ReaxFF Molecular Dynamics Simulations of Water Stability of Interpenetrated Metal-Organic Frameworks

Xiu Ying Liu,^{†,‡} Sung Jin Pai,[‡] and Sang Soo Han*,[‡]

[†]College of Science, Henan University of Technology, Lianhua Street No.100,

High-tech Zone, Zhengzhou Henan 450001, the People's Republic of China

[‡] Computational Science Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea.

AUTHOR INFORMATION

Corresponding author

*E-mail: sangsoo@kist.re.kr. Fax: +82 2 958 5451; Tel: +82 2 958 5441

Lattice parameters of MOFs

IRMOF-9

IRMOF-10

IRMOF-13

IRMOF-14

SUMOF-4

Table S1. Lattice parameters of IRMOF-9, IRMOF-10, IRMOF-13, IRMOF-14, andSUMOF-4 used in this work. These are from Ref. S1 and S2.StructureLattice parameter (Å)

a = 17.15, b = 23.32, c = 25.25

a = b = 24.82, c = 56.73

a = 18.38, *b* = 17.30, *c* = 17.96

a = b = c = 34.28

a = b = c = 34.38

The sign beaution of the start	ſ	Ref. S1	Eddaoudi	, M.:	Kim.	, J.;	Rosi	N.:	Vodak.	, D.;	Wachter	, J.	; 0	'Keeffe,	, N	1.	
---	---	---------	----------	-------	------	-------	------	-----	--------	-------	---------	------	-----	----------	-----	----	--

Yaghi, O. M. Science 2002, 295, 469.

[Ref. S2] Yao, Q.; Su, J.; Cheung, O.; Liu, Q.; Hedin, N.; Zou, X. J. Mater. Chem.

2012, *22*, 10345.

Water dissociation reaction in Zn-MOF-74: ReaxFF versus DFT

Figure S1. ReaxFF versus DFT for a water dissociation reaction in Zn-MOF-74. (a-c) the water dissociation reaction pathway predicted by the ReaxFF. (d) comparison of ReaxFF and DFT energies for the reaction. Here, the DFT values are from Ref. 29.

Effects of Zn-Oligand strength on the water stability of MOFs

Figure S2. Simulated volume change of IRMOF-9, IRMOF-10, IRMOF-13, IRMOF-14 and SUMOF-4 as a function of water contents at 300 K and 1 atm. Here, (a), (b), (c) and (d) correspond to the Zn-O_{ligand} bond strength of 160 kcal/mol (default value), 176 kcal/mol (10 % increase of the default value), 192 kcal/mol (20 % increase), and 208 kcal/mol (30 % increase), respectively. Note that the original ReaxFF parameter for the $E_{Zn-O_{ligand}}$ optimized from first-principles calculations is 160 kcal/mol (default value).⁴²

The ReaxFF parameters used in this work

Reactive MD-force field: Han et al. ZnO/MOF force field

- 39 ! Number of general parameters
 - 50.0000 !Overcoordination parameter
 - 9.5469 !Overcoordination parameter
 - 26.5405 !Valency angle conjugation parameter
 - 1.7224 !Triple bond stabilisation parameter
 - 6.8702 !Triple bond stabilisation parameter
 - 60.4850 !C2-correction
 - 1.0588 !Undercoordination parameter
 - 4.6000 !Triple bond stabilisation parameter
 - 12.1176 !Undercoordination parameter
 - 13.3056 !Undercoordination parameter
- -70.5044 !Triple bond stabilization energy
 - 0.0000 !Lower Taper-radius
- 10.0000 !Upper Taper-radius
- 2.8793 !Not used
- 33.8667 !Valency undercoordination
- 6.0891 !Valency angle/lone pair parameter
- 1.0563 !Valency angle
- 2.0384 !Valency angle parameter
- 6.1431 !Not used
- 6.9290 !Double bond/angle parameter
- 0.3989 !Double bond/angle parameter: overcoord
- 3.9954 !Double bond/angle parameter: overcoord
- -2.4837 !Not used
- 5.7796 !Torsion/BO parameter
- 10.0000 !Torsion overcoordination
- 1.9487 !Torsion overcoordination

- -1.2327 !Conjugation 0 (not used)
- 2.1645 !Conjugation
- 1.5591 !vdWaals shielding
- 0.1000 !Cutoff for bond order (*100)
- 2.1365 !Valency angle conjugation parameter
- 0.6991 !Overcoordination parameter
- 50.0000 !Overcoordination parameter
- 1.8512 !Valency/lone pair parameter
- 0.5000 !Not used
- 20.0000 !Not used
 - 5.0000 !Molecular energy (not used)
- 0.0000 !Molecular energy (not used)
- 2.6962 !Valency angle conjugation parameter

4

! Nr of atoms; cov.r; valency;a.m;Rvdw;Evdw;gammaEEM;cov.r2;#

alfa;gammavdW;valency;Eunder;Eover;chiEEM;etaEEM;n.u.

cov r3;Elp;Heat inc.;n.u.;n.u.;n.u.;n.u.

ov/un;val1;n.u.;val3,vval4

С	1.3825	4.0000	12.0000	1.9133	0.1853	0.9000	1.1359	4.0000
	9.7602	2.1346	4.0000	33. 2433	79.5548	5.8678	7.0000	0.0000
	1.2104	0.0000	199.0303	8.6991	34. 7289	13.3894	0.8563	0.0000
	-2.8983	2.5000	1.0564	4.0000	2.9663	0.0000	0.0000	0.0000
Н	0.8930	1.0000	1.0080	1.3550	0.0930	0.8203	-0.1000	1.0000
	8.2230	33. 2894	1.0000	0.0000	121.1250	3.7248	9.6093	1.0000
	-0.1000	0.0000	61.6606	3.0408	2. 4197	0.0003	1.0698	0.0000
	-19. 4571	4.2733	1.0338	1.0000	2.8793	0.0000	0.0000	0.0000
0	1.2450	2.0000	15.9990	2.3890	0.1000	1.0898	1.0548	6.0000
	9.7300	13.8449	4.0000	37.5000	116.0768	8.5000	8.3122	2.0000
	0.9049	0.4056	59.0626	3. 5027	0.7640	0.0021	0.9745	0.0000
	-3.5500	2.9000	1.0493	4.0000	2.9225	0.0000	0.0000	0.0000
Zn	1.8862	2.0000	65.3900	1.9200	0.2998	0.4828	-1.6836	2.0000

		11.5134 18	8.3776	2.0000	0.0078	0.0000	2.0219	5. 7915	0.0000
		-1.2000 (0.0000 20	66. 4838	5.3430	10.1260	0.7590	0.0000	0.0000
		-3.0614	2.1158	1.0338	6.2998	2.5791	0.0000	0.0000 0.0	0000
1(0	! Nr c	of bonds;	Edis1;LPp	oen;n.u.;j	pbe1;pbo5;	13corr;pb	006	
		pbe2	2;pbo3;pbo	o4;n.u.;pb	oo1;pbo2;o	ovcorr			
1	1	158.2004	99. 1897	78.0000	-0.7738	-0.4550	1.0000	37.6117	0.4147
		0.4590	-0.1000	9.1628	1.0000	-0.0777	6.7268	3 1.0000	0.0000
1	2	169.4760	0.0000	0.0000	-0.6083	0.0000) 1.0000	6.0000	0.7652
		5.2290	1.0000	0.0000	1.0000	-0.0500	6.9136	6 0.0000	0.0000
2	2	153.3934	0.0000	0.0000	-0.4600	0.0000) 1.0000	6.0000	0.7300
		6.2500	1.0000	0.0000	1.0000	-0.0790	6.0552	0.0000	0.0000
1	3	158.6946	107.4583	23. 3136	-0.4240	-0.1743	3 1.0000	10.8209	1.0000
		0.5322	-0.3113	7.0000	1.0000	-0.1447	5.2450	0.0000	0.0000
3	3	142.2858	145.0000	50.8293	0.2506	-0.1000) 1.0000	29.7503	0.6051
		0.3451	-0.1055	9.0000	1.0000	-0.1225	5 5.5000	1.0000	0.0000
2	3	160.0000	0.0000	0.0000	-0.5725	0.0000) 1.0000	6.0000	0.5626
		1.1150	1.0000	0.0000	1.0000	-0.0920	4.2790	0.0000	0.0000
1	4	0.0000	0.0000	0.0000	0.0000	-0.5000) 1.0000	36.0000	0.0082
		1.7973	-0.2500	20.0000	1.0000	-0.2578	6. 5219	0.0000	0.0000
2	4	0.0000	0.0000	0.0000	0.0000	-0.5000) 1.0000	50.0000	0.5000
		0.5000	-0.5000	30.0000	1.0000	-0.2000	8.0000	0.0000	0.0000
3	4	159.9755	0.0000	0.0000	-0.4548	-0.5000	0.0000	35.0000	0.0375
		1.3099	-0.5000	25.0000	1.0000	-0. 4787	4.6717	0.0000	0.0000
4	4	38.4643	0.0000	0.0000	-0.6944	-0.2000	0.0000	16.0000	0.2129
		0.5059	-0.2000	15.0000	1.0000	-0.0814	6. 0333	0.0000	0.0000
7		! Nr of	f off-dia	gonal term	ns; Ediss	;Ro;gamma;	rsigma;rp	pi;rpi2	
1	2	0.1219	1.4000	9.8442	1.1203	-1.0000	-1.0000		
2	3	0.0283	1.2885	10.9190	0.9215	-1.0000	-1.0000		
2	4	0.1059	1.8290	9. 7818	0.9598	-1.0000	-1.0000		
1	3	0.1131	1.8523	9.8442	1.2775	1.1342	1.0621		

1	4		0.3000	1.6692 1	1.1307	0.0100 -	-1.0000 -	1.0000	
2	4		0.0987	1.8227 1	2.0654	0.1000 -	-1.0000 -	1.0000	
3	4		0.2744	2.1414	9.7703	1.9804 -	-1.0000 -	1.0000	
24	1		! Nr of	angles;at	1;at2;at3	3;Thetao,c	;ka;kb;pv	1;pv2	
1	1	1	59.0573	30.7029	0.7606	0.0000	0.7180	6.2933	1.1244
1	1	2	65.7758	14.5234	6.2481	0.0000	0.5665	0.0000	1.6255
2	1	2	70.2607	25.2202	3.7312	0.0000	0.0050	0.0000	2.7500
1	2	2	0.0000	0.0000	6.0000	0.0000	0.0000	0.0000	1.0400
1	2	1	0.0000	3.4110	7.7350	0.0000	0.0000	0.0000	1.0400
2	2	2	0.0000	27.9213	5.8635	0.0000	0.0000	0.0000	1.0400
1	1	3	49.6811	7.1713	4. 3889	0.0000	0.7171	10.2661	1.0463
3	1	3	77.7473	40.1718	2.9802	-25.3063	1.6170	-46.1315	2.2503
2	1	3	65.0000	13.8815	5.0583	0.0000	0.4985	0.0000	1.4900
1	3	1	73. 5312	44. 7275	0.7354	0.0000	3.0000	0.0000	1.0684
1	3	3	79.4761	36.3701	1.8943	0.0000	0.7351	67.6777	3.0000
3	3	3	80.7324	30.4554	0.9953	0.0000	1.6310	50.0000	1.0783
1	3	2	70.1880	20.9562	0.3864	0.0000	0.0050	0.0000	1.6924
2	3	3	75.6935	50.0000	2.0000	0.0000	1.0000	0.0000	1.1680
2	3	2	85.8000	9.8453	2.2720	0.0000	2.8635	0.0000	1.5800
1	2	3	0.0000	25.0000	3.0000	0.0000	1.0000	0.0000	1.0400
1	2	5	0.0000	0.0019	6.0000	0.0000	0.0000	0.0000	1.0400
3	2	3	0.0000	15.0000	2.8900	0.0000	0.0000	0.0000	2.8774
2	2	3	0.0000	8.5744	3.0000	0.0000	0.0000	0.0000	1.0421
2	3	4	77.5446	9.9016	2.3157	0.0000	0.4543	0.0000	2.3770
3	4	3	10.8790	38.9915	0.7072	0.0000	2.0000	0.0000	2.6162
4	3	4	37.5284	32.3525	0.2657	0.0000	0.4403	0.0000	1.1000
3	4	4	16.9624	30.3241	0.2697	0.0000	2.0000	0.0000	3.0708
3	3	4	60.0000	20.0000	0.5000	0.0000	1.0000	0.0000	2.0000
22	1		! Nr of	torsions;	at1;at2;a	at3;at4;;\	/1;V2;V3;V	2 (B0) ; vcor	ıj;n.u;n
1	1	1	1 -0.250	00 11.582	2 0.187	79 -4.705	57 -2.204	7 0.0000	0.0000

1	1	1	2	-0.2500	31.2596	0.1709	-4.6391	-1.9002	0.0000	0.0000
2	1	1	2	-0.1770	30.0252	0.4340	-5.0019	-2.0697	0.0000	0.0000
1	1	1	3	-0.7098	22.2951	0.0060	-2.5000	-2.1688	0.0000	0.0000
2	1	1	3	-0.3568	22.6472	0.6045	-4.0088	-1.0000	0.0000	0.0000
3	1	1	3	-0.0528	6.8150	0.7498	-5.0913	-1.0000	0.0000	0.0000
1	1	3	1	2.0007	25.5641	-0.0608	-2.6456	-1.1766	0.0000	0.0000
1	1	3	2	-1.1953	42.1545	-1.0000	-8.0821	-1.0000	0.0000	0.0000
2	1	3	1	-0.9284	34. 3952	0.7285	-2.5440	-2.4641	0.0000	0.0000
2	1	3	2	-2.5000	79.6980	1.0000	-3.5697	-2.7501	0.0000	0.0000
1	1	3	3	-0.0179	5.0603	-0.1894	-2.5000	-2.0399	0.0000	0.0000
2	1	3	3	-0.5583	80.0000	1.0000	-4.4000	-3.0000	0.0000	0.0000
3	1	3	1	-2.5000	76.0427	-0.0141	-3.7586	-2.9000	0.0000	0.0000
3	1	3	2	0.0345	78.9586	-0.6810	-4.1777	-3.0000	0.0000	0.0000
3	1	3	3	-2.5000	66.3525	0.3986	-3.0293	-3.0000	0.0000	0.0000
1	3	3	1	2.5000	-0.5332	1.0000	-3.5096	-2.9000	0.0000	0.0000
1	3	3	2	-2.5000	3. 3219	0.7180	-5.2021	-2.9330	0.0000	0.0000
2	3	3	2	2.2500	-6.2288	1.0000	-2.6189	-1.0000	0.0000	0.0000
1	3	3	3	0.0531	-17.3983	1.0000	-2.5000	-2.1584	0.0000	0.0000
2	3	3	3	0.4723	-12. 4144	-1.0000	-2.5000	-1.0000	0.0000	0.0000
3	3	3	3	-2.5000	-25.0000	1.0000	-2.5000	-1.0000	0.0000	0.0000
1			!	Nr of hy	ydrogen bo	onds;at1;a	t2;at3;Rh	b;Dehb;vh	b1	

3 2 3 2.1200 -3.5800 1.4500 19.5000