## Supporting Information

# Copper-Catalyzed, Stereoselective Cross-Coupling of Cyclic Allyl Boronic Acids with $\alpha$-Diazoketones 

Dong Wang and Kálmán J. Szabó*<br>*E-mail: kalman@organ.su.se. Fax: +46-8-15 4908

## Contents:

General information ..... S2
Exeprimental procedure and spectral data for 1aa, 1c, 2a-d, 4a-l and 5a-d ..... S4-S10
Determination of stereochemistry of $\mathbf{4 a}$ and $\mathbf{5 a}$ ..... S10
References ..... S11
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra ..... S12-S52

## General Information

All reactions were carried out under argon atmosphere. $\alpha$-Diazoketones 3a-f, ${ }^{1,2}$ cis- cyclic allyl alcohols $\mathbf{1 a},{ }^{3} \mathbf{1 b},{ }^{4}$ and trans- cyclic allyl alcohol $\mathbf{1 d}{ }^{5}$ were prepared according to published literature procedures. All other starting materials were obtained from commercial sources and used as received. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in $\mathrm{CDCl}_{3}$ (internal standard: $7.26 \mathrm{ppm},{ }^{1} \mathrm{H}$; $77.0 \mathrm{ppm},{ }^{13} \mathrm{C}$ ), DMSO- $\mathrm{d}_{6}$ (internal standard: $2.50 \mathrm{ppm},{ }^{1} \mathrm{H} ; 39.5 \mathrm{ppm},{ }^{13} \mathrm{C}$ ) and acetone- $\mathrm{d}_{6}$ (internal standard: $2.05 \mathrm{ppm},{ }^{1} \mathrm{H}$ ) using Brucker 400 MHz and 500 MHz spectrometers. The following abbreviations are used to designate signal multiplicity: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublet, ddd $=$ doublet of doublet of doublet, dddd $=$ doublet of doublet of doublet of doublet, dddt $=$ doublet of doublet of doublet of triplet, $\mathrm{dt}=$ doublet of triplet, $\mathrm{td}=$ triplet of doublet, $\mathrm{ddt}=$ doublet of doublet of triplet, $\mathrm{ddq}=$ doublet of doublet of quartet, $\mathrm{dtd}=$ doublet of triplet of doublet, $\mathrm{dtt}=$ doublet of triplet of triplet, br = broad. ESI technique and mass analyzer type TOF were used for the high resolution mass (HRMS) measurements. For column chromatography, silica gel (35-70 microns) was used.

## Experimental Procedures and Spectral Data

## Synthesis of the cyclic allyl alcohol 1c



Benzyl trans-5-hydroxycyclohex-3-ene-1-carboxylate (1c). cis-Allylic alcohol 1a ${ }^{\mathbf{3}}$ ( $0.93 \mathrm{~g}, 4 \mathrm{mmol}$ ) was dissolved in THF ( 16 mL ) followed by the addition of $\mathrm{PPh}_{3}(1.26 \mathrm{~g}, 4.8 \mathrm{mmol})$ and acetic acid $(0.275 \mathrm{ml}, 4.8 \mathrm{mmol})$. Then DIAD $(0.945 \mathrm{~mL}, 4.8 \mathrm{mmol})$ was added dropwise to the mixture at $0^{\circ} \mathrm{C}$. Then the reaction mixture was stired at room temperature for 3 hours. Subsequently, methanol ( 0.4 mL ) was added to quench the reaction mixture. The solvents were removed and a mixture of pentane and diethyl ether ( $1: 1,10 \mathrm{~mL}$ ) was added to the residue. After filtration the solvents were evaporated and the crude was purified by silica gel column chromatography to yield 0.64 g of ester $\mathbf{1}$ aa as a colorless oil ( $58 \%$, trans:cis, $96: 4$ ) using pentane:EtOAc ( $10: 1$ ) as eluent. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.43$ - 7.30 (m, 5H), 6.00 (ddd, $J=9.9,5.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $5.87-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.33-5.24(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~s}$, 2H), 2.83 (dddd, $J=12.7,11.0,5.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.43 (dtt, $J=18.1,5.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.29-2.16$ (m, 2H), 2.04 (s, 3H), 1.87 (ddd, $J=14.3,12.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 174.8,170.4$, 135.9, 131.4, 128.6, 128.3, 128.1, 124.4, 66.4, 65.8, 35.2, 30.6, 27.6, 21.3; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$297.1097. Found 297.1096.

Ester $\mathbf{1 a a}(0.48 \mathrm{~g}, 1.75 \mathrm{mmol})$ was stirred in 10 mL benzyl alcohol in the presence of sodium methoxide ( $0.054 \mathrm{~g}, 1 \mathrm{mmol}$ ) for 6 h . After evaporation the residue was diluted with 10 mL diethyl ether and washed
by a $5 \%$ aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The organic layer was separated and dried over $\mathrm{MgSO}_{4}$ and after evaporation the productwas purified by silica gel column chromatography (pentane:diethyl ether, 2:1). Compound $\mathbf{1 c}$ was obtained as a colorless oil ( $0.25 \mathrm{~g}, 62 \%$, trans:cis, $95: 5$ ). ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, CDCl3): $\delta 7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.89$ (ddd, $J=10.0,4.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.86-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.14$ (s, 2H), 4.26 (br s, 1H), 2.85 (dddd, $J=12.3,10.4,5.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.37 (dt, $J=18.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ - 2.04 (m, 2H), 1.83 (ddd, $J=13.7,12.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.71(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 175.3, 136.0, 129.5, 128.6, 128.2, 128.1, 128.0, 66.3, 63.2, 34.7, 33.7, 27.7.; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]+255.0992$. Found 255.0991.

## Synthesis of the cyclic allyl boronic acids (2)

Method A: Allylic alcohol ( 1.0 mmol ) was dissolved in a mixture of DMSO ( 0.9 mL ) and $\mathrm{H}_{2} \mathrm{O}(0.1$ mL ). To this mixture $\operatorname{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\left(\mathrm{BF}_{4}\right)_{2}(5 \mathrm{~mol} \%)$ and $\mathrm{B}_{2}(\mathrm{OH})_{4}$ (1.2 equiv) were added in this order and the reaction mixture was stirred for 6 h. Then, the reaction was allowed to stand two hours without stirring. The precipitated Pd-black was filtered off. (For this filtration we used syringe filter "Filtropur" $0.2 \mu \mathrm{~m}$, PES membrane). The filtrate was collected in a Schlenk tube and the subsequent steps were carried out under Ar. Degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added to the filtrate and the solution was washed four times with degassed aqueous NaCl solution ( $20 \%, 5 \mathrm{~mL}$ ). Then, the organic layer was transferred to a Straus flask and stored under Ar (glovebox recommended). To determine the yield and dr the allylboronic acid product was reacted with benzaldehyde. Assuming a quantitative formation of the homoallylic alcohol product the yield and the dr was determined by ${ }^{1} \mathrm{H}$ NMR using $\mathrm{CH}_{2} \mathrm{I}_{2}$ as internal standard.

(trans-5-((benzyloxy)carbonyl)cyclohex-2-en-1-yl)boronic acid (2a) was prepared according to Method A from 1a ( $232 \mathrm{mg}, 1 \mathrm{mmol}$ ). ${ }^{1} \mathrm{H}$ NMR yield: $52 \%, \mathrm{dr}=8: 1$. The ${ }^{1} \mathrm{H}$ NMR data is based on the analysis of the crude reaction mixture in $\mathrm{CDCl}_{3} / \mathrm{DMSO}-$ $d_{6} / \mathrm{D}_{2} \mathrm{O}: \delta 7.38-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.83-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.69-5.59(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.04$ (m, 2H), 2.76-2.63(m, 1H), 2.29-2.20(m, 2H), 2.15-2.04 (m, 1H), $1.92-1.79(m, 2 H)$.

(cis-5-((benzyloxy)carbonyl)cyclohex-2-en-1-yl)boronic acid (2c) was prepared according to Method A from 1c ( $232 \mathrm{mg}, 1 \mathrm{mmol}$ ). ${ }^{1} \mathrm{H}$ NMR yield: $47 \%, \mathrm{dr}=5.5: 1$. The ${ }^{1} \mathrm{H}$ NMR data is based on the analysis of the crude reaction mixture in $\mathrm{CDCl}_{3} / \mathrm{DMSO}_{-} \mathrm{d}_{6} \mathrm{D}_{2} \mathrm{O}: \delta 7.37-7.19(\mathrm{~m}, 5 \mathrm{H}), 5.72(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64-5.55(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~s}$, 2 H ), $2.57-2.43$ (m, 1H), $2.24-2.06(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.73$ (m, 1H), $1.68-1.54(\mathrm{~m}, 1 \mathrm{H})$.

Method B: Allylic alcohol ( 1.0 mmol ) was dissolved in a mixture of DMSO $(0.9 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.1$ mL ). To this mixture $\operatorname{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\left(\mathrm{BF}_{4}\right)_{2}(5 \mathrm{~mol} \%)$ and $\mathrm{B}_{2}(\mathrm{OH})_{4}(1.2$ equiv) were added in this order and the reaction mixture was stirred for 1 h . Then, the reaction was allowed to stand two hours without stirring. The precipitated Pd-black was filtered off. The filtrate was collected in a Schlenk tube and the subsequent steps were carried out under Ar. The allylboronic acid product was precipitated by dropwise
addition of degassed aqueous solution of $\mathrm{NaCl}(20 \%, 4 \mathrm{~mL})$ to the stirred solution of the filtrate. The solvent was removed and the precipitate was washed three times with degassed water ( 1 mL ). The boronic acid product was dried in vacuum (about 30 minutes) and then it was stored in an argon filled glovebox.

(trans-1,2,3,6-tetrahydro-[1,1'-biphenyl]-3-yl)boronic acid (2b) was prepared according to Method B from the corresponding cis- cyclic allyl alcohol 1b (174 mg, 1 mmol). Yield: 68\% (137 mg), dr $=4: 1 .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta 7.52$ ( $\mathrm{s}, 2 \mathrm{H}$ ), $7.32-7.11(\mathrm{~m}, 5 \mathrm{H}), 5.90-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{ddt}, J=10.0,4.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-$ $2.79(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.63(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}$ ): $\delta 148.0,130.5,128.7,127.2,126.1,123.7,38.6,33.2,31.5$. The ${ }^{13} \mathrm{C}$ shift of the boronated carbon is obscured because of the quadrupolar relaxation of the boron atom. ${ }^{6}$ Because of the oxygen sensitivity of $\mathbf{2 b}$ HRMS analysis was not carried out.

(cis-1,2,3,6-tetrahydro-[1,1'-biphenyl]-3-yl)boronic acid (2d) was prepared according to Method B from the corresponding trans- cyclic allyl alcohol $1 \mathbf{1 d}$ ( 174 mg , 1 mmol ). Yield: $56 \%(113 \mathrm{mg})$, dr $=4.5: 1 .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ ) $\delta 7.53$ (s, 2H), $7.33-7.13(\mathrm{~m}, 5 \mathrm{H}), 5.82-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.67-5.55(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.21-1.98$ $(\mathrm{m}, 2 \mathrm{H}), 1.96-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO-d ${ }_{6}$ ): $\delta 148.0,129.9$, 128.6, 127.1, 126.2, 124.5, 40.9, 33.5, 32.4. The ${ }^{13} \mathrm{C}$ shift of the boronated carbon is obscured because of the quadrupolar relaxation of the boron atom. ${ }^{6}$ Because of the oxygen sensitivity of 2d HRMS was not carried out.

General procedure for cross-coupling of cyclic allyl boronic acids and $\boldsymbol{\alpha}$-diazoketones: CuTC (20 $\mathrm{mol} \%, 0.02 \mathrm{mmol})$, the corresponding allyl boronic acid ( 0.12 mmol ), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added to a vial. After one minute the $\alpha$-diazoketone ( 0.1 mmol ) was added to the reaction mixture, which was subsequently stired at room temperature for 4 h . The dr of the product was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction product using $\mathrm{CH}_{2} \mathrm{I}_{2}$ as internal standard. The product was purified by silica gel chromatography.


Benzyl trans-5-(2-oxo-2-phenylethyl)cyclohex-3-ene-1-carboxylate (4a). The compound was prepared according to the above general procedure. Product 4a was isolated in $82 \%$ yield ( 27.4 mg , $\mathrm{dr}=19: 1$ ) as a colorless oil using pentane:EtOAc (15:1) as eluent. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-$ 7.89 (m, 2H), $7.60-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 5 \mathrm{H})$, $5.78-5.67$ (m, 2H), $5.20-5.06(\mathrm{~m}, 2 \mathrm{H}), 3.08-2.92(\mathrm{~m}, 3 \mathrm{H}), 2.72$ (dddd, $J=11.1,8.2,6.2,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.40-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{dt}, J=13.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz , acetone $\left.-d_{6}\right) \delta 8.07-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.79$ - 5.61 (m, 2H), $5.12(\mathrm{~s}, 2 \mathrm{H}), 3.18-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.97-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.24$
(m, 2H), 1.96 (ddd, $J=13.3,10.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.84$ (ddd, $J=13.3,4.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.8,175.3,137.1,136.1,133.1,130.1,128.62,128.55,128.15,128.09,128.06,125.7$. 66.3, 44.1, 36.3, 30.3, 29.6, 27.4; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 357.1461$. Found 357.1467.

Benzyl trans-5-(2-oxo-2-phenylethyl)cyclohex-3-ene-1-carboxylate (4a) at $\mathbf{1} \mathbf{~ m m o l}$ scale. The above representative reaction was repeated at 1 mmol scale. CuTC ( $20 \mathrm{~mol} \%, 0.2 \mathrm{mmol}$ ), allyl boronic acid 2a ( 1.2 mmol ), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added to a round-bottom flask. After one minute the $\alpha$ diazoketone $3 \mathbf{a}(1.0 \mathrm{mmol})$ was added to the reaction mixture, which was subsequently stired at room temperature for 4 h . The solvent was removed under reduced pressure. The crude residue was purified by silica gel chromatography. Product 4a was isolated in $70 \%$ yield ( $233 \mathrm{mg}, \mathrm{dr}=16: 1$ ) as a colorless oil using pentane:EtOAc $(15: 1)$ as eluent. The NMR spectral data is identical to the above values for compound 4a.


Benzyl trans-5-(2-(4-bromophenyl)-2-oxoethyl)cyclohex-3-ene-1carboxylate (4b). The compound was prepared according to the above general procedure. Product 4b was isolated in $73 \%$ yield ( 30.1 mg , dr = 12:1) as a colorless oil using pentane:EtOAc (20:1) as eluent. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.80$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.58 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.41-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.78-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.67(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.06(\mathrm{~m}, 2 \mathrm{H}), 3.03-2.85$ (m, 3H), 2.70 (dddd, $J=11.0,8.0,6.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.97$ (m, 1H), $1.85-$ $1.75(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.7,175.2,136.0,135.8,131.9,129.9,129.6,128.6$, 128.3, 128.2, 128.1, 125.9, 66.3, 44.0, 36.2, 30.2, 29.6, 27.4; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{BrNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 435.0566$. Found 435.0575.


Benzyl trans-5-(2-(3-bromophenyl)-2-oxoethyl)cyclohex-3-ene-1carboxylate (4c). The compound was prepared according to the above general procedure. Product 4c was isolated in $78 \%$ yield ( 32.1 mg , dr = 12:1) as a colorless oil using pentane:EtOAc (20:1) as eluent for silica gel chromatography. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.07(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dt}, J=7.9,1.3 \mathrm{~Hz}$, 1 H ), 7.68 (ddd, $J=7.9,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 6 \mathrm{H}), 5.79-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.68(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.20-5.07$ (m, 2H), $3.04-2.85$ (m, 3H), 2.71 (dddd, $J=10.9,8.0,6.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.40-2.22$ (m, 2H), $2.09-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{dt}, J=12.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 197.3$, $175.2,138.8,136.1,135.9,131.2,130.2,129.8,128.6,128.2,128.1,126.6,126.0,123.0,66.3,44.1$, 36.2, 30.2, 29.4, 27.4; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{BrNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 435.0566$. Found 435.0580 .


Benzyl trans-5-(2-(4-methoxyphenyl)-2-oxoethyl)cyclohex-3-ene-1-carboxylate (4d). The compound was prepared according to the above general procedure. Product 4d was isolated in 67\% yield (24.4 $\mathrm{mg}, \mathrm{dr}=15: 1$ ) as a colorless oil using pentane:EtOAc (20:1) as eluent for silica gel chromatography. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.93(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.92(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.79-5.66(\mathrm{~m}, 2 \mathrm{H}), 5.20-5.05(\mathrm{~m}, 2 \mathrm{H})$, 3.86 (s, 3H), $3.02-2.85(\mathrm{~m}, 3 \mathrm{H}), 2.71$ (dddd, $J=10.9,8.0,6.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.07$ $-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{dt}, J=13.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.3,175.3,163.5$, 136.1, 130.4, 130.28, 130.26, 128.5, 128.1, 128.0, 125.6, 113.7, 66.2, 55.5, 43.7, 36.3, 30.3, 29.8, 27.4; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$387.1567. Found 387.1578.


Benzyl trans-5-(2-(naphthalen-2-yl)-2-oxoethyl)cyclohex-3-ene-1carboxylate (4e). The compound was prepared according to the above general procedure. Product $\mathbf{4 e}$ was isolated in $70 \%$ yield ( 26.9 mg , dr $=15: 1$ ) as a colorless oil using pentane:EtOAc (20:1) as eluent for silica gel chromatography. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.50-8.43(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.96$ (dd, $J=8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.58$ (dddd, $J=20.6,8.1,6.9,1.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.41 $-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.81-5.71(\mathrm{~m}, 2 \mathrm{H}), 5.21-5.07(\mathrm{~m}, 2 \mathrm{H}), 3.23-2.99(\mathrm{~m}, 3 \mathrm{H}), 2.77$ (dddd, $J=10.9,7.9$, $6.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{dt}, J=13.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.7,175.3,136.1,135.6,134.5,132.5,130.2,129.8,129.6,128.54,128.49$, $128.15,128.06,127.8,126.8,125.8,123.9,66.3,44.1,36.3,30.3,29.8,27.4$; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$407.1618. Found 407.1634.


Benzyl trans-5-(2-oxoundecyl)cyclohex-3-ene-1-carboxylate (4f). The compound was prepared according to the above general procedure. Product 4f was isolated in $67 \%$ yield ( $25.7 \mathrm{mg}, \mathrm{dr}=11: 1$ ) as a colorless oil using pentane:diethyl ether (7:1) as eluent for silica gel chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.72-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{ddt}, J=10.0,4.0,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.13 (s, 2H), 2.79 (tdd, $J=8.0,4.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (dddd, $J=11.0,8.0,6.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.49-2.39$ (m, 2H), $2.36(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.31-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{ddd}, \mathrm{J}=13.4,10.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-$ $1.66(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}), 0.877(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 209.8,175.2,136.1,130.0,128.6,128.2,128.0,125.6,66.2,48.2,43.4,36.2,31.9,30.2,29.43,29.41$, 29.3, 29.23, 29.18, 27.3, 23.8, 22.7, 14.1; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$ 407.2557. Found 407.2561.


1-Phenyl-2-(trans-1,2,3,6-tetrahydro-[1,1'-biphenyl]-3-yl)ethan-1-one
(4g). The compound was prepared according to the above general procedure. Product $\mathbf{4 g}$ was isolated in $79 \%$ yield ( 21.8 mg , $\mathrm{dr}=>20: 1$ ) as a colorless oil using
pentane:EtOAc (30:1) as eluent for silica gel chromatography. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.01-$ 7.96 (m, 2H), $7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 3 \mathrm{H}), 5.89$ - 5.83 (m, 1H), 5.78 (dddd, $J=8.5,3.9,2.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.05(\mathrm{~m}, 2 \mathrm{H}), 3.06-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.93$ (dddd, $J=12.3,9.9,5.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.18$ (ddq, $J=17.6,9.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.04$ (ddd, $J=13.3,11.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.76(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.3,146.5$, 137.2, 133.1, 130.3, 128.6, 128.4, 128.1, 127.4, 127.0, 126.1, 44.1, 35.9, 34.6, 33.2, 30.7; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}$299.1406. Found 299.1413.


1-(4-Bromophenyl)-2-(trans-1,2,3,6-tetrahydro-[1,1'-biphenyl]-3chromatography. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.09(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dt}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.68 (ddd, $J=7.9,2.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.16(\mathrm{~m}, 3 \mathrm{H}), 5.91-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.75$ (dddd, $J=11.2,3.8,2.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.15-2.85(\mathrm{~m}, 4 \mathrm{H}), 2.34$ (dtd, $J=17.8,5.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.17 (ddq, $J=17.6,9.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.03 (ddd, $J=13.3,11.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.73(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 198.1,146.3,135.9,131.9,130.1,129.6,128.4,128.2,127.6,127.0,126.1,44.1$, 35.9, 34.6, 33.1, 30.7; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{BrNaO}[\mathrm{M}+\mathrm{Na}]^{+}$377.0511. Found 377.0502.


1-(3-Bromophenyl)-2-(trans-1,2,3,6-tetrahydro-[1,1'-biphenyl]-3-yl)ethan-1-one (4i). The compound was prepared according to the above general procedure. Product 4i was isolated in $72 \%$ yield ( $25.6 \mathrm{mg}, \mathrm{dr}=14: 1$ ) as a colorless oil using pentane:EtOAc (20:1) as eluent for silica gel chromatography. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.87-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.57$ (m, 2H), $7.34-7.27$ (m, 2H), $7.25-7.15(\mathrm{~m}, 3 \mathrm{H}), 5.88-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.78-5.72(\mathrm{~m}, 1 \mathrm{H}), 3.14-2.85(\mathrm{~m}, 4 \mathrm{H}), 2.34(\mathrm{dtd}$, $J=17.9,5.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{ddq}, J=17.6,9.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{ddd}, J=13.2,11.7,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, 1.82 - $1.73(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.8,146.3,139.0,135.9,131.2,130.2,130.0$, 128.4, 127.6, 127.0, 126.6, 126.2, 123.0, 44.2, 35.9, 34.6, 33.1, 30.6; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{BrNaO}[\mathrm{M}+\mathrm{Na}]^{+}$377.0511. Found 377.0506.


1-(naphthalen-2-yl)-2-(trans-1,2,3,6-tetrahydro-[1,1'-biphenyl]-3$\mathbf{y l})$ ethan-1-one ( $\mathbf{4 j} \mathbf{j}$. The compound was prepared according to the above general procedure. Product 4j was isolated in $65 \%$ yield $(21.2 \mathrm{mg}$, $\mathrm{dr}=$ 10:1) as a colorless oil using pentane:EtOAc (20:1) as eluent for silica gel chromatography. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.59$ (dddd, $J=18.5,8.2,6.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.23(\mathrm{~m}, 4 \mathrm{H})$, $7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 5.92-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.85-5.79(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.17(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{~s}, 1 \mathrm{H}), 3.03-$
2.91 (m, 1H), 2.42 - 2.32 (m, 1H), 2.20 (ddq, $J=17.7,10.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.07 (ddd, $J=13.3,11.7,5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 199.2, 146.5, 135.6, 134.6, 132.6, 130.4, $129.8,129.6,128.5,128.45,128.41,127.8,127.4,127.0,126.8,126.1,123.9,44.2,36.0,34.7,33.2$, 30.9; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}$349.1563. Found 349.1576.


Benzyl trans-5-(2-oxo-1,2-diphenylethyl)cyclohex-3-ene-1-carboxylate (4k). The compound was prepared according to the above general procedure. Product $\mathbf{4 k}$ was isolated in $32 \%$ yield ( 13.2 mg , four diasteremers were observed in a ratio of $20: 4: 4: 1$, the trans- $\mathbf{4 k}$ being the major diastereomer) as a colorless oil using pentane:diethyl ether ( $7: 1$ ) as eluent for silica gel chromatography. NMR spectral data for the major isomer of $4 \mathbf{k}:{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.01-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.42-$ $7.25(\mathrm{~m}, 11 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 1 \mathrm{H}), 5.68(\mathrm{dtd}, J=10.3,3.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.13(\mathrm{~m}, 1 \mathrm{H}), 5.13-$ 5.03 (m, 2H), 4.47 (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.28 (ddq, $J=9.8,5.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.74 (dtd, $J=10.4,7.0,3.1$ $\mathrm{Hz}, 1 \mathrm{H}$ ), $2.36-2.22$ (m, 2H), 2.07 (ddd, $J=13.6,10.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.78 (dt, $J=13.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 199.3,175.1,137.3,137.2,136.1,133.0,129.0,128.9,128.67,128.65$, 128.58, 128.56, 128.1, 127.9, 127.3, 126.5, 66.2, 58.2, 36.65, 36.60, 29.6, 27.5; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$433.1774. Found 433.1770.


1,2-Diphenyl-2-(trans-1,2,3,6-tetrahydro-[1,1'-biphenyl]-3-yl)ethan-1-one (4l). The compound was prepared according to the above general procedure. Product $\mathbf{4 l}$ was isolated in $30 \%$ yield ( 10.6 mg , four diasteremers were observed in a ratio of $55: 9.8: 4.6: 1$, the trans-4l being the major diastereomer) as a white solid (m.p. $144-145^{\circ} \mathrm{C}$ ) using pentane:diethyl ether (30:1) as eluent for silica gel chromatography. NMR spectral data for the major isomer of 41: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.03-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 1 \mathrm{H})$, $7.44-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 3 \mathrm{H}), 5.85-5.75(\mathrm{~m}, 1 \mathrm{H})$, $5.28-5.15(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.01-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.29(\mathrm{~m}, 1 \mathrm{H})$, 2.16 (ddq, $J=17.7,10.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.05 (ddd, $J=13.7,11.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.83-1.74(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 199.6,146.3,137.5,137.3,133.0,129.0,128.9,128.8,128.6,128.5,128.4$, 128.0, 127.2, 126.9, 126.1, 58.1, 37.8, 36.2, 34.1, 33.2.; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NaO}$ $[\mathrm{M}+\mathrm{Na}]^{+}$375.1719. Found 375.1715.


Benzyl cis-5-(2-oxo-2-phenylethyl)cyclohex-3-ene-1-carboxylate (5a). The compound was prepared according to the above general procedure. Product 5a was isolated in $41 \%$ yield ( $13.7 \mathrm{mg}, \mathrm{dr}=5: 1$ ) as a colorless oil using pentane:EtOAc (15:1) as eluent for silica gel chromatography. Spectral data for the major isomer of $5 \mathbf{5}$ : ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.39-$ $7.29(\mathrm{~m}, 5 \mathrm{H}), 5.77-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.62-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.08(\mathrm{~m}, 2 \mathrm{H}), 3.03-2.89(\mathrm{~m}, 3 \mathrm{H}), 2.72$ (dddd, $J=12.7,11.1,5.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{td}, J=12.6,10.8$
$\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.9,175.3,137.1,136.1,133.1,130.6,128.63,128.56,128.2$, 128.07, 128.06, 125.8, 66.2, 44.6, 39.7, 32.1, 32.0, 27.8; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NaO}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+}$357.1461. Found 357.1471.


Benzyl cis-5-(2-oxoundecyl)cyclohex-3-ene-1-carboxylate (5b). The compound was prepared according to the above general procedure except that the reaction was performed using 0.2 mmol of $\mathbf{2 c}$ and 0.1 mmol of $\mathbf{3 f}$. Product $\mathbf{5 b}$ was isolated in $45 \%$ yield ( $17.4 \mathrm{mg}, \mathrm{dr}=4: 1$ ) as a colorless oil using pentane:diethyl ether ( $7: 1$ ) as eluent for silica gel chromatography. Spectral data for the major isomer of $5 \mathbf{b}:{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.41-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.68(\mathrm{ddt}, J=9.9,4.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.51-5.41(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.07(\mathrm{~m}$, $2 H), 2.84-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.24(\mathrm{~m}, 5 \mathrm{H}), 2.24-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.49$ (m, 2H), $1.34-1.18(\mathrm{~m}, 13 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ). ${ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.0,175.3,136.1,130.5,128.6,128.2,128.0,125.7,66.2,48.7,43.6,39.6,31.88$, 31.86, 31.6, 29.42, 29.41, 29.3, 29.2, 27.7, 23.8, 22.7, 14.1; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 407.2557$. Found 407.2558.


1-Phenyl-2-(cis-1,2,3,6-tetrahydro-[1,1'-biphenyl]-3-yl)ethan-1-one (5c). The compound was prepared according to the above general procedure except that the reaction was stirred for overnight. Product 5c was isolated in 69\% yield (19.1 mg, $\mathrm{dr}=3: 1$ ) as a colorless oil using pentane:EtOAc (30:1) as eluent for silica gel chromatography. Spectral data for the major isomer of 5 c : ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.04-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 1 \mathrm{H})$, $7.51-7.43$ (m, 2H), 7.30 (dd, $J=8.0,6.9 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.25-7.17$ (m, 3H), $5.90-5.75$ (m, 1H), $5.72-$ $5.58(\mathrm{~m}, 1 \mathrm{H}), 3.15-2.96(\mathrm{~m}, 3 \mathrm{H}), 2.91(\mathrm{ddq}, J=15.3,7.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.22-$ 2.07 (m, 2H), $1.49(\mathrm{td}, J=12.6,10.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 199.3, 146.7, 137.2, 133.1, 130.7, 128.6, 128.4, 128.1, 127.4, 126.9, 126.1, 44.9, 40.4, 37.1, 33.7, 33.6; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}$299.1406. Found 299.1418.
 $\mathrm{mg}, \mathrm{dr}=3: 1$ ) as a colorless oil using pentane:EtOAc (30:1) as eluent for silica gel chromatography. Spectral data for the major isomer of 5 d : ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.16$ (m, 3H), $5.86-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.59-5.49(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.35$ (m, 3H), $2.34-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{td}, \mathrm{J}$ $=12.5,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-1.19(\mathrm{~m}, 12 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 210.3, 146.7, 130.6, 128.4, 127.3, 126.8, 126.1, 49.1, 43.6, 40.4, 36.9, 33.6, 33.2, 31.9, 29.43, 29.42, 29.27, 29.25, 23.8, 22.7, 14.1; HRMS (pos. ESI) m/z: Calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+} 349.2507$. Found 349.2508.

Determination of the stereochemistry of 4a and 5a: The connectivity of carbons and hydrogens were determined by COSY and HSQC techniques. Afterwards the stereochemistry of $\mathbf{4 a}$ and $5 \mathbf{a}$ was determined by analysis of their $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra. In compound $\mathbf{5 a} \mathrm{H}_{4 \mathrm{a}}$ resonating at 1.38 ppm has a dt coupling pattern with coupling constants of 10.8 Hz and 12.6 Hz , respectively. The (pseudo) triplet coupling ( 12.6 Hz ) was assigned to the diaxial couplings of $\mathrm{H}_{5 \mathrm{a}}$ and $\mathrm{H}_{4 \mathrm{a}}$ and the geminal coupling
 . Since $\mathrm{H}_{5 \mathrm{a}}$ and $\mathrm{H}_{3 \mathrm{a}}$ are in axial position, the two functional groups COOBn (at C 5 ) and $\mathrm{CH}_{2} \mathrm{COPh}$ (at C3) must be in equatorial positions. This means that the realative configuration of these two groups is cis.


We have also assigned the coupling constants of $\mathrm{H}_{4 \mathrm{a}}$ in compound $\mathbf{4 a}$, which is the diastereomer of $\mathbf{5 a}$. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a}$ gave sharper signals and higher resolution in aceton- $d_{6}$ than in $\mathrm{CDCl}_{3}$, and therefore, our assignment is based on the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a}$ in aceton- $d_{6}$. The $\mathrm{H}_{4 \mathrm{a}}$ of compound 4a resonates at 1.96 ppm and it shows a ddd coupling pattern of $13.3,10.3$ and 5.8 Hz . The largest coupling ( 13.3 Hz ) was assigned to the geminal coupling between $\mathrm{H}_{4 \mathrm{a}}$ and $\mathrm{H}_{4 \mathrm{e}}$. The coupling constant of 10.3 Hz was assigned to a diaxial coupling between $\mathrm{H}_{4 \mathrm{a}}$ and $\mathrm{H}_{5 \mathrm{a}}$, while the smallest coupling constant of 5.8 Hz was assigned to the $\mathrm{H}_{4 \mathrm{a}}$ and $\mathrm{H}_{3 \mathrm{e}}$ interaction. According to this assignment the relative configuration of the two functional groups COOBn (at C 5 ) and $\mathrm{CH}_{2} \mathrm{COPh}$ (at C 3 ) is trans. This assigment is also in line with the litereture data reported for analog compounds. ${ }^{7}$


4a

## References

(1) Das, A.; Wang, D.; Belhomme, M.-C.; Szabó, K. J., Org. Lett. 2015, 17, 4754-4757.
(2) Shu, W.-M.; Ma, J.-R.; Zheng, K.-L.; Sun, H.-Y.; Wang, M.; Yang, Y.; Wu, A.-X., Tetrahedron 2014, 70, 9321-9329.
(3) Misale, A.; Niyomchon, S.; Luparia, M.; Maulide, N., Angew. Chem., Int. Ed. 2014, 53, 7068-7073.
(4) Fontana, G.; Lubineau, A.; Scherrmann, M.-C., Org. Biomol. Chem. 2005, 3, 1375-1380.
(5) Trost, B. M.; Xu, J.; Schmidt, T., J. Am. Chem. Soc. 2009, 131, 18343-18357.
(6) Wrackmeyer, B., Prog. Nucl. Magn. Reson. Spectrosc. 1979, 12, 227-259.
(7) Tsuda, T.; Okada, M.; Nishi, S.; Saegusa, T., J. Org. Chem. 1986, 51, 421-426.

 Consers)


1aa









2d




-.........................



4a (in acetone- $d_{6}$ )














4e



















4h





$4 i$





4j




4k

























м内 m m


$\because \because \vdash \vdash ?$

$\left.\left.\right|^{4}\right|^{m}$




[^0]
[^0]:    と・0エを——
    

    5d
    

