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S.1 Computation of coarse-grain approximations to the tangent
The unit tangents t[k]i (where for simplicity we only take k odd) to the straight lines that are the best least squares
linear approximation to a consecutive run of (k + 1) base-pair locations ri, . . . , ri+k can be computed for any
configuration, t[k]i as follows. First calculate the (geometrical) centre of mass cki = (

∑j=i+k
j=i rj)/(k + 1). Then t

[k]
i

is the unit eigenvector (with positive projection on the chord ri+k − ri) corresponding to the largest eigenvalue of
the (local gyration) matrix

∑j=i+k
j=i (rj − cki )⊗ (rj − cki ). The case k = 1 reduces analytically to the unit tangent to

the junction chord between two consecutive base pair origins t
[1]
i = (ri+1 − ri)/ ‖ri+1 − ri‖, while nonlocal coarse

grain choices k > 1 must be computed numerically.

S.2 Details regarding the cgDNAmc code

S.2.1 Downloading the software
The C++ code cgDNAmc, along with two libraries it depends upon, algebra3d and cgDNArecon, is freely available
with online instructions on how to download, compile, and run it.1 The user has to supply any desired problem-
specific, post-processing code fragments implementing specialised techniques such as the sliding-window average
used in modelling cryo-EM experimental data.

The remainder of this section describes our Monte Carlo implementation in further detail. The simulations
described here are not particularly intensive, nevertheless we have taken some efforts to make cgDNAmc code
efficient. Benchmark results presented below were obtained on a mid-range laptop computer.

S.2.2 Direct Monte Carlo sampling
As described in the main text, a key step in our direct Monte Carlo sampling is the Cholesky decomposition
K = LLT of the sparse stiffness matrix K. For efficient sampling, the key property of the Cholesky factorization is
that if K has bandwidth m (meaning that all nonzero entries are within m rows of the diagonal, so for us m = 17),
then L also has bandwidth m [1, p. 154]. After this step, a new energy E(y) = 1

2y
Ty with y = LT (w − ŵ) yields

a probability density function on y that is the product of uncoupled univariate normal distributions:

py(y) =

12n−6∏
i=1

(
β

2π

) 1
2

e−
β
2 y2
i . (S.1)

To make a single draw y from this distribution, each component yi is taken as a random number from the normal
distribution with mean 0 and standard deviation β− 1

2 . Note that units of the stiffness matrix K in the cgDNA
model are such that β = 1. For the sake of efficiency uniform deviates are generated using the xorshift1024*
implementation2 of the xorshift algorithm [2] and are subsequently converted to normal deviates using the ZIGNOR
implementation3 of the Ziggurat algorithm [3].

The draw of the internal coordinates w corresponding to y is obtained from the equation y = LT (w − ŵ) by
solving LT z = y for z (taking advantage of the upper triangular, banded structure of L using an appropriate solver
from LAPACK [4]) and then setting w = z + ŵ.

An alternative approach to obtain direct sampling would involve a spectral decomposition of K in place of the
Cholesky factorisation, i.e.

K = PDPT , (S.2)

with P orthogonal andD diagonal. Here a similar change of variable y = D
1
2PTw can be used so thatw = PD− 1

2y.
This has been successfully exploited by Czapla et al. [5] for the case where K is block diagonal. However in our

1see http://lcvmwww.epfl.ch/cgDNA
2http://arxiv.org/abs/1404.0390
3http://www.doornik.com/research/ziggurat.pdf
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setting with a (potentially large) banded K that approach is significantly less efficient, since the matrix PD
1
2 would

not be sparse, and a dense matrix-vector multiply must be carried out in the construction of each draw. To give
an example a simulation calculating 〈t[0]i · t

[0]
0 〉 for 1 million configurations of the λ3 sequence of length 300 bp using

Cholesky decomposition takes just above 3 minutes, while using spectral decomposition the running time is around
2 hours.

S.2.3 Metropolis Monte Carlo sampling
As described in the main text, to sample the non-Gaussian distribution (11)2 we use the Metropolis algorithm (see
[6] for a treatment similar to that we use here). Given a prior configuration with internal-variable vector w, we
follow the direct Monte Carlo procedure from the previous section to generate a new draw w∗ and accept or reject
it as follows: if J(w∗) ≥ J(w), we accept w∗, whereas if J(w∗) < J(w) we accept w∗ with probability J(w∗)/J(w)
and otherwise reject it (in which case we append a new copy of w to our ensemble). This acceptance criterion is
one way of ensuring the crucial property of detailed balance, which requires that

α(w→ w∗)P (w→ w∗)p̃w(w)

= α(w∗ → w)P (w∗ → w)p̃w(w∗), (S.3)

where p̃w is the probability density function (11)2, α(y→ z) is the conditional probability density in our Metropolis
algorithm for choosing state z given prior state y (which in our scheme is independent of y and equals pw(z) from
(11)1), and P (y→ z) is the probability in our Metropolis algorithm of accepting the new state z given a prior state
y (which in our scheme is 1 if J(z) ≥ J(y) and J(z)/J(y) otherwise).

The efficiency of any Metropolis method depends strongly on the acceptance rate for the given move set, which
can be punitively small. In the particular case of the pdf (11)2 with the explicit choice (12) for J , and the cgDNA
energy (10), the observed acceptance rates depend on the length of the simulated oligomers. For oligomers of 300 bp
the acceptance rate is approximately 37%, which is perfectly acceptable. For oligomers 5 times as long (1500 bp – as
used for computing the Flory persistence vectors) the acceptance rate drops to just under 5%, with a corresponding
increase in the number of draws required to obtain convergence.

S.2.4 Rigid base pair marginals
We remark that many expectations of interest involve only the inter part of the configuration variable w so that
the number of degrees of freedom can be reduced by one half by computing the marginal distribution for the inter
variables. As the original distribution is Gaussian its marginals are also Gaussian, but the resulting marginal
stiffness matrix is now dense, so that sparse computations can no longer be used. As a consequence a calculation of
〈t[0]0 · t

[0]
i 〉 for 1 million configurations of the λ3 fragment using the marginal distribution takes around 23 minutes,

nearly 7 times slower than generating ensembles in the full w space and discarding all the intra variables.

S.2.5 Reconstruction of 3D shapes
The first step in calculating our observables is reconstructing a 3D shape of a molecule from a given internal
coordinate vector w as detailed in [7]. As mentioned in the previous section, the calculation of tangent-tangent
correlations, arclengths and Flory vectors require only the inter part of w. As a result we only reconstruct base pair
positions ri and orientations Ri, which takes only half the time of reconstructing a full 3D configuration of rigid
bases. The reconstruction procedure, implemented by the cgDNArecon library, involves evaluating half rotations,
composing rotations, applying rotations to vectors and adding vectors.

A careful numerical study of efficiency of different parametrisations of rotations (namely Cayley vectors, unit
quaternions and rotation matrices) using the algebra3d library has been performed. An explicit half-rotation formula
for unit quaternions proved to be 60% faster than a similar formula for Cayley vectors. (For rotation matrices,
the analogous calculation would require, e.g., an iterative algorithm of computing the principal square root and so
was not considered). As expected, for composition of rotations, quaternion multiplication was faster than matrix
multiplication, with our observed difference being 20%. On the other hand, in the case of applying a rotation to
a vector, the matrix-vector product was 5 times faster than a specialised quaternion multiplication. In fact the
fastest way to apply a rotation given as unit quaternion to a vector was to convert the quaternion to a rotation
matrix first (this takes only twice the time of the matrix-vector product). Efficiency of converting between all three
parametrisations was also analysed. This suggested, for example, that the formula for computing a rotation matrix
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for a given Cayley vector of [7] is two times slower than conversion of a Cayley vector to quaternion and subsequent
conversion of the quaternion to a rotation matrix.

Considerations similar to the above suggested two approaches to the reconstruction procedure. The first one
uses directly the Cayley vectors of the configuration variable w to calculate half rotations and converts to rotation
matrices for all subsequent calculations. The other one, that finally proved to be 30% faster, begins with converting
the Cayley vectors to quaternions, then computes half rotations using quaternions, and finally converts quaternions
to matrices when rotations need to be applied to vectors.

S.2.6 Remarks on parallelisation
We first note that in cgDNAmc pseudo-random numbers are generated sequentially to ensure reproducibility of
results. Also the reconstruction procedure is inherently sequential. The conversion of the decoupled normal deviates
y to an internal coordinate vector w depends on the underlying LAPACK routine, that might already be optimized
to use available multiple cores, but the cgDNAmc code has no other explicit parallelisation. In part this is because
each configuration can be generated and analysed independently of all others, so that the suggested solution for
generating large ensembles is to run multiple independent simulations at the same time, with a different seed for the
pseudo-random number generator in each instance. By linearity, expectations from multiple runs can be aggregated
as a weighted average with weights proportional to the number of configurations generated in each independent
run. As an example we achieved a 2.4 speed up in this way by running four independent threads on a single laptop.

S.2.7 Run-times of key steps of algorithm
A simple profile of run times for the key steps of a simulation that calculates five expectations using 1 million
configurations of the 300 bp λ3 oligomer is:

Operation Run time [s] % of simulation
Generation of y 59.08 12.66%

Transformation to w 74.75 16.02%
Shape reconstruction 41.41 8.87%
Calculating 〈t[0]0 · t

[0]
i 〉 6.63 1.42%

Calculating 〈t[11]0 · t[11]i 〉 273.28 58.55%
Calculating 〈s[1]i 〉 3.72 0.80%
Calculating 〈s[11]i 〉 0.61 0.13%

Calculating Flory vecs 6.12 1.30%
Other 1.14 0.24%

Entire simulation 466.74 100.00%
The time necessary to evaluate most of the expectations is a negligible fraction of the total, except for the generalized-
chord expectation 〈t[11]0 · t[11]i 〉, where the computation of the principal eigenvector of the local gyration matrix is
quite costly.

S.3 DNA sequences

S.3.1 λ phage genome
Five fragments of length 300 bp drawn from the λ phage genome of Sanger et al. [8]. The full sequence is available
online4. A single repeat was used for `p computations, 5 repeats for `F .

λ1 (base pairs 25201 – 25500)

TTGTAGGCTC AAGAGGGTGT GTCCTGTCGT AGGTAAATAA CTGACCTGTC
GAGCTTAATA TTCTATATTG TTGTTCTTTC TGCAAAAAAG TGGGGAAGTG
AGTAATGAAA TTATTTCTAA CATTTATCTG CATCATACCT TCCGAGCATT
TATTAAGCAT TTCGCTATAA GTTCTCGCTG GAAGAGGTAG TTTTTTCATT

4http://www.ncbi.nlm.nih.gov/nuccore/215104
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GTACTTTACC TTCATCTCTG TTCATTATCA TCGCTTTTAA AACGGTTCGA
CCTTCTAATC CTATCTGACC ATTATAATTT TTTAGAATGG TTTCATAAGA

λ2 (base pairs 21901 – 22200)

CGTTAACGCT GCGGGTAACG CGGAAAACAC CGTCAAAAAC ATTGCATTTA
ACTATATTGT GAGGCTTGCA TAATGGCATT CAGAATGAGT GAACAACCAC
GGACCATAAA AATTTATAAT CTGCTGGCCG GAACTAATGA ATTTATTGGT
GAAGGTGACG CATATATTCC GCCTCATACC GGTCTGCCTG CAAACAGTAC
CGATATTGCA CCGCCAGATA TTCCGGCTGG CTTTGTGGCT GTTTTCAACA
GTGATGAGGC ATCGTGGCAT CTCGTTGAAG ACCATCGGGG TAAAACCGTC

λ3 (base pairs 36901 – 37200)

TAGAGCGATT TATCTTCTGA ACCAGACTCT TGTCATTTGT TTTGGTAAAG
AGAAAAGTTT TTCCATCGAT TTTATGAATA TACAAATAAT TGGAGCCAAC
CTGCAGGTGA TGATTATCAG CCAGCAGAGA ATTAAGGAAA ACAGACAGGT
TTATTGAGCG CTTATCTTTC CCTTTATTTT TGCTGCGGTA AGTCGCATAA
AAACCATTCT TCATAATTCA ATCCATTTAC TATGTTATGT TCTGAGGGGA
GTGAAAATTC CCCTAATTCG ATGAAGATTC TTGCTCAATT GTTATCAGCT

λ4 (base pairs 24301 – 24600)

CTATGACTGT ACGCCACTGT CCCTAGGACT GCTATGTGCC GGAGCGGACA
TTACAAACGT CCTTCTCGGT GCATGCCACT GTTGCCAATG ACCTGCCTAG
GAATTGGTTA GCAAGTTACT ACCGGATTTT GTAAAAACAG CCCTCCTCAT
ATAAAAAGTA TTCGTTCACT TCCGATAAGC GTCGTAATTT TCTATCTTTC
ATCATATTCT AGATCCCTCT GAAAAAATCT TCCGAGTTTG CTAGGCACTG
ATACATAACT CTTTTCCAAT AATTGGGGAA GTCATTCAAA TCTATAATAG

λ5 (base pairs 37801 – 38100)

CCTGACTGCC CCATCCCCAT CTTGTCTGCG ACAGATTCCT GGGATAAGCC
AAGTTCATTT TTCTTTTTTT CATAAATTGC TTTAAGGCGA CGTGCGTCCT
CAAGCTGCTC TTGTGTTAAT GGTTTCTTTT TTGTGCTCAT ACGTTAAATC
TATCACCGCA AGGGATAAAT ATCTAACACC GTGCGTGTTG ACTATTTTAC
CTCTGGCGGT GATAATGGTT GCATGTACTA AGGAGGTTGT ATGGAACAAC
GCATAACCCT GAAAGATTAT GCAATGCGCT TTGGGCAAAC CAAGACAGCT

S.3.2 Virstedt et al. sequences
Sequences used in the experimental study by Virstedt et al. [9]. A single repeat was used for `p computations, 8
for `F .

γ1 (CA) – 170 base pairs

GAGGATTCCT GGGAAAACCC TGGTACACAC ACACCACATC ATGCATACAC
ACACATCATG CATGCATACA CACATACATA CACATACTAA CACATACACT
CACACACACG CCACAAATTA TGCATGCATA CACACATGCA CGCACACACA
CAGGAAACAG CTCGGTCCTC

γ2 (CAG) – 181 base pairs

GAGGATTCCT GGGAAAACCC TGGCGAGCAG CAGCAGCAAC AGTAGTAGAA
GCAGCAGCAC TAACGACAGC AGCAGCAGTA GCAGTAATAG AAGCAGCAGC
AGCAGCAGTA GCAGTAGCAG CAGCAGCAGC AGCAATAACA ACAACAGCAG
CAGCAGTCAC ACAGGAAACA GCTCGGTCCT C
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γ3 (NoSeq) – 195 base pairs

GAGGATTCCT GGGAAAACCC TGGCGCAAGA CCGAGTTACT AAACAGGACT
ATTACTGCCA CGCCAATTGT AGCGCGCAGC CACGTCTCTG CTCACCACTA
TCCTCTTGTT GACGCTATTG CTACTATCGC ATCCCGCTTA GCTATACCTA
CTGATGCTCA ATTACCCGCC TCACACAGGA AACAGCTCGG TCCTC

γ4 (TATA) – 176 base pairs

GAGGATTCCT GGGAAAACCC TGGCGAGGTC TATAAGCGTC TATAAGCGTC
TATGAACGTC TATAAACGTC TATAAACGCC TATAAACGCC TATAAACGCC
TATACAAGCC TATAAACGCC TATACACGTC TATGCACGAC TATACACGTC
TTCACACAGG AAACAGCTCG GTCCTC

S.3.3 Bednar et al. [10] γ5
A sequence designed to be intrinsically straight. 9-15 repeats were used for `p and `w computations, 75 for `F .
ATCTAATCTA ACACAACACA

S.3.4 Kahn and Crothers [11] c11t15/γ6
An intrinsically bent sequence with phased A-tracts originally used for minicircle experiments. 2 repeats were used
for `p computations, 10 for `F .
GATGAATTCA CGGATCCGGT TTTTTGCCCG TTTTTTGCCG TTTTTTGCCC
GTTTTTTGCC GTTTTTTGCC CGTTTTTTCC GGATCCGTAC AGGAATTCTA
GACCTAGGGT GCCTAATGAG TGAGCTAACT CACATTAATT GCGTTGCGCC
ATGGAATC

S.3.5 Geggier and Vologodskii [12] sequences
Sequences used in the experimental study by Geggier and Vologodskii as provided in their Supplementary Informa-
tion. A single copy was used for `p computations.

ACAT – 201 base pairs

AGCTTACACA TATATACACA TACATATACA CACACATATA CTGCAGACAT
ACACATATAT ACACATACAT ACACACATAC ATATATATAC ACACACATAT
ACATACATAT ACATACATAC ATATATACAC ACATACATAC ACATATATAT
ACACATACAC ATACATACAC ACATATACAT ATACATACAC ATATACACAT
A

ACCAGG – 201 base pairs

AGCTTACCAG GAGGACCACC AGGACCACCA CCAGGAGGAG CTGCAGACCA
GGACCACCAG GAGGACCAGG AGGAGGACCA CCACCAGGAC CACCAGGACC
AGGAGGAGGA CCACCAGGAC CACCAGGAGG AGGACCACCA GGACCAGGAG
GACCACCACC AGGAGGAGGA CCACCAGGAC CAGGAGGACC AGGACCACCA
A

ACGAGC – 199 base pairs

AGCTTAGCAC GACGAGCAGC ACGAGCAGCA GCACGACGCT GCAGAGCAGC
ACGACGACGA GCACGAGCAG CACGACGAGC ACGAGCAGCA GCACGAGCAC
GACGAGCAGC ACGACGAGCA GCACGACGAG CACGACGACG AGCAGCAGCA
CGAGCAGCAC GAGCACGACG ACGAGCACGA GCAGCACGAG CAGCACGAA
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AGAT – 200 base pairs

AGCTTAGAGA TATATAGAGA TAGATATAGA GAGAGATATC TGCAGAGATA
GAGATATATA GAGATAGATA GAGAGATAGA TATATATAGA GAGAGATATA
GATAGATATA GATAGATAGA TATATAGAGA GATAGATAGA GATATATATA
GAGATAGAGA TAGATAGAGA GATATAGATA TAGATAGAGA TATAGAGATA

AGC – 199 base pairs

AGCTTAGCAG CAGCAGCAGC TAGCAGCAGC AGCCTGCAGA GCAGCAGCAG
CAGCTAGCAG CAGCAGCAGC AAGCAGCAGC AGCAGCGAGC AGCAGCAGCA
GCTAGCAGCA GCAGCAGCAA GCAGCAGCAG CAGCGAGCAG CAGCAGCAGC
TAGCAGCAGC AGCAGCAAGC AGCAGCAGCA GCGAGCAGCA GCAGCAGCA

CAA – 200 base pairs

AGCTTACAAC AACAACAACC TGCAGAACCA ACAACAAGCA CAACAACAAC
AACAACAAGA ACAACAACAA CAACAACCAA CAACAACAAC AACAACCAAC
AACAACAAGC AACAACAACA ACAACAACCA ACAACAACAA CCAACAACAA
CAACCAACAA CAACAACAGC AACAACAACA ACAACAAGAA CAACAAGAAA

CAACTT – 198 base pairs

AGCTTCAACT TCTTCAACAA CAACTTCTTC TTCAACTCTG CAGCAACTTC
TTCAACAACT TCAACTTCTT CAACAACAAC TTCTTCTTCA ACAACTTCAA
CAACTTCTTC AACTTCAACA ACTTCTTCAA CTTCAACTTC TTCAACAACA
ACTTCTTCAA CTTCTTCAAC AACTTCAACT TCAACAACTT CTTCAACA

CAGT – 200 base pairs

AGCTTCAGTC AGTCAGTCTG ACAGTCAGTC AGTCAGTCAG TCAGTCTGCA
GCAGTCAGTC AGTCAGTCAG TCAGTCAGTC TGACAGTCAG TCAGTCAGTC
AGTCAGTCAG TCAGTCTGAC AGTCAGTCAG TCAGTCAGTC AGTCAGTCAG
TCAGTCTGAC AGTCAGTCAG TCAGTCAGTC TGACAGTCAG TCAGTCAGTA

CATCTA – 200 base pairs

AGCTTCATCT ACTACATCAT CATCTACTAC ATCTACATCC TGCAGCATCA
TCTACTACAT CTACTACTAC ATCATCATCT ACATCTACTA CATCATCTAC
TACATCATCT ACTACATCAT CTACATCTAC ATCTACTACA TCATCTACTA
CATCATCATC TACTACATCT ACTACATCTA CATCATCTAC TACATCATCA

HPL1 – 198 base pairs

AGCTTCGATT GCGCATTCGA TTGGAGTCTC CGCTGCCATT GCATTCTGCA
GCGATTCGGC ATTCGATTCG CGCATTCGAT TCGCATTCGA TTCGGCATTC
GATTCGGCAT TCGATTCGCA TTCGATTCAT TCATTCGATT CGGCATTCGA
TTCGGCATTC GATTGCGATT GCATTCGGCA TTCGATTCGG CGATTCAA

LPL1 – 200 base pairs

AGCTTTAGTA GCCTAGTAGC CTAGAGTCTC CGCTGCCATT GCCCTACCTG
CAGTAGTAGC CTAGTAGCCT AGTAGCCTAG TAGCCTAGTA GCCTAGTAGC
CTAGTAGCCT AGTAGCCTAG TAGCCTAGTA GCCTAGTAGC CTAGTAGCCT
AGTAGCCTAG TAGCCTAGTA GCCTAGTAGC CTAGTAGCCT AGTAGACTAA
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HPL2 – 198 base pairs

AGCTTACGAC GAACGACGAC GAACGACGAA CGAACGACGA ACGCTGCAGA
CGACGAACGA CGAACGACGA CGAACGAACG ACGACGAACG ACGAACGACG
ACGAACGACG ACGAACGACG AGACGAACGA ACGACGACGA ACGACGAACG
ACGACGAACG ACGAACGACG AACGACGACG AACGAACGAC GAACGACA

LPL2 – 201 base pairs

AGCTTGCATA GGCATTAGCC ATGCATAGGC ATATGGCATT AGGCACTGCA
GGGCCATAGG CATGCATAGG CATAGGCCAT GGCATAGGCA TTAGGCATGC
ATAGGCATAG GCATGGCATA GGCATTAGGC ATGCATAGGC ATAGGCATGG
CATAGGCATT AGGCATGCAT AGGCATGGCA TAGGCCATGG CATAGGCATT
A

SG1 – 199 base pairs

AGCTTAGGAC TACGAACGCT AGCTTAGCTA CCAGCGAGTA CACTGCAGCA
GCAGCTAGCT AGCGCGATGC CCAGCTGAGA TCGACGATCG ATGGCGATTA
TCAGCTAGCA GCTAGCGATC GACGCGCGAT GCGCAGCTGA GCTAGCTGAT
CAGCTTCAGC TGACGTCAGC TGAGAGCTGA CCACCGTAGA GTCGATCGA

λ6 – 205 base pairs

AGCTTCTCCT TTGATGCGAA TGCCAGCGTC AGACATCATA TGCAGATACT
CACCTGCATC CTGAACCCAT TGACCTCCAA CCCCGTAATA GCGATGCGTA
ATGATGTCGA TAGTTACTAA CGGGTCTTGT TCGATTAACT GCCGCAGAAA
CTCTTCCAGG TCACCAGTGC AGTGCTTGAT AACAGGAGTC TTCCCAGGAT
GGCGA

γ7 (IS) – 211 base pairs

CTAGAAGCTT ACTCGACTCG AGCCTAGCCT ATGACATGAC ACGTTACGTT
AGTCGAGTCG ATCAGATCAG ACGCTACGCT AGCTGAGCTG ACTGTACTGT
ATGCAATGCA ACCTCACCTC AGGACAGGAC ACGTGACGTG ATGCTATGCT
ACCAGACCAG CTGCACTGCA GACTGGACTG ACGCTACGCT ATCGCATCGC
AGATGAGATG A
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S.4 Supplementary Figures

S.4.1 Sequence is significant—some specific cases
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Figure S1: Ground state configurations and Flory persistence vectors for various DNA sequences (an interactive
version of Figure 4 of the main text). The columns show: (left) the six distinct poly-dinucleotide sequences, (middle)
the six selected λ-phage fragments λj, and (right) the seven sequences γj. The first row of panels shows visualizations
of the shapes of cgDNA ground state configurations, while the second row shows plots of Flory persistence vectors
(1)2 for the Gaussian (11)1 (solid) and perturbed (11)2 (dashed) ensembles. (All six panels are U3D, so that with
the appropriate viewer, e.g. Acrobat Reader V7 or higher, they can be interactively rotated and magnified.)
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////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Alexander Grahn
//
// 3Dspintool.js
//
// version 20120301
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript')
//
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// upon activation of the 3D scene; the scene then rotates around the upright
// axis while dragging with the mouse
//
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// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////
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S.4.2 Sensitivity to Jacobian perturbation
We used the two sequences poly(G) and λ3 to explore the sensitivity of the persistence length values `p(S) on the
inclusion of the Jacobian factor from Eq. (12) in the probability density function, as seen in Eq. (11)2. Results are
presented in Fig. S2. Some difference is perceptible, including a difference in the period of the small oscillations in
the case of poly(G), but the magnitude of these effects is rather small at these length scales.
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Figure S2: Sensitivity of tangent-tangent correlation data to inclusion of Jacobian factor. Direct Monte Carlo
simulation (which does not use the Jacobian) in black, Metropolis Monte Carlo (which incorporates Jacobian) in
red; left panel is for 300 bp poly(G) fragment (173 bp – direct, 175 bp – Metropolis) and right panel is for λ3 (162 bp
– direct, 167 bp – Metropolis). In each case 10 bp were excluded at each end.
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S.4.3 Monte Carlo convergence
In the main document, we report two types of convergence results for the Flory persistence vector, first that 105

MC draws is a sufficiently large number of samples, and second that 1.5Kbp is a sufficiently long sample to yield
an overall standard error of less than 0.5 nm. For the apparent persistence length `p(S), we similarly report that
105 MC samples are sufficient for an accuracy of 0.5 nm (using j = k = 11). These convergence conclusions are
illustrated in Fig. S3.
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Figure S3: Examples of convergence of direct MC sampling (left column) and Metropolis MC (right column) for λ3.
In the top two panels the curves show the norm of the Flory vector (averaged over MC samples of different sizes)
plotted against base-pair number; in all cases, the asymptotic values appears to have been reached by 1.5Kbp (five
repeats of λ3). The error bars give the standard error obtained for ten independent MC runs plotted every 100 bp;
in the case of direct MC with 105 MC samples, the error bars shrink below ±0.5 nm, however for Metropolis MC
as many as 3 × 106 accepted configurations (with acceptance rate of 4%) are required for the same accuracy. In
the bottom two panels, we show the last 50 bp of the tangent-tangent correlation plot relevant for computing `p of
a single repeat of λ3 with coarse grain parameters [j, k] = [11, 11] (averaged over MC samples of different sizes).
The error bars, (plotted every 5 bp) give the standard error obtained for ten independent MC runs. The values of `p
extracted from these tangent-tangent plots are 56.5 nm (for direct MC) and 57.5 nm (for Metropolis MC with 37%
acceptance rate), both with at least 0.5 nm accuracy for 105 or more accepted MC samples.

S.4.4 Coarse Graining sensitivity

This section provides data to justify assertions made in the main text concerning the dependence of `[j,k]p on the
choice of coarse graining parameters [j, k]. Figure S4 illustrates some of the tangent-tangent correlation data which
is fit to extract `[j,k]p . Numerical values of persistence lengths for further cases are presented in Table S2.
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Figure S4: Left column. The data ln
〈
t
[j]
i · t

[j]
0

〉
for fitting `[j,0]p (S) with different coarse-graining approximations of

tangents. Each panel shows the cases j = 0, 1, 11, 21 for each of the three sequences poly(G) (top), poly(A) (middle),
λ3 (bottom). The cases j = 0, 11, 21 yield very similar plots, whereas j = 1 shows some significant deviation with
much larger oscillation and an overall displacement downward, meaning that in the estimation of persistence length
the gradient of the linear best fit is quite sensitive to whether or not the line is assumed to pass through the origin.
The plots for j = 0 and j = 11 exhibit oscillations of roughly the same magnitude, presumably reflecting an alignment
of the base pairs with the local axis of the local helical structure. In addition, the initial behaviour for the first few
base pairs is notably different for the choices k = 0, 1, 11, 21 (which is entirely reasonable given the block structure
of the stiffness matrix in the cgDNA model) which leads to the consistent (approximate) ordering 1 < 0 < 11 < 21.
Right column. The data for fitting the dimensional persistence lengths `[0,k]p (S) for different coarse-graining choices
of arc length. Each panel shows the cases k = 1, 11, 21 for each of the three sequences poly G (top), poly A (middle)
and λ3 (bottom). For poly(G) there is a difference of 6.4 nm between k = 1 and k = 11 while for poly(A) the same
difference is only 3.0 nm.
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S.4.5 Sequence-dependence of persistence lengths

Figure S5 below is the analogue of Fig. 3, which shows histograms of `F (in nm) and `[0,0]p , and `[0,0]d (in bp units),
but now for `[11,11]p and `[11,11]d in nm.
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Figure S5: Normalised histograms of persistence lengths `F in green, `[11,11]p in blue, `[11,11]d in red (all in nm units)
for 220 bp fragments from λ-phage (left) and with random sequence (right). In addition, in each panel, the associated
persistence lengths for the six distinct poly(dinucleotide) sequences are marked with coloured circles, with two circles
per sequence as `p and `d almost coincide for these almost straight sequences. The harmonic means of `F (Sj) for
the λ and random ensembles are respectively 55.7 nm and 55.6 nm, of `d(Sj) 59.5 nm and 58.8 nm, and of `p(Sj)
53.2 nm and 53.5 nm.
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S.4.6 Sequence-averaged persistence lengths
Figure S6 shows the tangent-tangent correlation plots that were used to compute ¯̀

d and ¯̀
p.
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Figure S6: Tangent-tangent correlation plots used for extracting ¯̀
p
[0,0] and ¯̀

d
[0,0] in bp units (left panel) and ¯̀

p
[11,11]

and ¯̀
d
[11,11] in nm units (right panel). As per the definitions of these quantities, each blue curve is the log of the

average over sequence and over MC samples of t[j]i · t
[j]
0 , while each red curve is the log of the average over sequence

and MC samples of the ratio (t
[j]
i · t

[j]
0 )/(t̂

[j]
i · t̂

[j]
0 ) (j = 0 in left panel, j = 11 in right panel). In the left panel, the

factorization that involves dividing by the intrinsic shape term greatly reduces the oscillations apparent in the blue
curve. In the right panel, the use of a coarse grain arclength also reduces the oscillations in the blue curve relative
to the blue curve in the left panel.
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S.4.7 Some tangent-tangent simulated correlation plots for sequences with experi-
mental data
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Figure S7: Tangent-tangent correlation data used for extracting `p
[11,11] and `w

[11,11]. Left panel: plots for a
sequence with relatively high `p (CAACTT from Geggier and Vologodskii, red) and one with relatively low `p (CAG
from Virstedt et al., blue). Middle and right panels: Five plots each for extracting `w for Bednar et al.’s straight
molecule (middle) and λ-phage measurement (right). Each of the five plots in each panel represents an average
over 25 MC samples and over all possible 1-nm-shifted windows of each given width ∆ up to 40 nm (avoiding the
first or last 15 bp). Note the wide variation in curve shape and best-fit slope −1/`w among the five curves in the
middle panel, corresponding to the relatively large uncertainty (±15 nm) in Bednar et al.’s reported value of `w.
The variation is less prominent in the right panel since there are more fragments (37 as compared to 25) and more
windows per fragment (as the λ fragments are 300 bp whereas the straight molecule is 180 bp). For our reported
values of `w (58 nm and 52 nm respectively), we computed 1, 000 such curves and averaged the resulting values of
`w; Bednar et al.’s reported values would seem to be the result of analysing a single such curve, and for a single
window size of 40 nm.
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S.5 Tables of Numerical Data
Table S1 provides the numerical values of the persistence lengths extracted from the plots of simulated expectations
presented in Figures 4 and 5 in the main text, along with the numerical values of the points in the scatter plot of
computed versus experimentally observed persistence lengths shown in Figure 7. Table S2 quantifies the sensitivity
of persistence lengths to coarse-grain choices [j, k] in arc-length and tangent fit in the cases of four sequences. Tables
S3 and S4 provide the MD and MC numerical simulation data used to compare fits of persistence lengths for short
fragments of the six distinct poly-dimer sequences, cf. Figure 6 and Table 4 in the main text.

Group Molecule `
[0,0]
p (bp) `

[0,0]
d (bp) `F (nm) `FJ (nm) `

[11,11]
p (nm) `exptp (nm)

Poly-dinucleotides

poly(AA) 219 221 72.7 70.2 73.5 50.4
poly(GG) 173 178 56.2 55.7 56.0 41.7
poly(TA) 146 148 47.2 46.9 47.0 42.7
poly(AC) 169 173 55.5 56.6 55.4 50.7
poly(AG) 192 194 64.0 64.5 64.5 52.6
poly(CG) 166 168 54.9 54.0 55.3 49.7

fragments of λ

λ1 99 231 48.4 52.8
λ2 152 184 55.3 55.9
λ3 162 186 58.3 59.0
λ4 171 181 56.2 57.0
λ5 178 181 59.1 58.9
λ6 168 178 57.4 57.6 56.9 48.0

Virstedt et al [9]

γ1 166 172 54.9 57.0 54.8 45.5
γ2 155 176 56.0 56.1 51.5 41.7
γ3 169 176 56.1 56.4 56.3 50.5
γ4 153 172 48.3 42.9 51.5 45.5

Bednar et al [10] γ5 176 179 58.2 58.7 58.2 82
Avg of λ 52 45

Kahn & Crothers [11] γ6 134 187 51.5 52.5

Geggier & Vologodskii [12]

γ7 172 175 57.2 57.5 57.4 49.5
ACAT 51.4 46.0

ACCAGG 54.2 47.5
ACGAGC 57.9 51.0

AGC 57.1 47.0
CAA 60.0 50.0

CAACTT 62.5 51.0
AGAT 51.5 47.0
CAGT 60.0 51.5
LPL1 53.7 48.0

CATCTA 53.7 49.0
HPL1 58.6 48.5
LPL2 51.5 45.5
HPL2 57.9 54.0
SG1 55.5 48.5

Table S1: Numerical values of persistence lengths: Columns 3–6 are the persistence lengths derived from the data
plotted in Figures 4 and 5 of the main text (where `FJ denotes the Flory persistence length computed from the
distribution including the Jacobian factor). Columns 7 and 8 are data used in the comparison between simulation
and experimental results shown in Figure 7 of the main text (experimental results taken from citations indicated in
each section, with experimental results for poly-dinucleotides and λ6 from [12], see main text).
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poly(AA)

`
[j,k]
p s[0] s[1] s[11] s[21]

t[0] 219 74.6 71.6 71.0
t[1] 205 69.7 66.9 66.3
t[11] 224 76.1 73.0 72.4
t[21] 228 77.4 74.3 73.7

poly(AA)

`
[j,k]
d s[0] s[1] s[11] s[21]

t[0] 221 75.0 72.0 71.4
t[1] 210 71.6 68.7 68.1
t[11] 224 76.1 73.1 72.5
t[21] 228 77.4 74.3 73.7

poly(AT)

`
[j,k]
p s[0] s[1] s[11] s[21]

t[0] 146 50.7 45.9 45.4
t[1] 129 44.9 40.7 40.2
t[11] 149 51.7 46.9 46.3
t[21] 153 53.0 48.1 47.5

poly(AT)

`
[j,k]
d s[0] s[1] s[11] s[21]

t[0] 148 51.5 46.7 46.1
t[1] 143 49.8 45.1 44.5
t[11] 150 52.1 47.2 46.6
t[21] 153 53.1 48.1 47.5

poly(GG)

`
[j,k]
p s[0] s[1] s[11] s[21]

t[0] 173 61.3 54.9 54.3
t[1] 149 52.7 47.2 46.7
t[11] 178 62.8 56.3 55.6
t[21] 183 64.6 57.9 57.2

poly(GG)

`
[j,k]
d s[0] s[1] s[11] s[21]

t[0] 178 62.8 56.3 55.6
t[1] 169 59.6 53.4 52.8
t[11] 179 63.3 56.7 56.1
t[21] 183 64.7 57.9 57.3

λ3

`
[j,k]
p s[0] s[1] s[11] s[21]

t[0] 162 56.1 52.7 52.1
t[1] 155 53.5 50.3 49.7
t[11] 174 60.1 56.5 55.8
t[21] 178 61.5 57.8 57.1

λ3

`
[j,k]
d s[0] s[1] s[11] s[21]

t[0] 186 64.4 60.5 59.8
t[1] 175 60.6 56.9 56.3
t[11] 189 65.3 61.3 60.6
t[21] 192 66.3 62.3 61.5

Table S2: The effect of different choices of coarse-graining parameters [j, k] for tangents and arc lengths on the
value of `[j,k]p and `[j,k]d for four different sequences of length 300 bp: poly(AA), poly(AT), poly(GG) and λ3

AA AG CG GG TA TG
MC MD MC MD MC MD MC MD MC MD MC MD
0 0 0 0 0 0 0 0 0 0 0 0

-0.75 -0.82 -0.78 -0.98 -0.72 -1.01 -1.10 -1.26 -0.55 -0.67 -0.65 -0.81
-1.51 -1.48 -1.89 -2.30 -2.29 -1.90 -2.77 -3.20 -2.65 -2.78 -2.62 -2.64
-2.28 -2.07 -2.68 -3.76 -2.56 -1.96 -4.78 -5.56 -2.91 -3.22 -3.23 -3.15
-2.96 -2.55 -4.07 -5.41 -5.17 -4.15 -6.72 -7.90 -6.20 -6.15 -6.26 -5.94
-3.51 -2.99 -4.59 -6.46 -5.48 -4.14 -8.15 -9.64 -6.47 -6.60 -7.18 -6.55
-3.87 -3.38 -5.28 -6.96 -6.81 -5.65 -8.78 -10.37 -8.49 -8.13 -8.35 -7.92
-4.08 -3.69 -5.41 -7.11 -7.41 -6.17 -8.60 -10.01 -8.88 -8.50 -9.40 -8.43
-4.23 -4.10 -5.24 -6.39 -6.66 -5.67 -7.83 -8.79 -8.41 -7.93 -7.80 -7.51
-4.44 -4.49 -5.42 -6.03 -7.44 -6.81 -6.93 -7.24 -8.93 -8.29 -8.63 -7.82
-4.80 -4.93 -5.37 -5.42 -6.37 -5.36 -6.34 -5.88 -7.59 -7.31 -6.61 -6.50
-5.33 -5.36 -5.95 -5.65 -6.99 -6.31 -6.43 -5.18 -8.05 -7.61 -7.21 -6.89

Table S3: Expectations ln〈ti · t0〉 evaluated on MC and MD ensembles for 18bp fragments containing the six
distinct dimer steps. t0 is the basepair normal to the fourth base pair from one end, and the row index i = 1, . . . , 11
runs until the fourth basepair from the other end. For formatting reasons, actual values are table entries divided
by 100.
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AA AG CG GG TA TG
MC MD MC MD MC MD MC MD MC MD MC MD
0 0 0 0 0 0 0 0 0 0 0 0

-0.11 -0.11 -0.06 -0.17 -0.02 -0.19 -0.40 -0.54 -0.00 -0.00 -0.01 -0.01
-0.38 -0.28 -0.70 -1.06 -0.93 -0.63 -1.50 -2.02 -1.13 -1.15 -1.27 -1.07
-0.68 -0.40 -0.92 -1.96 -0.70 -0.20 -2.94 -3.94 -1.02 -1.18 -1.43 -1.19
-0.90 -0.41 -1.85 -3.16 -2.60 -1.90 -4.27 -5.81 -3.30 -3.09 -3.73 -3.18
-0.96 -0.37 -1.76 -3.68 -2.39 -1.39 -5.07 -7.08 -3.19 -3.14 -4.17 -3.46
-0.86 -0.27 -1.98 -3.74 -2.95 -2.41 -5.08 -7.34 -4.09 -3.65 -4.54 -4.06
-0.62 -0.17 -1.52 -3.35 -3.03 -2.40 -4.29 -6.55 -4.11 -3.64 -5.09 -4.26
-0.34 -0.09 -0.91 -2.21 -1.55 -1.44 -2.97 -4.90 -2.61 -2.17 -2.77 -2.52
-0.11 -0.08 -0.51 -1.36 -1.82 -2.00 -1.53 -2.96 -2.74 -2.14 -3.13 -2.50
-0.02 -0.13 -0.03 -0.30 -0.13 -0.21 -0.43 -1.24 -0.50 -0.30 -0.49 -0.48
-0.11 -0.22 -0.05 -0.04 -0.25 -0.66 -0.00 -0.19 -0.58 -0.23 -0.63 -0.50

Table S4: Data ln t̂i · t̂0 analogous to Table S3, but now evaluated on MC and MD ground-state shapes. Again
actual values are table entries divided by 100.
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