<Journal of Natural Products>

Supporting Information

Malonylginsenosides with Potential Antidiabetic Activities from the Flower Buds

of Panax ginseng

Shi Qiu,^{†, ‡} Wen-Zhi Yang,^{†, ‡} Chang-Liang Yao,[‡] Xiao-Jian Shi,[‡] Jing-Ya Li,[§] Yang

Lou,[§] Ya-Nan Duan,[§] Wan-Ying Wu,^{‡,*} and De-An Guo ^{‡,*}

[‡] Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, People's Republic of China

[§] National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zuchongzhi Road 555, Shanghai 201203, People's Republic of China

AUTHOR INFORMATION

[†] These two authors contributed equally to this work.

Corresponding Authors

*E-mail: wanyingwu@simm.ac.cn;

*E-mail: <u>daguo@simm.ac.cn</u>.

Tel.: +86-21-20231000x2221; Fax: +86-21-50272789.

Contents	Pages
Figure S1. Purity determination of 15 new malonyl-ginsenosides isolated in this study	7
by UHPLC/QTOF MS.	
Figure S2. HRESIMS spectrum of compound 1.	8
Figure S3. IR spectrum of compound 1.	8
Figure S4. ¹ H NMR spectrum of compound 1 .	9
Figure S5. ¹³ C NMR and DEPT-135 spectra of compound 1.	9
Figure S6. HSQC spectrum of compound 1.	10
Figure S7. HMBC spectrum of compound 1.	10
Figure S8. ¹ H- ¹ H COSY spectrum of compound 1.	11
Figure S9. ROESY spectrum of compound 1.	11
Figure S10. Key ROESY correlations of the sapogenin moiety of compound 1 .	12
Figure S11. The GC chromatograms of compound 1 after acidic hydrolysis.	12
Figure S12. HRESIMS spectrum of compound 2.	13
Figure S13. IR spectrum of compound 2 .	13
Figure S14. ¹ H NMR spectrum of compound 2.	14
Figure S15. ¹³ C NMR and DEPT-135 spectra of compound 2.	14
Figure S16. HSQC spectrum of compound 2.	15
Figure S17. HMBC spectrum of compound 2 .	15
Figure S18. ¹ H- ¹ H COSY spectrum of compound 2.	16
Figure S19. ROESY spectrum of compound 2.	16
Figure S20. HRESIMS spectrum of compound 3 .	17
Figure S21. IR spectrum of compound 3 .	17
Figure S22. ¹ H NMR spectrum of compound 3.	18
Figure S23. ¹³ C NMR and DEPT-135 spectra of compound 3 .	18
Figure S24. HSQC spectrum of compound 3.	19
Figure S25. HMBC spectrum of compound 3.	19
Figure S26. ¹ H- ¹ H COSY spectrum of compound 3 .	20
Figure S27. ROESY spectrum of compound 3.	20

Figure S28. HRESIMS spectrum of compound 4.	21
Figure S29. IR spectrum of compound 4.	21
Figure S30. ¹ H NMR spectrum of compound 4.	22
Figure S31. ¹³ C NMR and DEPT-135 spectrum of compound 4.	22
Figure S32. HSQC spectrum of compound 4.	23
Figure S33. HMBC spectrum of compound 4.	23
Figure S34. ¹ H- ¹ H COSY spectrum of compound 4 .	24
Figure S35. ROESY spectrum of compound 4.	24
Figure S36. The GC chromatograms of compound 4 after acidic hydrolysis.	25
Figure S37. HRESIMS spectrum of compound 5.	25
Figure S38. IR spectrum of compound 5.	26
Figure S39. ¹ H NMR spectrum of compound 5.	26
Figure S40. ¹³ C NMR and DEPT-135 spectra of compound 5 .	27
Figure S41. HSQC spectrum of compound 5.	27
Figure S42. HMBC spectrum of compound 5.	28
Figure S43. ¹ H- ¹ H COSY spectrum of compound 5 .	28
Figure S44. ROESY spectrum of compound 5.	29
Figure S45. HRESIMS spectrum of compound 6.	29
Figure S46. IR spectrum of compound 6.	30
Figure S47. ¹ H NMR spectrum of compound 6.	30
Figure S48. ¹³ C NMR spectrum of compound 6 .	31
Figure S49. HSQC spectrum of compound 6.	31
Figure S50. HMBC spectrum of compound 6.	32
Figure S51. ¹ H- ¹ H COSY spectrum of compound 6 .	32
Figure S52. ROESY spectrum of compound 6.	33
Figure S53. HRESIMS spectrum of compound 7.	33
Figure S54. IR spectrum of compound 7.	34
Figure S55. ¹ H NMR spectrum of compound 7.	34
Figure S56. ¹³ C NMR and DEPT-135 spectra of compound 7.	35

Figure S57. HSQC spectrum of compound 7.	35
Figure S58. HMBC spectrum of compound 7.	36
Figure S59. ¹ H- ¹ H COSY spectrum of compound 7.	36
Figure S60. ROESY spectrum of compound 7.	37
Figure S61. HRESIMS spectrum of compound 8.	37
Figure S62. IR spectrum of compound 8.	38
Figure S63. ¹ H NMR spectrum of compound 8.	38
Figure S64. ¹³ C NMR and DEPT-135 spectra of compound 8.	39
Figure S65. HSQC spectrum of compound 8.	39
Figure S66. HMBC spectrum of compound 8.	40
Figure S67. ¹ H- ¹ H COSY spectrum of compound 8.	40
Figure S68. ROESY spectrum of compound 8.	42
Figure S69. The GC chromatograms of compound 8 after acidic hydrolysis.	41
Figure S70. HRESIMS spectrum of compound 9.	42
Figure S71. IR spectrum of compound 9.	42
Figure S72. ¹ H NMR spectrum of compound 9.	43
Figure S73. ¹³ C NMR and DEPT-135 spectra of compound 9.	43
Figure S74. HSQC spectrum of compound 9.	44
Figure S75. HMBC spectrum of compound 9.	44
Figure S76. ¹ H- ¹ H COSY spectrum of compound 9.	45
Figure S77. ROESY spectrum of compound 9.	45
Figure S78. HRESIMS spectrum of compound 10.	46
Figure S79. IR spectrum of compound 10.	46
Figure S80. ¹ H NMR spectrum of compound 10.	47
Figure S81. ¹³ C NMR and DEPT-135 spectra of compound 10.	47
Figure S82. HSQC spectrum of compound 10.	48
Figure S83. HMBC spectrum of compound 10.	48
Figure S84. ¹ H- ¹ H COSY spectrum of compound 10.	49
Figure S85. ROESY spectrum of compound 10.	49

Figure S86. HRESIMS spectrum of compound 11.	50
Figure S87. IR spectrum of compound 11.	50
Figure S88. ¹ H NMR spectrum of compound 11 .	51
Figure S89. ¹³ C NMR spectrum of compound 11 .	51
Figure S90. HSQC spectrum of compound 11.	52
Figure S91. HMBC spectrum of compound 11.	52
Figure S92. ¹ H- ¹ H COSY spectrum of compound 11.	53
Figure S93. ROESY spectrum of compound 11.	53
Figure S94. HRESIMS spectrum of compound 12.	54
Figure S94. HRESIMS spectrum of compound 12.	54
Figure S96. ¹ H NMR spectrum of compound 12.	55
Figure S97. ¹³ C NMR and DEPT-135 spectrum of compound 12.	55
Figure S98. HSQC spectrum of compound 12.	56
Figure S99. HMBC spectrum of compound 12.	56
Figure S100. ¹ H- ¹ H COSY spectrum of compound 12.	57
Figure S101. ROESY spectrum of compound 12.	57
Figure S102. HRESIMS spectrum of compound 13.	58
Figure S103. IR spectrum of compound 13.	58
Figure S104. ¹ H NMR spectrum of compound 13.	59
Figure S105. ¹³ C NMR and DEPT-135 spectra of compound 13 .	59
Figure S106. HSQC spectrum of compound 13.	60
Figure S107. HMBC spectrum of compound 13.	60
Figure S108. ¹ H- ¹ H COSY spectrum of compound 13 .	61
Figure S109. ROESY spectrum of compound 13.	61
Figure S110. HRESIMS spectrum of compound 14.	62
Figure S111. IR spectrum of compound 14.	62
Figure S112. ¹ H NMR spectrum of compound 14.	63
Figure S113. ¹³ C NMR and DEPT-135 spectra of compound 14 .	63
Figure S114. HSQC spectrum of compound 14.	64

Figure S115. HMBC spectrum of compound 14.	64
Figure S116. ¹ H- ¹ H COSY spectrum of compound 14.	65
Figure S117. ROESY spectrum of compound 14.	65
Figure S118. The GC chromatograms of compound 14 after acidic hydrolysis.	66
Figure S119. HRESIMS spectrum of compound 15.	66
Figure S120. IR spectrum of compound 15.	67
Figure S121. ¹ H NMR spectrum of compound 15 .	67
Figure S122. ¹³ C NMR and DEPT-135 spectra of compound 15.	68
Figure S123. HSQC spectrum of compound 15.	68
Figure S124. HMBC spectrum of compound 15.	69
Figure S125. ¹ H- ¹ H COSY spectrum of compound 15.	69
Figure S126. ROESY spectrum of compound 15.	70
Table S1. NMR Spectroscopic Data (500 MHz, Pyridine- d_5) for	72
Malonylfloralginsenosides Rb_1 and Rb_2 (4 and 5).	
Table S2. NMR Spectroscopic Data (500 MHz, Pyridine- d_5) for	74
Malonylfloralginsenosides Rd_1 - Rd_3 (6-8).	
TableS3.NMRSpectroscopicData(500MHz,Pyridine- d_5)for	76
Malonylfloralginsenosides Rd_4 - Rd_6 (9-11).	
Table S4. NMR Spectroscopic Data (500 MHz, Pyridine- d_5) for	78
Malonylfloralginsenosides Rc ₁ -Rc ₄ (12–15).	

Figure S1. Purity determination of 15 new malonyl-ginsenosides isolated in this study by UHPLC/QTOF MS.

Figure S3. IR spectrum of compound 1.

Figure S6. HSQC spectrum of compound 1.

Figure S7. HMBC spectrum of compound 1.

Figure S8. ¹H-¹H COSY spectrum of compound **1**.

Figure S9. ROESY spectrum of compound 1.

Figure S10. Key ROESY correlations of the sapogenin moiety of compound 1.

Figure S11. The GC chromatograms of compound 1 after acidic hydrolysis.

Figure S12. HRESIMS spectrum of compound 2.

Figure S13. IR spectrum of compound 2.

Figure S15. ¹³C NMR and DEPT-135 spectra of compound **2**.

Figure S16. HSQC spectrum of compound 2.

Figure S17. HMBC spectrum of compound 2.

Figure S18. ¹H-¹H COSY spectrum of compound **2**.

Figure S19. ROESY spectrum of compound 2.

Figure S20. HRESIMS spectrum of compound 3.

Figure S21. IR spectrum of compound **3**.

Figure S23. ¹³C NMR and DEPT-135 spectra of compound **3.**

Figure S24. HSQC spectrum of compound 3.

Figure S25. HMBC spectrum of compound 3.

Figure S26. ¹H-¹H COSY spectrum of compound **3.**

Figure S27. ROESY spectrum of compound 3.

Figure S28. HRESIMS spectrum of compound 4.

Figure S29. IR spectrum of compound 4.

Figure S31. ¹³C NMR and DEPT-135 spectrum of compound **4**.

Figure S32. HSQC spectrum of compound 4.

Figure S33. HMBC spectrum of compound 4.

Figure S35. ROESY spectrum of compound 4.

Figure S36. The GC chromatograms of compound 4 after acidic hydrolysis.

Figure S37. HRESIMS spectrum of compound 5.

Figure S38. IR spectrum of compound 5.

Figure S39. ¹H NMR spectrum of compound **5.**

Figure S41. HSQC spectrum of compound 5.

Figure S43. ¹H-¹H COSY spectrum of compound **5**.

Figure S46. IR spectrum of compound 6.

Figure S47. ¹H NMR spectrum of compound **6**.

Figure S48. ¹³C NMR spectrum of compound **6**.

Figure S49. HSQC spectrum of compound 6.

Figure S50. HMBC spectrum of compound 6.

Figure S51. ¹H-¹H COSY spectrum of compound **6**.

Figure S52. ROESY spectrum of compound 6.

Figure 54. IR spectrum of compound 7.

Figure S55. ¹H NMR spectrum of compound 7.

Figure S57. HSQC spectrum of compound 7.

Figure S59. ¹H-¹H COSY spectrum of compound 7.

Figure S60. ROESY spectrum of compound 7.

Figure S62. IR spectrum of compound 8.

Figure S63. ¹H NMR spectrum of compound 8.

Figure S65. HSQC spectrum of compound 8.

Figure S66. HMBC spectrum of compound 8.

Figure S67. ¹H-¹H COSY spectrum of compound **8**.

Figure S68. ROESY spectrum of compound 8.

Figure S69. The GC chromatograms of compound 8 after acidic hydrolysis.

Figure S71. IR spectrum of compound 9.

Figure S72. ¹H NMR spectrum of compound **9**.

Figure S73. ¹³C NMR and DEPT-135 spectra of compound **9**.

Figure S74. HSQC spectrum of compound 9.

Figure S75. HMBC spectrum of compound 9.

Figure S76. ¹H-¹H COSY spectrum of compound **9**.

Figure S77. ROESY spectrum of compound 9.

Figure S78. HRESIMS spectrum of compound 10.

Figure S79. IR spectrum of compound 10.

Figure S80. ¹H NMR spectrum of compound **10**.

Figure S81. ¹³C NMR and DEPT-135 spectra of compound **10.**

Figure S83. HMBC spectrum of compound 10.

Figure S84. ¹H-¹H COSY spectrum of compound **10.**

Figure S85. ROESY spectrum of compound 10.

4000 3000 2000 1500 1000 500 Wavenumbers (cm-1)

Figure S87. IR spectrum of compound 11.

Figure S88. ¹H NMR spectrum of compound **11.**

Figure S89. ¹³C NMR spectrum of compound **11.**

Figure S90. HSQC spectrum of compound 11.

Figure S91. HMBC spectrum of compound 11.

Figure S93. ROESY spectrum of compound 11.

Figure S94. HRESIMS spectrum of compound 12.

Figure S95. IR spectrum of compound 12.

Figure S96. ¹H NMR spectrum of compound **12.**

Figure S97. ¹³C NMR and DEPT-135 spectrum of compound **12.**

Figure S98. HSQC spectrum of compound 12.

Figure S99. HMBC spectrum of compound 12.

Figure S101. ROESY spectrum of compound 12.

Figure S102. HRESIMS spectrum of compound 13.

Figure S103. IR spectrum of compound 13.

Figure S105. ¹³C NMR and DEPT-135 spectra of compound **13.**

Figure S107. HMBC spectrum of compound 13.

Figure S108. ¹H-¹H COSY spectrum of compound **13.**

Figure S109. ROESY spectrum of compound 13.

Figure S111. IR spectrum of compound 14.

Figure S113. ¹³C NMR and DEPT-135 spectra of compound 14.

Figure S114. HSQC spectrum of compound 14.

Figure S115. HMBC spectrum of compound 14.

Figure S117. ROESY spectrum of compound 14.

Figure S118. The GC chromatograms of compound 14 after acidic hydrolysis.

Figure S119. HRESIMS spectrum of compound 15.

Figure S120. IR spectrum of compound 15.

Figure S121. ¹H NMR spectrum of compound **15.**

Figure S123. HSQC spectrum of compound 15.

Figure S124. HMBC spectrum of compound 15.

Figure S125. ¹H-¹H COSY spectrum of compound **15**.

Figure S126. ROESY spectrum of compound 15.

	m -floral- $Rb_1(4)$		m -floral- $Rb_2(5)$	
position	δc, type	$\delta_{\rm H}$, mult (<i>J</i> in Hz)	δc, type	$\delta_{\rm H}$, mult (J in Hz)
1	39.5, CH ₂	1.57, m	39.5, CH ₂	1.55, m
		0.75, m		0.75, m
2	27.0, CH ₂	2.16, m	27.0, CH ₂	2.20, m
		1.83, m		1.85, m
3	89.4, CH	3.26, dd (11.5, 4.4)	89.2, CH	3.27, dd (11.7,
				4.5)
4	40.0, C		40.0, C	
5	56.7, CH	0.67, m	56.7, CH	0.68, m
6	18.8, CH ₂	1.48, m	18.8, CH ₂	1.49, m
		1.36, m		1.36, m
7	35.5, CH ₂	1.47, m	$35.5, CH_2$	1.48, m
		1.22, m		1.22, m
8	39.5, C		39.5, C	
9	50.3, CH	1.38, m	50.6, CH	1.37, m
10	37.2, C		37.3, C	
11	31.0, CH ₂	1.98, m	31.1, CH ₂	1.98, m
		1.57, m		1.57, m
12	70.6, CH	4.20, m	70.6, CH	4.21, m
13	49.8, CH	1.98, m	49.9, CH	2.02, m
14	52.0, C		52.0, C	
15	31.2, CH ₂	1.57, m	31.2, CH ₂	1.57, m
		1.01, m		1.00, m
16	27.1, CH ₂	1.83, m	$27.1, CH_2$	1.86, m
		1.34, m		1.37, m
17	51.7, CH	2.59, m	51.7, CH	2.60, m
18	16.4, CH ₃	0.97, s	16.4, CH ₃	0.98, s
19	16.6, CH ₃	0.81, s	16.6, CH ₃	0.83, s
20	83.8, C		83.8, C	
21	22.7, CH ₃	1.67, s	22.8, CH ₃	1.68, s
22	36.6, CH ₂	2.43, m	36.6, CH ₂	2.42, m
		1.85, m		1.85, m
23	23.6, CH ₂	2.62, m	23.6, CH ₂	2.62, m
		2.41, m		2.41, m
24	126.3, CH	5.33, m	126.3, CH	5.33, m
25	131.4, C		131.4, C	
26	26.1, CH ₃	1.62, s	26.2, CH ₃	1.62, s
27	18.3, CH ₃	1.67, s	18.3, CH ₃	1.67, s
28	28.4, CH ₃	1.25, s	28.4, CH ₃	1.23, s
29	16.9, CH ₃	1.08, s	16.9, CH ₃	1.08, s

Table S1. NMR Spectroscopic Data (500 MHz, Pyridine- d_5) forMalonylfloralginsenosides Rb1 and Rb2 (4 and 5).

30	17.7, CH ₃	0.97, s	17.8, CH ₃	0.98, s			
	3-Glc		3-Glc				
1'	105.3, CH	4.91, d (7.6)	105.4, CH	4.91, d (7.4)			
2'	83.5, CH	4.25, m	83.3, CH	4.25, m			
3'	78.5, CH	4.30, m	78.5, CH	4.31, m			
4'	71.9, CH	4.14, m	72.1, CH	4.12, m			
5'	78.7, CH	3.95, m	78.7, CH	3.94, m			
6'	63.2, CH ₂	4.56, dd (12.0, 1.9)	63.2, CH ₂	4.56, m			
		4.37, m		4.36, m			
	2'-Glc		2'-Glc				
1''	106.0, CH	5.41, d (7.6)	105.9, CH	5.46, d (7.6)			
2''	77.5, CH	4.17, m	75.2, CH	4.21, m			
3''	78.7, CH	4.23, m	80.2, CH	5.98, t (9.6)			
4''	72.0, CH	4.35, m	69.5, CH	4.49, m			
5''	78.7, CH	3.95, m	78.7, CH	3.95, m			
6''	63.3, CH ₂	4.53, dd (12.0, 2.6)	63.2, CH ₂	4.53, m			
		4.35, m		4.38, t (5.3)			
	20-Glc		20-Glc				
1'''	98.4, CH	5.15, d (7.7)	98.5, CH	5.15, d (7.6)			
2""	75.6, CH	3.94, m	75.2, CH	3.95, m			
3'''	79.6, CH	4.19, m	79.6, CH	4.19, m			
4'''	72.0, CH	4.08, m	72.0, CH	4.09, m			
5'''	77.3, CH	4.07, m	77.4, CH	4.10, m			
6'''	$70.5, CH_2$	4.75, d (10.9)	70.5, CH ₂	4.76, d (10.7)			
	4.35, m		4.34, m				
6"'-Glc		"'-Glc	6"'-Glc				
1''''	105.7, CH	5.12, d (7.7)	105.8, CH	5.12, d (7.7)			
2''''	75.6, CH	4.07, m	75.6, CH	4.08, m			
3''''	75.2, CH	4.37, m	78.5, CH	4.18, m			
4''''	73.8, CH	5.86, t (9.7)	72.0, CH	4.25, m			
5''''	76.4, CH	4.04,	78.7, CH	3.95, m			
6''''	62.3, CH ₂	4.43, dd (12.0, 2.7)	62.2, CH ₂	4.48, t (9.4)			
	4.34, m		4.45, m				
	4'''-Mal.		3''-Mal.				
-O-CO	168.0, C		168.6, C				
CH2	43.5, CH ₂	3.79, m (2H)	43.6, CH ₂	3.76, m (2H)			
СООН	170.5, C		170.7, C				
	m-flor	al-Rd ₁ (6)	m-flora	l-Rd ₂ (7)	m-floral-Rd ₃ (8)		
----------	-----------------------	-------------------------------	-----------------------	--------------------------	------------------------------	----------------------------	--
position	δc, type	$\delta_{\rm H}$, mult (J in	δc, type	δ _H , mult (J	δ _C , type	$\delta_{\rm H}$, mult (J	
		Hz)		in Hz)		in Hz)	
1	39.6, CH ₂	1.53, m	39.5, CH ₂	1.56, m	39.5, CH ₂	1.54, m	
		0.73, m		0.73, m		0.73, m	
2	$27.1, \mathrm{CH}_2$	2.15, m	$27.0,\mathrm{CH}_2$	2.20, m	27.0, CH ₂	2.18, m	
		1.85, m		1.85, m		1.85, m	
3	89.6, CH	3.24, dd (11.5,	89.2, CH	3.27, dd	89.3, CH	3.25, dd	
		4.4)		(11.7, 4.4)		(11.7, 4.5)	
4	40.5, C		40.4, C		40.3, C		
,5	56.8, CH	0.69, m	56.7, CH	0.67, m	56.7, CH	0.66, m	
6	18.9, CH ₂	1.52, m	18.8, CH ₂	1.48, m	18.7, CH ₂	1.46, m	
		1.36, m		1.36, m		1.34, m	
7	$35.6, \mathrm{CH}_2$	1.49, m	35.5, CH ₂	1.47, m	$35.4, \mathrm{CH}_2$	1.46, m	
		1.21, m		1.21, m		1.21, m	
8	40.1, C		40.0, C		40.0, C		
9	50.6, CH	1.38, m	50.5, CH	1.38, m	50.5, CH	1.37, m	
10	37.4, C		37.2, C		37.2, C		
11	31.4, CH ₂	1.97, m	$31.2, CH_2$	1.97, m	$31.2, CH_2$	1.96, m	
		1.55, m		1.55, m		1.55, m	
12	70.6, CH	4.18, m	70.5, CH	4.18, m	70.5, CH	4.17, m	
13	50.0, CH	1.99, m	49.8, CH	1.99, m	50.0, CH	1.98, m	
14	51.9, C		51.8, C		51.7, C		
15	31.2, CH ₂	1.55, m	31.1, CH ₂	1.55, m	31.1, CH ₂	1.55, m	
		1.00, m		1.00, m		0.99, m	
16	$27.1,\mathrm{CH}_2$	1.87, m	$27.1,\mathrm{CH}_2$	1.85, m	$27.1, CH_2$	1.85, m	
		1.37, m		1.37, m		1.36, m	
17	51.9, CH	2.59, m	51.9, CH	2.59, m	51.9, CH	2.58, dd	
						(16.5, 8.5)	
18	16.4, CH ₃	0.97, s	16.3, CH ₃	0.97, s	16.3, CH ₃	0.96, s	
19	16.7, CH ₃	0.79, s	16.6, CH ₃	0.83, s	16.6, CH ₃	0.80, s	
20	83.8, C		83.2, C		83.4, C		
21	22.8, CH ₃	1.64, s	22.7, CH ₃	1.65, s	22.7, CH ₃	1.63, s	
22	36.6, CH ₂	2.40, m	$36.5, \mathrm{CH}_2$	2.41, m	$36.4, \mathrm{CH}_2$	2.40, m	
		1.83, m		1.83, m		1.83, m	
23	$23.7,\mathrm{CH}_2$	2.50, m	$23.5,\mathrm{CH}_2$	2.51, m	$23.5,\mathrm{CH}_2$	2.50, m	
		2.25, m		2.25, m		2.24, m	
24	126.4, CH	5.25, t (7.0)	126.3, CH	5.25, t (7.2)	126.3, CH	5.25, t (7.0)	
25	131.3, C		131.2, C		131.2, C		
26	26.2, CH ₃	1.60, s	26.1, CH ₃	1.60, s	26.1, CH ₃	1.60, s	
27	18.2, CH ₃	1.60, s	18.1, CH ₃	1.60, s	18.1, CH ₃	1.60, s	

Table S2. NMR Spectroscopic Data (500 MHz, Pyridine- d_5) forMalonylfloralginsenosides Rd1-Rd3 (6-8)

28	28.6, CH ₃	1.33, s	28.4, CH ₃	1.27, s	28.4, CH ₃	1.24, s	
29	17.2, CH ₃	1.10, s	16.9, CH ₃	1.08, s	16.9, CH ₃	1.07, s	
30	17.8, CH ₃	0.94, s	17.7, CH ₃	0.96, s	17.7, CH ₃	0.95, s	
	3.	-Glc	3-	Gle	3- G	lc	
1'	105.4, CH	4.85, d (7.5)	105.4, CH	4.91, d (7.4)	105.4, CH	4.90, d	
						(7.6)	
2'	80.8, CH	4.26, m	83.6, CH	4.26, m	83.6, CH	4.25, m	
3'	78.5, CH	4.35, m	78.5, CH	4.29, m	78.3, CH	4.31, m	
4'	72.1, CH	4.10, t (9.4)	72.0, CH	4.12, t (9.3)	72.0, CH	4.12, m	
5'	78.5, CH	3.88, m	78.5, CH	3.93, m	78.6, CH	3.92, m	
6'	$63.5, \mathrm{CH}_2$	4.51, m	$63.2, \mathrm{CH}_2$	4.57, dd	63.1, CH ₂	4.57, dd	
				(11.7, 2.2)		(11.8, 2.2)	
		4.37, m		4.35, m		4.34, m	
	2'	-Glc	2'-	Glc	2'-G	lc	
1''	102.0, CH	5.83, d (7.9)	105.8, CH	5.46, d (7.6)	105.9, CH	5.42, d	
						(7.7)	
2''	77.5, CH	5.73, t (8.8)	75.2, CH	4.20, m	77.3, CH	4.17, m	
3''	76.9, CH	4.33, m	80.2, CH	5.98, t (9.5)	75.4, CH	4.37, m	
4''	72.6, CH	4.26, m	69.5, CH	4.48, m	73.7, CH	5.86, t (9.6)	
5''	78.7, CH	3.95, m	78.5, CH	3.94, m	76.4, CH	4.03, m	
6''	63.4, CH ₂	4.51, m	63.2, CH ₂	4.52, dd	63.1, CH ₂	4.50, dd	
				(11.7, 2.5)		(11.7, 2.5)	
		4.36, m		4.36, d (4.5)		4.36, m	
	20	-Glc	20-	-Glc	20- G	lle	
1'''	98.7, CH	5.21, d (7.7)	98.6, CH	5.22, d (7.7)	98.6, CH	5.21, d	
						(7.7)	
2'''	75.6, CH	4.03, t (8.2)	75.5, CH	4.03, t (8.3)	75.5, CH	4.02, m	
3'''	79.8, CH	4.27, m	79.7, CH	4.26, m	79.5, CH	4.25, m	
4'''	72.1, CH	4.09, m	72.0, CH	4.18, m	72.0, CH	4.18, m	
5'''	78.9, CH	3.95, m	78.7, CH	3.93, m	78.6, CH	4.03, m	
6'''	63.3, CH ₂	4.51, m	$62.2,\mathrm{CH}_2$	4.48, d	62.3, CH ₂	4.42, dd	
				(11.0)		(11.9, 2.8)	
		4.36, m		4.45, m		4.33, m	
	2''	-Mal.	3''-	Mal.	4''-Mal.		
-O-CO	168.5, C		168.6, C		167.9, C		
CH2	$44.7,\mathrm{CH}_2$	3.79, dd (2H,	43.4, CH ₂	3.77, d (2H,	43.4, CH ₂	3.79, dd	
		21.4, 15.2)		15.7)		(2H, 22.1,	
						15.4)	
COOH	171.8, C		170.7, C		170.4, C		

	m-flo	ral-Rd ₄ (9)	m-floral	I-Rd ₅ (10)	m-floral-Rd ₆ (11)		
position	δc, type	$\delta_{\rm H}$, mult (J in	δc, type	$\delta_{\rm H}$, mult (J in	δc, type	$\delta_{\rm H}$, mult (J in	
		Hz)		Hz)		Hz)	
1	39.6, CH ₂	1.51, m	39.5, CH ₂	1.56, m	39.7, CH ₂	1.55, m	
		0.76, m		0.73, m		0.73, m	
2	$27.0,\mathrm{CH}_2$	2.23, m	$27.0,\mathrm{CH}_2$	2.20, m	$27.2,\mathrm{CH}_2$	2.26, m	
		1.86, m		1.85, m		1.88, m	
3	89.4, CH	3.29, dd (11.7,	89.3, CH	3.27, dd	89.8, CH	3.29, dd	
		4.3)		(11.9, 4.4)		(11.6, 4.4)	
4	40.5, C		40.3, C		40.5, C		
5	56.8, CH	0.68, m	56.7, CH	0.67, m	57.0, CH	0.72, m	
6	18.9, CH ₂	1.50, m	18.7, CH ₂	1.48, m	18.9, CH ₂	1.46, m	
		1.36, m		1.36, m		1.42, m	
7	$35.5,\mathrm{CH}_2$	1.45, m	35.4, CH ₂	1.47, m	35.6, CH ₂	1.46, m	
		1.20, m		1.20, m		1.17, m	
8	40.1, C		40.0, C		40.2, C		
9	50.6, CH	1.34, m	50.5, CH	1.38, m	50.7, CH	1.39, m	
10	37.3, C		37.2, C		37.4, C		
11	$31.3, \mathrm{CH}_2$	1.94, m	31.2, CH ₂	1.95, m	31.4, CH ₂	1.98, m	
		1.55, m		1.55, m		1.55, m	
12	70.7, CH	4.05, m	70.5, CH	4.18, m	70.6, CH	4.19, m	
13	49.8, CH	1.95, m	50.0, CH	2.00, m	50.0, CH	2.01, m	
14	51.9, C		51.7, C		51.9, C		
15	31.2, CH ₂	1.55, m	31.1, CH ₂	1.56, m	31.2, CH ₂	1.56, m	
		1.00, m		0.99, m		1.00, m	
16	$27.1,\mathrm{CH}_2$	1.87, m	$27.1, \mathrm{CH}_2$	1.85, m	27.3, CH ₂	1.88, m	
		1.37, m		1.36, m		1.42, m	
17	51.9, CH	2.52, m	51.9, CH	2.58, m	51.9, CH	2.59, m	
18	16.4, CH ₃	0.95, s	16.3, CH ₃	0.98, s	16.5, CH ₃	0.98, s	
19	16.7, CH ₃	0.82, s	16.6, CH ₃	0.81, s	16.8, CH ₃	0.85, s	
20	84.0, C		83.8, C		84.0, C		
21	22.8, CH ₃	1.60, s	22.5, CH ₃	1.64, s	22.6, CH ₃	1.64, s	
22	36.6, CH ₂	2.36, m	$36.5, CH_2$	2.40, m	36.6, CH ₂	2.39, m	
		1.83, m		1.82, m		1.82, m	
23	23.7, CH ₂	2.46, m	23.3, CH ₂	2.59, m	$23.5, CH_2$	2.60, m	
		2.24, m		2.34, m		2.36, m	
24	126.3, CH	5.24, m	126.4, CH	5.32, t (7.1)	126.5, CH	5.32, m	
25	131.4, C		131.4, C		131.5, C		
26	26.2, CH ₃	1.61, s	26.1, CH ₃	1.64, s	26.3, CH ₃	1.64, s	
27	18.2, CH ₃	1.61, s	18.1, CH ₃	1.67, s	18.3, CH ₃	1.68, s	
28	28.6, CH ₃	1.30, s	28.4, CH ₃	1.29, s	28.5, CH ₃	1.39, s	

Table S3. NMR Spectroscopic Data (500 MHz, Pyridine- d_5) forMalonylfloralginsenosides Rd4-Rd6 (9-11)

29	17.1, CH ₃	1.12, s	16.9, CH ₃	1.12, s	17.0, CH ₃	1.21, s	
30	17.7, CH ₃	0.92, s	17.7, CH ₃	0.96, s	17.9, CH ₃	0.95, s	
	ŝ	3-Glc		Glc	3-Glc		
1'	105.6, CH	4.94, d (7.6)	105.5, CH	4.94, d (7.5)	105.4, CH	4.94, d (7.6)	
2'	84.2, CH	4.27, m	83.8, CH	4.26, m	84.9, CH	4.19, m	
3'	78.8, CH	4.30, m	78.3, CH	4.33, m	78.6, CH	4.32, m	
4'	72.1, CH	4.16, m	72.0, CH	4.16, m	71.9, CH	4.17, m	
5'	78.8, CH	3.94, m	78.6, CH	3.95, m	78.5, CH	3.95, m	
6'	63.4, CH ₂	4.59, dd (12.0,	$63.2, \mathrm{CH}_2$	4.58, dd	63.2, CH ₂	4.58, dd	
		1.9)		(11.8, 2.2)		(11.8, 2.0)	
		4.36, m		4.37, m		4.36, m	
	2	2'-Glc	2'-	-Glc	2'-	-Glc	
1''	106.6, CH	5.40, d (7.6)	106.4, CH	5.39, d (7.6)	106.7, CH	5.35, d (7.6)	
2''	77.7, CH	4.17, m	77.6, CH	4.15, m	77.2, CH	4.15, m	
3"	78.6, CH	4.27, m	78.5, CH	4.27, m	79.1, CH	4.22, m	
4''	72.1, CH	4.37, m	72.0, CH	4.37, m	71.5, CH	4.33, m	
5''	78.8, CH	3.95, m	78.7, CH	3.95, m	75.9, CH	4.09, m	
6''	63.2, CH ₂	4.51, m	63.0, CH ₂	4.52, m	65.9, CH ₂	5.10, dd	
						(11.8, 1.6)	
		4.36, m		4.36, m		4.99, dd	
						(11.8, 5.0)	
	2	0-Glc	20	-Glc	20-Glc		
1'''	98.5, CH	5.24, d (7.8)	98.3, CH	5.14, d (7.7)	98.5, CH	5.14, d (7.8)	
2'''	73.4, CH	4.07, m	75.3, CH	3.99, m	75.4, CH	4.01, m	
3'''	81.7, CH	5.95, t (9.2)	79.5, CH	4.20, m	79.7, CH	4.21, m	
4'''	69.7, CH	4.29, m	72.0, CH	4.18, m	72.1, CH	4.18, m	
5'''	78.4, CH	3.98, m	75.3, CH	4.06, m	75.9, CH	4.07, m	
6'''	62.7, CH ₂	4.46, m	65.9, CH ₂	5.16, dd	66.1, CH ₂	5.17, dd	
				(11.6, 1.8)		(11.8, 1.9)	
		4.33, m		4.71, dd		4.72, dd	
				(11.7, 7.6)		(11.6, 7.4)	
	3'''-Mal.			-Mal.	6''-	Mal.	
-O-CO	169.1, C		168.4, C		168.4, C		
CH2	44.1, CH ₂	3.72, t (2H,	43.4, CH ₂	3.84, dd (2H,	43.4, CH ₂	3.83, m (2H)	
		16.3)		22.3, 15.5)			
COOH	171.3, C		170.0, C		170.1, C		
					6'''-N	falonyl	
-O-CO					168.7, C		
CH2					43.2, CH ₂	3.83, m (2H)	
COOH					170.1, C		

Table S4. NMR Spectroscopic Data (500 MHz, Pyridine- d_5) forMalonylfloralginsenosides Rc1-Rc4 (12-15)

	m -floral- $Rc_1(12)$		m -floral- $Rc_2(13)$		m -floral- $Rc_3(14)$		m-floral-Rc ₄ (15)	
position	δc, type	$\delta_{\rm H}$, mult (J	δ_C , type	$\delta_{\rm H}$, mult	δc, type	$\delta_{\rm H}$, mult	δc, type	$\delta_{\rm H}$, mult (J in
		in Hz)		(J in Hz)		(J in Hz)		Hz)
1	39.7,	1.56, m	39.6,	1.54, m	39.6, CH ₂	1.56, m	39.6, CH ₂	1.56, m
	CH ₂		CH_2					
		0.75, m		0.73, m		0.73, m		0.73, m
2	27.3,	2.22, m	27.2,	2.21, m	$27.2,\mathrm{CH}_2$	2.20, m	$27.2,\mathrm{CH}_2$	2.19, m
	CH ₂		CH_2					
		1.84, m		1.81, m		1.81, m		1.82, m
3	89.8,	3.27, dd	89.5,	3.24, dd	89.4, CH	3.26, dd	89.4, CH	3.26, dd
	СН	(11.5, 4.2)	CH	(11.5,		(11.6,		(11.7, 4.3)
				4.2)		4.3)		
4	40.5, C		40.5, C		40.5, C		40.5, C	
5	56.9,	0.70, m	56.8,	0.65, m	56.8, CH	0.67, m	56.8, CH	0.66, m
	СН		СН					
6	18.9,	1.47, m	18.9,	1.47, m	18.9, CH ₂	1.47, m	18.9, CH ₂	1.48, m
	CH ₂		CH ₂					
_		1.41, m		1.35, m		1.36, m		1.36, m
7	35.6,	1.47, m	35.6,	1.46, m	35.6, CH ₂	1.47, m	35.6, CH ₂	1.46, m
	CH ₂		CH ₂			1.00		
0	40.0 0	1.16, m	40.1 C	1.21, m	40.1 G	1.22, m	40.1 0	1.21, m
8	40.2, C	1.20	40.1, C	1.05	40.1, C	1.05	40.1, C	1.05
9	50.7,	1.39, m	50.7,	1.35, m	50.7, CH	1.3/, m	50.6, CH	1.3/, m
10	CH 27.4.C		CH 27.4.C		27.4 C		27.2 C	
10	37.4, C	1.09	37.4, C	1.00 m	37.4, C	1.07 m	37.3, C	1.09
11	51.2, СНа	1.96, III	51.2, CHa	1.99, m	31.1, СП ₂	1.97, III	51.1, CП ₂	1.98, III
		1.54 m		1.58 m		1.58 m		1.55 m
12	70.6	4.21 m	70.6	4.17 m	70.6 CH	4 19 m	70.7 CH	4.17 m
12	, 0.0, CH	1.21, 11	, 0.0, CH	1.17, 111	70.0, 011	1.1 <i>)</i> , m	/0./, 011	1.17, m
13	50.0.	2.00. m	50.0.	1.97.m	50.0. CH	2.00. m	49.9. CH	2.00. m
	СН	,	СН			,	.,,,	,
14	51.8, C		51.9, C		51.9, C		51.9, C	
15	31.3,	1.54, m	31.3,	1.58, m	31.3, CH ₂	1.58, m	31.3, CH ₂	1.58, m
	CH ₂		CH ₂					
		0.99, m		1.03, m		1.00, m		0.99, m
16	27.1,	1.84, m	27.1,	1.86, m	27.1, CH ₂	1.85, m	27.1, CH ₂	1.87, m
	CH ₂		CH ₂					
		1.34, m		1.38, m		1.40, m		1.40, m
17	52.1,	2.60, m	52.1,	2.58, m	52.1, CH	2.59, m	52.1, CH	2.57, m
	СН		CH					

18	16.5,	0.94, s	16.5,	0.96, s	16.5, CH ₃	0.97, s	16.4, CH ₃	0.97, s
	CH ₃		CH ₃					
19	16.8,	0.85, s	16.7,	0.82, s	16.7, CH ₃	0.83, s	16.7, CH ₃	0.82, s
	CH ₃		CH ₃					
20	83.9, C		83.9, C		83.9, C		83.9, C	
21	22.7,	1.66, s	22.8,	1.66, s	22.8, CH ₃	1.64, s	22.8, CH ₃	1.63, s
	CH ₃		CH ₃					
22	36.6,	2.41, m	36.6,	2.38, m	36.6, CH ₂	2.42, m	36.6, CH ₂	2.41, m
	CH_2		CH_2					
		1.82, m		1.86, m		1.85, m		1.85, m
23	23.6,	2.64, m	23.7,	2.59, m	$23.7,\mathrm{CH}_2$	2.60, m	23.6, CH ₂	2.57, m
	CH_2		CH_2					
		2.37, m		2.39, m		2.40, m		2.39, m
24	126.5,	5.32, t	126.4,	5.34, m	126.4, CH	5.34, m	126.5, CH	5.32, m
	CH	(7.0)	СН					
25	131.4, C		131.6, C		131.6, C		131.5, C	
26	26.3,	1.61, s	26.3,	1.63, s	26.2, CH ₃	1.67, s	26.2, CH ₃	1.67, s
	CH ₃		CH ₃					
27	18.4,	1.66, s	18.3,	1.67, s	18.3, CH ₃	1.67, s	18.3, CH ₃	1.67, s
	CH ₃		CH ₃					
28	28.5,	1.38, s	28.5,	1.29, s	28.5, CH ₃	1.26, s	28.5, CH ₃	1.26, s
	CH ₃		CH ₃					
29	17.0,	1.20, s	17.1,	1.07, s	17.1, CH ₃	1.07, s	17.1, CH ₃	1.07, s
	CH ₃		CH ₃					
30	17.9,	0.97, s	17.8,	0.96, s	17.8, CH ₃	0.97, s	17.8, CH ₃	0.96, s
	CH ₃		CH ₃					
	3	-Glc	3-0	Gle	3-Glc		3-Glc	
1'	105.4,	4.93, d	105.4,	4.90, d	105.5, CH	4.91, d	105.5, CH	4.91, d (7.4)
	CH	(7.5)	CH	(7.5)		(7.4)		
2'	84.9,	4.19, m	83.7,	4.24, m	83.4, CH	4.26, m	83.4, CH	4.26, m
	CH		СН					
3'	78.6,	4.32, m	78.8,	4.31, m	78.8, CH	4.27, m	78.6, CH	4.27, m
	CH		СН					
4'	72.1,	4.17, m	72.3,	4.15, m	72.3, CH	4.12, t	72.2, CH	4.12, t (9.2)
	CH		СН			(9.2)		
5'	78.5,	3.94, m	78.6,	3.93, m	78.7, CH	3.94, m	78.6, CH	3.93, m
	CH		CH					
6'	63.2,	4.57, dd	63.3,	4.57, dd	$63.3, \mathrm{CH}_2$	4.57, dd	$63.3,\mathrm{CH}_2$	4.57, dd
	CH ₂	(12.1, 2.3)	CH_2	(11.9,		(12.1,		(11.8, 2.1)
				2.1)		2.1)		
		4.37, m		4.37, m		4.35, m		4.34, m
	21	-Glc	2'-	Glc	2'-G	lc	2'-	Glc
1"	106.7,	5.35, d	106.1,	5.41, d	106.0, CH	5.46, d	106.0, CH	5.46, d (7.6)
	СН	(7.7)	СН	(7.7)		(7.6)		

2"	77.4,	4.15, m	77.5,	4.17, m	75.4, CH	4.20, m	75.3, CH	4.20, m	
• •	СН		СН						
3"	78.5,	4.22, m	75.7,	4.37, m	80.4, CH	5.99, t	80.4, CH	5.99, t (9.5)	
	СН		СН			(9.6)			
4"	71.9,	4.27, m	73.9,	5.87, t	69.6, CH	4.49, m	69.6, CH	4.49, t (9.4)	
	СН		СН	(9.6)					
5"	75.9,	4.06, m	76.5,	4.03, m	78.6, CH	3.94, m	78.6, CH	3.94, m	
	СН		СН						
6"	65.8,	5.07, d	62.5,	4.42, m	$62.2, CH_2$	4.46, m	$62.3, CH_2$	4.45, m	
	CH ₂	(11.2)	CH ₂						
		4.99, m		4.33, m		4.33, m		4.33, m	
	20	-Glc	20-	Gle	20-G	lc	20	-Glc	
1'''	98.6,	5.15, d	98.6,	5.15, d	98.6, CH	5.15, d	98.6, CH	5.16, d (7.8)	
	СН	(7.6)	СН	(7.7)		(7.6)			
2'''	75.4,	3.95, m	75.4,	3.95, m	75.4, CH	3.96, m	75.5, CH	3.99, m	
	СН		CH						
3'''	79.8,	4.19, m	79.7,	4.19, m	79.7, CH	4.19, m	79.7, CH	4.20, m	
	СН		CH						
4'''	71.6,	4.08, m	72.1,	4.07, m	72.2, CH	4.07, m	72.6, CH	4.06, m	
	СН		CH						
5'''	77.2,	4.09, m	77.2,	4.04, m	77.2, CH	4.07, m	77.0, CH	4.06, m	
	СН		CH						
6'''	70.5,	4.76, d	69.7,	4.71, d	69.7, CH ₂	4.72, d	69.0, CH ₂	4.69, dd	
	CH ₂	(10.8)	CH_2	(10.8)		(11.0)		(10.7, 2.0)	
		4.33, m		4.27, m		4.28, m		4.13, m	
	6''	'-Xyl	6'''-A	ra (p)	6'''-Ara	a (p)	6'''-4	Ara (f)	
1""	106.4,	5.01, d	105.1,	5.02, d	105.1, CH	5.02, d	110.6, CH	5.68, d (1.2)	
	СН	(7.4)	СН	(6.0)		(6.1)			
2""	75.3,	4.05, m	72.6,	4.47, dd	72.6, CH	4.48, m	83.9, CH	4.90, m	
	СН		СН	(7.7,					
				6.2)					
3""	78.6,	4.20, m	74.6,	4.24, m	74.6, CH	4.25, m	79.3, CH	4.83, m	
	СН		СН						
4""	71.4,	4.23, m	69.0,	4.39, m	69.0, CH	4.38, m	86.5, CH	4.77, m	
	СН		СН						
5""	67.5,	4.35, dd	66.0,	4.33, m	66.0, CH ₂	4.33, m	63.1, CH ₂	4.35, m	
	CH ₂	(11.1,	CH ₂						
		10.1)							
		3.70, m		3.82, m		3.82, dd		4.24, m	
						(11.8,			
					2.0)				
0.55	6''-	-Mal.	4"-]	Mal.	3''-M	3''-Mal.		3''-Mal.	
-0-CO	169.4, C		168.2, C	0.50 11	168.5, C		168.6, C	2.54	
CH2	43.5,	3.82, dd	43.7,	3.79, dd	43.6, CH ₂	3.77, s	43.7, CH ₂	3.74, s (2H)	

	CH_2	(2H, 26.4,	CH ₂	(2H,		(2H)		
		15.7)		26.4,				
				15.7)				
СООН	174.2, C		170.6, C		170.6, C		170.7, C	