.2329, found 551.2328.

9
(2S,3R,4S)-4-Benzoyl-1'-benzyl-2-oxo-3,5-diphenyl-3,4-dihydrospiro[pyrr ol-2,3'-oxindole]- 1-oxide
Yield: $90 \%(99 \mathrm{mg})$; White solid, $\mathrm{mp}: 124-126^{\circ} \mathrm{C}, 96 \% e e .[\alpha]_{\mathrm{D}}^{13}=-129.6(c$ $0.85, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.95(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.75-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.50-6.45(\mathrm{~m}, 3 \mathrm{H}), 6.37(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.08(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=12.8,6.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.5,171.3$, $144.4,144.1,136.0,134.4,134.3,131.9,131.2,130.8,129.3,129.0,128.9,128.8,128.7,128.5,128.4$, $127.9,127.3,126.4,124.8,124.7,123.9,110.0,87.0,54.4,52.7,43.9$; HRMS (ESI) for $\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$calcd 549.2173, found 549.2168.

(3S,4S,5R)-Dimethyl-4-benzoyl-1'-benzyl-2-oxo-3a,5-diphenyl-4,5-di hydro-3aH-spiro[indoline-3',6-pyrrolo[1,2-b]isoxazole]-2,3-dicarbox ylate
Yield: $86 \%(119 \mathrm{mg}) ; 3: 1 \mathrm{dr}$; White solid, mp: $125-127^{\circ} \mathrm{C}$, $96 \% e e .[\alpha]_{\mathrm{D}}^{13}$ $=194.0\left(c 0.71, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{dd}, J=$ $14.8,7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.25(\mathrm{~m}$, $5 \mathrm{H}), 7.19-6.97(\mathrm{~m}, 10 \mathrm{H}), 6.50(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.42-6.28(\mathrm{~m}, 2 \mathrm{H})$, $5.01(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=16.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.7,173.5,162.1,159.2,154.3,143.6$, $142.1,137.8,134.7,133.3,132.6,130.2,128.9,128.7,128.6,128.5,128.4,128.3,128.1,128.0,127.8$, 127.2, 126.4, 123.3, 122.8, 109.7, 109.5, 85.6, 79.9, 58.1, 55.0, 53.5, 51.5, 43.6; HRMS (ESI) for $\mathrm{C}_{43} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 713.2258, found 713.2260. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane:i-propanol $=80: 20,0.7 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), tR $($ major $)=38.6 \mathrm{~min}, \mathrm{tR}($ minor $)=22.0 \mathrm{~min}$.

5. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

5caa

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}$

[^0]

[^1]

5cga

[^2]
5 cia

[^3]

5cja

$\left.\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

[^4]| ¢ | | \%
 - intoninis | | $\underset{\substack{\text { ¢ }}}{\text { ¢ }}$ |
| :---: | :---: | :---: | :---: | :---: |
| | is | - | | ¢ |

$\stackrel{\square}{\square}$	\%os
N	¢i¢
I	$11 /$

[^5]

5daa

5daa


```
N\mp@code{NNNNNNN人N}
```


[^6]

5 cac

$\stackrel{\text { ® }}{\stackrel{\circ}{\text { i }}}$

[^7]

$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{N}{\text { N }}} \stackrel{\text { N }}{1}$

\circ
0
0
1

5caf

$\stackrel{\circ}{\stackrel{\circ}{\circ}} \stackrel{\text { ® }}{\stackrel{\circ}{i}}$

5cah

5cah

[^8]

5 cak

5cak

[^9]

5cal

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}$

ભ \quad লু

$\stackrel{\text { L }}{\stackrel{\text { N }}{\text { N }}} \stackrel{\text { N }}{\text { i }}$

5caq

5caq

$\stackrel{\text { N }}{\stackrel{N}{\text { N }}}$

5car

[^10]

¢ুが尔		$\stackrel{\sim}{\sim} \stackrel{n}{5}$
へべ		is
－	人1优	\％

[^11]$\underbrace{\text { ate }}_{i=1}$

6 cea

$\begin{array}{lllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & (\mathrm{ppm})\end{array}$

[^12]

			b																
9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0

$\stackrel{\infty}{\infty}$		F	¢융
$\stackrel{\infty}{\square}$	¢둗	$\stackrel{\downarrow}{\infty}$	Noio
\|	11 lommen	\|	11

| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |
| :--- |

8
0
i

(


```
\i%%%
```


${ }_{9}$

[^13]

10

6. Copies of HPLC Chromatographs

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{\star} s\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	19.166	BB	0.8305	7627.00293	140.69041	50.1353
2	29.691	BB	1.1465	7585.84033	93.30399	49.8647

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} U^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	18.895	BB	0.8013	3.15767 e 4	600.71106	98.0143
2	29.966	BB	0.8265	639.71277	9.20799	1.9857

mAU皆						
	- 5	10	15	20	25	min
Peak \#	RetTime Type [min]	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area 응	
1	9.926 BB	0.3937	9680.09180	384.57996	50.1	
2	20.195 BB	0.8985	9616.86328	162.95447	49.83	

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[m A U^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	9.872	PB	0.3979	1.85618 e 4	722.14374	50.3451
2	20.904	BB	0.9777	1.83073 e 4	285.63751	49.6549

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	11.714	MM	0.6724	5936.89893	147.14738	49.6916
2	25.135	MM	1.4514	6010.59863	69.02276	50.3084

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} U^{\star} \mathrm{S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	11.842		0.4867	5207.52246	165.67145	49.6232
2	48.355	MM	2.5110	5286.60107	35.09027	50.3768

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{S}\right]} \end{gathered}$	Height [mAU]	Area $\%$
1	10.046	VV	0.3938	9196.17578	362.75006	50.0600
2	20.436	BB	0.9122	9174.14746	151.98752	49.9400

Peak \#	```RetTime [min]```	Type	Width [min]	Area		Height		Area
				mAU	* S	[mAU]	\%
1	10.014	VV	0.4653	6251	0156	190	5208	50.2001
2	11.706	VV	0.5495	6201	26660	165	5999	49.7999

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	7.695	BB	0.3466	3224.80981	143.29755	22.2375
2	11.029	BB	0.4760	1.12768 e 4	369.52127	77.7625

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\star} \mathrm{S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	8.118	BP	0.3389	9538.70313	433.20645	51.2419
2	12.038	BB	0.5087	9076.32617	273.83630	48.7581

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \text { s }]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	8.675	BB	0.3533	9836.23828	426.14743	97.5908
2	10.238	PB	0.4124	242.82851	8.95283	2.4092

Peak \#	```RetTime [min]```	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \text { s }]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	8.281		0.3679	4.71816 e 4	2039.22205	96.9712
2	14.762	MM	0.6557	1473.64954	37.45887	3.0288

Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	18.310	BV	1.7973	1.01300 e 4	66.64472	50.1513
2	24.275	MM	3.9249	1.00689 e 4	42.75621	49.8487

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \text { s }]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	7.997	BB	0.3578	3.31282 e 4	1443.37195	97.7878
2	11.448	MM	0.4850	749.45135	25.75536	2.2122

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{\star} \mathrm{S}\right]} \end{gathered}$	Height [mAU]	Area $\%$
1	8.370	BB	0.3708	2.53006 e 4	1066.22498	97.2855
2	13.731	PB	0.5875	705.94049	18.48687	2.7145

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[m A U^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	9.620	MM	1.4362	1.63977 e 4	190.29622	97.9380
2	19.297	MM	4.2820	345.24612	1.34379	2.0620

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	17.743		0.5625	4314.76318	127.84127	50.2338
2	35.259	BB	0.9906	4274.60352	63.08243	49.7662

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	17.787	BV	0.4545	336.15051	10.09586	2.2240
2	35.198	BB	0.9942	1.47787 e 4	223.28596	97.7760

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} U^{\star} \mathrm{S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	30.974	BP	0.7064	1477.86926	26.03006	49.8801
2	36.994	MM	1.1753	1484.97485	21.05734	50.1199

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	Area $\%$
1	22.234	BB	0.6420	5608.98584	131.93970	50.4039
2	41.032	BB	1.1221	5519.08643	70.44077	49.5961

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	22.312	BB	0.5221	456.43323	10.73461	2.1522
2	41.349	BB	1.2013	2.07516 e 4	259.41739	97.8478

Peak \#	```RetTime [min]```	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area $\%$
1	11.283	BB	0.3077	3565.22656	179.50783	50.3800
2	36.519	BB	0.9071	3511.44629	51.78307	49.6200

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\star} \mathrm{S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	11.544	MM	0.6614	340.11255	8.57086	1.4351
2	37.574	VB	1.0882	2.33596 e 4	327.49554	98.5649

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	13.129	MM	0.4489	2582.37158	95.87856	49.7084
2	17.494	VB	0.7554	2612.66479	51.71620	50.2916

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { *s }]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	21.839	BB	0.6051	5482.60303	138.12187	50.2307
2	28.632	BB	0.7810	5432.24316	105.45042	49.7693

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{\star} \mathrm{S}\right]} \end{gathered}$	Height [mAU]	Area $\%$
1	6.977	VB	0.2877	3242.33423	172.13969	50.4804
2	11.286	VB	0.5860	3180.62109	81.73486	49.5196

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	12.114	BB	0.3075	2619.51831	130.88480	50.2010
2	46.258	MM	1.4094	2598.54395	30.72837	49.7990

7. Data of 5cfa and 5can' and Proposed Stereocontrol Model

 For 5cfa:

Empirical formula C41 H39 Br N2 O3
Formula weight 687.65
Temperature (K) 173(2)
Crystal system Monoclinic
Space group P2(1)
a (A) 12.4503(7)
b (A$) \quad 9.3115(4)$
c (A$) \quad 15.1532(8)$
$\alpha\left({ }^{\circ}\right) \quad 90.00$
$\beta\left({ }^{\circ}\right) \quad 103.909(2)$
$\gamma\left({ }^{\circ}\right) \quad 90.00$
Volume (\AA^{3}) 1705.22(15)
Z 4
Dcalcd $\left(\mathrm{g} \mathrm{cm}^{3}\right)=1.339$
$\mu\left(\mathrm{mm}^{-1}\right)=1.247$
$\mathrm{F}(000)=716$
Theta range for data collection 1.38 to 24.28
Index ranges $-12<=\mathrm{h}<=14,-10<=\mathrm{k}<=10,-17<=1<=16$
Reflections collected 11241
Independent reflections $5308[R($ int $)=0.0455]$
Data/restraints/parameters 5308/1/424
GOF (on F^{2}) 1.002
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})] \quad \mathrm{R} 1=0.0455, \mathrm{wR} 2=0.0891$
Final R indexes [all data] R1 $=0.0653$, wR2 $=0.0956$
Largest diff. peak and hole (e \AA^{-3}) 0.501/-0.488
Flack parameter 0.036(9)

For 5can':

Empirical formula C 37 H 29 Br N 2 O 2
Formula weight 613.53
Temperature (K) 297(2)
Crystal system Monoclinic
Space group P2(1)
$\mathrm{a}(\AA) \quad 10.0039(12)$
b (A$) \quad 11.6625(13)$
c (\AA) 25.912(3)
$\alpha\left({ }^{\circ}\right) \quad 90.00$
$\beta\left({ }^{\circ}\right) \quad 94.479(3)$
$\gamma\left({ }^{\circ}\right) \quad 90.00$
Volume (\AA^{3}) 3013.9(6)
Z 4
Dcalcd $\left(\mathrm{g} \mathrm{cm}^{3}\right)=1.352$
$\mu\left(\mathrm{mm}^{-1}\right)=1.400$
$\mathrm{F}(000)=1264$
Theta range for data collection 2.04 to 25.00
Index ranges $-11<=h<=11,-13<=\mathrm{k}<=13,-30<=1<=30$
Reflections collected 49575
Independent reflections $9639[R($ int $)=0.0416]$
Data/restraints/parameters 9639/1/757
GOF (on F^{2}) 1.024
Final R indexes $[I>=2 \sigma(\mathrm{I})] \quad \mathrm{R} 1=0.0424, \mathrm{wR} 2=0.1041$
Final R indexes [all data] $\mathrm{R} 1=0.0591$, $\mathrm{wR} 2=0.1103$
Largest diff. peak and hole (e \AA^{-3}) $0.667 /-0.653$
Flack parameter 0.034(6)

Figure S1. Proposed stereocontrol model.

8. References

1. The synthesis of 3-amino oxindole hydrochloride, see: (a) Chen, W.-B.; Wu, Z.-J.; Hu, J.; Cun, L.-F.; Zhang, X.-M; Yuan, W.-C. Org. Lett. 2011, 13, 2472.
2. The synthesis of α, β-unsaturated enones, see: (a) El-Batta, A.; Jiang, C.; Zhao, W.; Anness, R.; Cooksy, A. L.; Bergdahl, M. J. Org. Chem. 2007, 72, 5244. (b) Zhang, X.; Kang, J.; Niu, P.; Wu, J.; Yu, W.; Chang, J. J. Org. Chem. 2014, 79, 10170.
3. CCDC 1463860 (5can').

[^0]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array} 9$

[^1]: $\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ \mathrm{flpm})\end{array}$

[^2]: $\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}$

[^3]: $\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}$

[^4]: $\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

[^5]: | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
 | :--- |
 | (ppm) | |

[^6]: $\left.\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

[^7]: $\left.\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

[^8]: $\left.\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

[^9]: $\begin{array}{lllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}$

[^10]: $\left.\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

[^11]:

[^12]: $\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \underset{f}{100}(\mathrm{ppm}) & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^13]: $\begin{array}{lllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \underset{f 1}{100}(\mathrm{ppm}) & 90 & 80 & 70 & 60 & 50 & 40 & 30\end{array}$ $\begin{array}{llll}10 & 0 & -10\end{array}$

