Supporting Information

Discovery of Novel Pyridone-Conjugated Monosulfactams as Potent and Broad-Spectrum Antibiotics for Multidrug-Resistant Gram-Negative Infections

Liang Tan, ${ }^{\dagger,}{ }^{\dagger}$ Yunliang Tao, ${ }^{\S}$ Ting Wang, ${ }^{\#}$ Feng Zou, ${ }^{\#}$ Shuhua Zhang, ${ }^{\#}$ Qunhuan Kou, ${ }^{\dagger, \#}$ Ao Niu, ${ }^{\|}$Qian Chen, ${ }^{\dagger, \dagger}$ Wenjing Chu, ${ }^{\dagger \dagger}$ Xiaoyan Chen, ${ }^{\dagger, \dagger}$ Haidong Wang, ${ }^{* \&}$ and Yushe Yang ${ }^{*, \dagger, \dagger}$
${ }^{\dagger}$ State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
${ }^{\dagger}$ University of Chinese Academy of Sciences, Beijing 100049, China.
${ }^{\text {§ }}$ College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang Province 314001, China.
\# Department of Microbiology, Sichuan Primed Bio-Tech Group Co., Ltd, Chengdu, Sichuan Province 610041, China.
"Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, China.

Contents
I. Table S1. Individual MIC Data of tested compounds S2
II. Experimental Procedures S6
III. Spectral data of BAL30072 S58
IV. X-ray crystallography of $(S)-75 \quad$ S59
V. HPLC analysis for tested compounds S59

I. Table S1. Individual MIC Data of tested compounds

Bacterial		MIC (mg/L)								
strain		BAL^{a}	$\mathrm{AZT}^{\text {b }}$	MER ${ }^{c}$	$\mathrm{CEF}^{\text {d }}$	8	9	10	11	12a
Escherichia coli										
208687	ESBLs	0.25	32	0.5	2	8	1	2	1	0.06
212648		1	2	8	1	4	2	2	4	0.06
209285		0.25	16	1	2	32	4	8	64	0.25
106342		0.5	4	8	1	4	2	2	>64	0.06
210737	non-ESBLs	0.25	0.5	0.125	0.5	4	0.25	1	1	0.06
Klebsiella pneumoniae										
212423	KPC-2	64	>64	64	64	>64	64	64	64	64
209632		>64	>64	32	32	>64	64	64	64	64
209735		>64	>64	>64	64	>64	>64	64	64	64
212232		0.25	>64	>64	>64	32	4	16	8	0.03
212229		>64	>64	>64	32	>64	>64	64	64	64
Acinetobacter baumannii										
210278	OXA-23	0.5	64	64	>64	16	4	16	8	0.5
211606		0.5	64	64	>64	16	8	16	8	0.5
208995		1	>64	64	>64	32	8	32	16	1
207200		0.5	>64	64	>64	64	4	16	8	0.5
211137		>64	>64	64	32	16	64	64	64	64
Pseudomonas aeruginosa										
212886	IMP-4	1	64	64	>64	>64	64	64	64	0.5
209471		2	32	32	>64	64	64	64	64	1
208247		1	32	64	>64	64	64	64	64	0.25
209321		2	32	64	>64	>64	64	16	64	1
207272		4	4	32	>64	>64	64	32	64	8

Table S1-Continued

Bacterial		MIC (mg/L)								
strain		12b	12c	12d	12e	13a	13b	13c	14a	14b
Escherichia coli										
208687	ESBLs	0.25	<0.03	0.06	<0.03	<0.03	<0.03	<0.03	0.5	0.25
212648		2	0.06	0.125	<0.03	<0.03	0.125	<0.03	0.125	1
209285		0.5	0.25	4	0.125	0.06	0.25	0.125	1	1
106342		2	0.125	2	<0.03	<0.03	0.06	<0.03	1	0.25
210737	non-ESBLs	0.25	<0.03	2	0.06	0.06	0.25	<0.03	4	0.25
Klebsiella pneumoniae										
212423	KPC-2	4	0.25	2	16	4	16	1	1	2
209632		2	0.5	2	>64	8	8	4	1	2
209735		1	0.5	2	8	8	8	2	1	2
212232		0.03	<0.03	0.06	<0.03	<0.03	0.06	<0.03	0.25	0.25
212229		>64	0.5	64	>64	2	8	8	1	2
Acinetobacter baumannii										
210278	OXA-23	1	1	1	2	1	1	1	0.5	1
211606		1	0.5	1	0.5	1	1	1	0.5	0.5
208995		2	1	2	1	2	2	2	0.5	1
207200		1	0.5	1	2	2	1	2	0.5	1
211137		0.25	0.125	0.5	0.25	0.5	0.5	0.5	0.5	1
Pseudomonas aeruginosa										
212886	IMP-4	0.5	1	1	1	2	2	2	2	1
209471		0.5	0.5	1	1	1	1	2	4	2
208247		0.125	0.25	0.25	0.5	0.5	0.5	1	1	1
209321		1	1	1	2	2	2	2	2	1
207272		4	1	4	1	1	2	1	4	4

Table S1-Continued

Bacterial strain	β-lactamase	MIC (mg/L)								
		14c	15a	15b	15c	16a	16b	16c	17	18
Escherichia coli										
208687	ESBLs	0.06	0.06	<0.03	<0.03	<0.03	<0.03	<0.03	0.06	0.125
212648		0.125	0.125	0.125	0.25	0.125	<0.03	0.25	0.25	0.5
209285		0.5	0.25	0.25	0.25	0.25	0.125	0.25	0.25	1
106342		1	0.25	0.25	0.125	0.03	<0.03	2	0.25	0.5
210737	non-ESBLs	4	4	<0.03	0.06	<0.03	0.06	0.06	<0.03	<0.03
Klebsiella pneumoniae										
212423	KPC-2	2	32	2	64	0.5	0.5	1	1	64
209632		2	>64	2	>64	0.5	0.5	1	1	64
209735		2	8	2	>64	1	0.5	0.5	1	64
212232		0.25	0.25	0.06	0.25	<0.03	0.06	0.06	0.06	0.25
212229		2	>64	2	>64	1	1	2	1	64
Acinetobacter baumannii										
210278	OXA-23	0.5	0.5	0.5	2	0.5	1	2	1	2
211606		0.25	0.5	0.125	1	0.5	1	2	1	2
208995		1	2	1	2	1	2	2	2	2
207200		0.5	0.5	0.25	8	0.5	2	2	1	2
211137		1	1	1	2	0.125	0.25	0.25	0.25	64
Pseudomonas aeruginosa										
212886	IMP-4	4	1	1	2	0.5	2	4	0.5	2
209471		4	2	4	2	0.5	0.5	8	1	2
208247		4	0.25	1	0.5	0.125	0.25	1	0.5	0.5
209321		4	2	2	8	1	1	8	0.5	4
207272		4	16	4	8	1	4	32	4	64

Table S1-Continued

Bacterial		MIC (mg/L)									
strain		19	20	21	22	23	24	25	26	27	28
Escherichia coli											
208687	ESBLs	0.06	0.125	0.125	0.06	0.125	0.25	1	2	<0.03	<0.03
212648		0.06	0.06	0.125	0.25	0.5	0.5	1	1	<0.03	0.125
209285		0.25	1	0.125	2	1	1	1	2	0.25	0.5
106342		0.25	2	0.25	2	0.5	1	2	8	<0.03	<0.03
210737	non-ESBLs	1	1	0.06	0.25	0.06	0.125	0.5	0.5	0.06	0.06
Klebsiella pneumoniae											
212423	KPC-2	0.25	1	1	0.25	0.5	2	4	2	>64	0.5
209632		0.25	1	1	0.5	0.5	1	4	2	>64	0.5
209735		0.125	1	1	0.5	0.25	1	4	1	>64	0.5
212232		0.06	0.06	0.125	0.06	0.5	0.5	1	0.5	0.06	0.125
212229		0.5	1	1	0.25	0.5	1	4	2	>64	0.5
Acinetobacter baumannii											
210278	OXA-23	1	4	1	4	0.5	>64	2	32	1	2
211606		1	2	1	4	0.5	32	2	16	0.5	1
208995		2	4	1	32	1	>64	4	64	1	2
207200		2	4	2	64	1	64	4	64	1	2
211137		0.06	0.5	1	0.25	0.5	0.25	1	0.5	4	0.5
Pseudomonas aeruginosa											
212886	IMP-4	1	1	0.25	1	1	1	2	2	1	4
209471		2	4	1	2	1	2	2	4	1	2
208247		0.25	0.5	0.125	1	0.06	0.5	1	1	0.5	1
209321		4	2	1	2	1	4	2	4	1	8
207272		8	32	0.5	4	1	2	2	4	2	4

${ }^{a}$ BAL: BAL30072; ${ }^{b}$ AZT: aztronam; ${ }^{c}$ MER: meropenem; ${ }^{d}$ CEF: ceftizoxime sodium.

II. Experimental Procedures

General. All solvents and chemicals were used as purchased without further purification. Inert atmosphere operations were conducted under argon in flame-dried glassware. Room temperature refers to $20-25{ }^{\circ} \mathrm{C}$. All reaction mixtures were monitored using thin-layer chromatography (TLC) on silica gel F-254 TLC plates. Column chromatography was carried out using silica gel (200-300 mesh). Melting points (uncorrected) were determined on an X-4 melting point apparatus. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker 400 NMR or a Bruker 500 NMR spectrometer using solvent residue as the internal standards. Chemical shifts (δ) are reported in parts per million (ppm) and coupling constants (J) are reported in Hertz (Hz). EI-MS spectra were obtained on a Finnigan MAT95 spectrometer and ESI-MS spectra were obtained on a Krats MS 80 mass spectrometer. Purity of all final compounds was determined by analytical HPLC (PLATISIL ODS $250 \times 4.6 \mathrm{~mm}$, particle size $5 \mu \mathrm{~m}$) with methanol/buffer $\left(0.1 \% \mathrm{CF}_{3} \mathrm{COOH}\right.$ and $0.1 \% \mathrm{NH}_{4} \mathrm{OH}$ in water, pH 3.5$)$ as the mobile phase. The ee values were determined using chiral HPLC (CHIRALPAK AD-H column 250×4.6 mm , particle size $5 \mu \mathrm{~m}$ or CHIRALCEL OD-H column $250 \times 4.6 \mathrm{~mm}$, particle size $5 \mu \mathrm{~m}$) with ethanol $/ n$-hexane as the mobile phase. A purity of $>95 \%$ was achieved for all tested compounds.

Preparation of intermediate 33a.

(Z)-3-Acetyl-1-(4-methoxyphenyl)-8-(2-(tritylamino)thiazol-4-yl)-2,6-dioxa-3,7-diazanon -7-en-9-oic Acid (32a). A solution of 31a ($520 \mathrm{mg}, 2.05 \mathrm{mmol}$) in anhydrous ethanol and dichloromethane ($1: 1,20 \mathrm{~mL}$) was treated with $29(805 \mathrm{mg}, 1.94 \mathrm{mmol})$, the resulting mixture was stirred at room temperature for 4 h . For synthesis of 31a, see Myoung, G. K. et al., Bioorg. Med. Chem. Lett. 1996, 17, 2077 - 2080. For synthesis of 29, see Sakagami, K. et al., Chem. Pharm. Bull. 1990, 38, 3476 - 3479 . After completion of the reaction, the solvent was removed in vacuo and the residue was purified by chromatography on silica gel with dichloromethane/methanol to afford 32a as a light yellow solid ($530 \mathrm{mg}, 40 \%$). mp: 95 $97{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 15 \mathrm{H}), 7.25-7.20(\mathrm{~m}$, $2 \mathrm{H}), 6.96-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{t}, J=5.7$ $\mathrm{Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO) $\delta 167.95,167.91,164.18$, $159.97,153.86,144.17(4 \mathrm{C}), 131.71(2 \mathrm{C}), 129.43(6 \mathrm{C}), 128.20(6 \mathrm{C}), 127.99,127.34(3 \mathrm{C})$, $114.21(2 \mathrm{C}), 113.95,75.58,71.86,63.43,55.48,20.77$. HRMS (ESI) m / z calcd for
$\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}-\mathrm{H}]{ }^{-}$649.2126, found 649.2118.
(S,Z)-3-(3-Acetyl-1-(4-methoxyphenyl)-8-(2-(tritylamino)thiazol-4-yl)-2,6-dioxa-3,7-diaz anon-7-en-9-amido)-2,2-dimethyl-4-oxoazetidin-1-yl Hydrogen Sulfate (33a). For synthesis of 30, see James, E. D. et al., J. Org. Chem. 2003, 68, $177-179$ and Slusarchyk, W.A. et al., Tetrahedron Letters 1986, 27, 2789-2792. A solution of 32a ($500 \mathrm{mg}, 0.77 \mathrm{mmol}$) in DMSO (20 mL) was treated with HATU ($351 \mathrm{mg}, 0.92 \mathrm{mmol}$), $\mathrm{NaHCO}_{3}(194 \mathrm{mg}, 2.31$ $\mathrm{mmol})$ and $30(242 \mathrm{mg}, 1.15 \mathrm{mmol})$, and then the reacting mixture was stirred at room temperature overnight. After completion of the reaction, water (30 mL) was added and the solution was extracted with ethyl acetate. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then the filtrate was concentrated in vacuo. The residue was purified by chromatography on silica gel with dichloromethane/methanol to afford 33a as a light yellow solid ($400 \mathrm{mg}, 62 \%$). mp: $156-158{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $9.10(\mathrm{~s}, 1 \mathrm{H}), 8.88(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.20(\mathrm{~m}, 21 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.79$ $(\mathrm{s}, 2 \mathrm{H}), 4.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 168.06,163.09$, $162.05,160.02,150.09,144.10(4 \mathrm{C}), 142.02,131.73(2 \mathrm{C}), 129.44(6 \mathrm{C}), 128.24(6 \mathrm{C})$, $127.39(3 \mathrm{C}), 127.14,114.26(2 \mathrm{C}), 111.97,75.82,71.79,70.60,68.17,61.21,60.21,55.57$, 23.92(2C), 20.71. HRMS (ESI) m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{~S}_{2}[\mathrm{M}-\mathrm{H}]-841.2331$, found 841.2329 .

Preparation of intermediate 33b.

2-Methoxyisonicotinonitrile (S2). A solution of 2-chloroisonicotinonitrile ($3.0 \mathrm{~g}, 21.66$ mmol) in 1,4-dioxane (25 mL) was treated with sodium methanolate ($6.5 \mathrm{~mL}, 32.49 \mathrm{mmol}$). The reaction mixture was heated at reflux for 4 h , and then cooled to room temperature. The resulting precipitate was filtered and washed with methanol. The filtrate was concentrated down to about 20 mL , and water (40 mL) was added. The solid which precipitated out was
filtered off and purified by chromatography on silica gel with petroleum/ethyl acetate to afford $\mathbf{S 2}$ as a white solid ($1.0 \mathrm{~g}, 34 \%$). mp: $92-93{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41$ (d, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 8.01 (dd, $J=5.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94$ (s, 1H), 4.06 (s, 3H). MS (EI): m/z 134 [M] ${ }^{+}$
2-Methoxyisonicotinic Acid (S3). A solution of $\mathbf{S} \mathbf{S}(1.1 \mathrm{~g}, 8.21 \mathrm{mmol})$ in ethanol (20 mL) was treated with 10 M aqueous sodium hydroxide solution (10 mL) and heated to reflux. After 1 h , the mixture was cooled to room temperature and diluted with water. Concentrated hydrochloric acid was added to attain $\mathrm{pH}=4$, and the resulting precipitate was isolated by filtration. The material was washed with water and dried in vacuo to provide $\mathbf{S 3}$ as a white solid ($1.1 \mathrm{~g}, 88 \%$). mp: $184-187{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 13.65(\mathrm{~s}, 1 \mathrm{H}), 8.33$ (dd, $J=5.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=5.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$154.0499, found 14.0497.
(2-Methoxypyridin-4-yl)methanol (S4). To a solution of $\mathbf{S 3}(500 \mathrm{mg}, 3.27 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ was added slowly borane dimethyl sulfide ($3.3 \mathrm{~mL}, 6.60 \mathrm{mmol}$). The resulting solution was stirred at reflux overnight and then quenched by slowly adding 2 M aqueous hydrogen chloride (10 mL). The solution was extracted with ethyl acetate, washed with saturated aqueous NaHCO_{3} and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then the filtrate was concentrated in vacuo. The resulting residue was purified by chromatography on silica gel with petroleum/ethyl acetate to afford $\mathbf{S 4}$ as an oil ($335 \mathrm{mg}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=5.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.74(\mathrm{~m}, 1 \mathrm{H})$, 4.69 (d, $J=1.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.94 (s, 3H). MS (ESI): $m / z 140[\mathrm{M}+\mathrm{H}]^{+}$.

4-(Hydroxymethyl)-2-methoxypyridine 1-Oxide (S5). A solution of S4 (340 mg, 2.45 $\mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath, and then treated with m-CPBA ($976 \mathrm{mg}, 4.81 \mathrm{mmol}$). The resulting mixture was allowed to warm to room temperature and stirred for 1 h . The reaction was diluted with dichloromethane, and then washed with water, saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, saturated aqueous NaHCO_{3} and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then the filtrate was concentrated. The resulting residue was purified by chromatography on silica gel with dichloromethane/methanol to afford $\mathbf{S 5}$ as an oil ($300 \mathrm{mg}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.15(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=6.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.95(\mathrm{~s}, 3 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 156.0655$, found 156.0654 .
1-Hydroxy-4-(hydroxymethyl)pyridin-2(1H)-one (S6). A solution of $\mathbf{S 5}$ ($300 \mathrm{mg}, 1.93$ mmol) in dry dichloromethane (5 mL) and DMF (5 mL) was cooled to $-10{ }^{\circ} \mathrm{C}$, and then a solution of boron trichloride in n-hexane ($2 \mathrm{~mL}, 2.00 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred at room temperature for 1 h , then the reaction was allowed to heated to $50^{\circ} \mathrm{C}$ and stirred overnignt. The reaction mixture was quenched by slow addition of methanol (5 mL) and stirred for 10 min . The solution was concentrated in vacuo to afford $\mathbf{S 6}$ as a crude oil, which was used next step without purification.
Diphenyldiazomethane. A suspension of benzophenone hydrazone ($45.0 \mathrm{~g}, 0.23 \mathrm{~mol}$) in
petroleum (250 mL) was treated with activated manganese dioxide ($60.0 \mathrm{~g}, 0.69 \mathrm{~mol}$). The resulting mixture was heated to $40^{\circ} \mathrm{C}$ and stirred for 45 min . The reaction mixture was filtered through Celite and the filtrate was concentrated in vacuo to give diphenyldiazomethane as red oil ($43.0 \mathrm{~g}, 96.6 \%$), which was used next step without purification.
1-(Benzhydryloxy)-4-(hydroxymethyl)pyridin-2(1H)-one (S7). The crude material S6 from the former step was dissolved in methanol $(10 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$, then a solution of diphenyldiazomethane ($1.1 \mathrm{~g}, 5.67 \mathrm{mmol}$) in dichloromethane (5 mL) was added dropwise. After addition, the reaction mixture was allowed to warm to room temperature and stirred for 3 h . Then the solution was concentrated and the residue was purified by chromatography on silica gel with dichloromethane/methanol to afford $\mathbf{S} 7$ as a white solid ($200 \mathrm{mg}, 34 \%$ by two steps). mp: $107-108{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.32(\mathrm{~m}, 10 \mathrm{H}), 6.89(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.63(\mathrm{~m}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.76(\mathrm{dd}, J=7.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H})$, $3.39(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.31,153.57,137.63(2 \mathrm{C}), 136.40,128.75(2 \mathrm{C})$, $128.56(4 \mathrm{C}), 128.53(4 \mathrm{C}), 117.59,102.79,87.99,62.87$. HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$330.1101, found 330.1097.

2-((1-(Benzhydryloxy)-2-oxo-1,2-dihydropyridin-4-yl)methoxy)isoindoline-1,3-dione

(S8). A solution of $\mathbf{S 7}(220 \mathrm{mg}, 0.72 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$ was treated with N-hydroxyphthalimide ($137 \mathrm{mg}, 0.84 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(377 \mathrm{mg}, 1.44 \mathrm{mmol})$ under argon atmosphere, then the mixture was cooled to $0^{\circ} \mathrm{C}$. A solution of DEAD ($0.22 \mathrm{~mL}, 1.44 \mathrm{mmol}$) in dry THF (3 mL) was added dropwise. After addition, the resulting mixture was allowed to warm to room temperature and stirred for 30 min before being quenched by addition of water. The solution was extracted with ethyl acetate, washed with saturated aqueous NaHCO_{3} and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then the filtrate was concentrated in vacuo. The resulting residue was purified by chromatography on silica gel with petroleum/ethyl acetate to give $\mathbf{S 8}$ as a white solid ($280 \mathrm{mg}, 88 \%$). mp: $182-183{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.87-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.31(\mathrm{~m}, 10 \mathrm{H}), 6.99(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dt}, J=$ $2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=7.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 2 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{NaN}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 475.1264$, found 475.1261 .
4-((Aminooxy)methyl)-1-(benzhydryloxy)pyridin-2(1H)-one (31b). To a solution of S8 ($330 \mathrm{mg}, 0.73 \mathrm{mmol}$) in ethanol (10 mL) was added 85% hydrazine hydrate $(0.05 \mathrm{~mL}, 0.87$ mmol), and the resulting mixture was allowed to stirred at room temperature for 20 min . Water $(10 \mathrm{~mL})$ was added, and the mixture was extracted with ethyl acetate, washed with saturated aqueous NaHCO_{3} and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then the filtrate was concentrated in vacuo. The crude was purified by chromatography on silica gel with dichloromethane/methanol to give 31b as a colorless oil ($165 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.32(\mathrm{~m}, 10 \mathrm{H}), 6.95(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.56(\mathrm{~m}, 2 \mathrm{H}), 5.75(\mathrm{dd}$, $J=7.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.53(\mathrm{~s}, 2 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+$ $\mathrm{H}]^{+} 323.1390$, found 323.1396 .
(Z)-2-(((1-(Benzhydryloxy)-2-oxo-1,2-dihydropyridin-4-yl)methoxy)imino)-2-(2-(trityla mino)thiazol-4-yl)acetic Acid (32b). Compound 32b ($160 \mathrm{mg}, 60 \%$) was prepared from 31b ($120 \mathrm{mg}, 0.37 \mathrm{mmol}$) and $\mathbf{2 9}(153 \mathrm{mg}, 0.37 \mathrm{mmol})$ in the same manner as described for $\mathbf{3 2 a}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.60(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.19(\mathrm{~m}, 25 \mathrm{H}), 6.64-$ $6.53(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 717$ [M H] .
(S,Z)-3-(2-(((1-(Benzhydryloxy)-2-oxo-1,2-dihydropyridin-4-yl)methoxy)imino)-2-(2-(trit ylamino)thiazol-4-yl)acetamido)-2,2-dimethyl-4-oxoazetidin-1-yl Hydrogen Sulfate (33b). Compound 33b ($115 \mathrm{mg}, 57 \%$) was prepared from 32b ($160 \mathrm{mg}, 0.22 \mathrm{mmol}$) and $30(69 \mathrm{mg}$, 0.33 mmol) in the same manner as described for 33a. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.55$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.91(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.18(\mathrm{~m}, 25 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.50-6.44$ (m, 1H), $5.90(\mathrm{dd}, J=7.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88$ (s, 2H), 4.55 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$, 1.14 (s, 3H). MS (ESI): m/z $909[\mathrm{M}-\mathrm{H}]{ }^{-}$.

Preparation of intermediate 33c.

2-(2-Hydroxyethoxy)isoindoline-1,3-dione (S9). A solution of N-hydroxyphthalimide (4.4 g , $27.03 \mathrm{mmol})$ in DMF (50 mL) was treated with potassium carbonate ($4.5 \mathrm{~g}, 32.61 \mathrm{mmol}$), the resulting mixture was stirred at room temperature for 30 min . Then, 2-bromoethanol (1.92 $\mathrm{mL}, 27.03 \mathrm{mmol}$) was added and the mixture was heated to $80^{\circ} \mathrm{C}$. After 2 h , the mixture was cooled to room temperature and poured into ice water. The resulting precipitate was isolated by filtration and washed with water, dried in vacuo to provide $\mathbf{S 9}$ as a white solid $(3.82 \mathrm{~g}$, 68%). mp: $75-77{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93-7.77(\mathrm{~m}, 4 \mathrm{H}), 4.36-4.30(\mathrm{~m}$, $2 \mathrm{H}), 3.83(\mathrm{dt}, J=6.8,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 208[\mathrm{M}+\mathrm{H}]^{+}$.

6-((tert-Butyldiphenylsilyl)oxy)-3-mercapto-2-methyl-1,2,4-triazin-5(2H)-one (S10). A solution of 6-hydroxy-3-mercapto-2-methyl-1,2,4-triazin-5(2H)-one ($1.0 \mathrm{~g}, 6.28 \mathrm{mmol}$) in dry THF (50 mL) was treated with triethylamine ($1.0 \mathrm{~mL}, 7.54 \mathrm{mmol}$) and tert-butyldiphenylsilyl chloride ($1.95 \mathrm{~mL}, 7.54 \mathrm{mmol}$). The resulting mixture was stirred at room temperature for 1 h and then quenched with water (30 mL). The solution was extracted with ethyl acetate, washed with saturated aqueous NaHCO_{3} and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then the filtrate was concentrated in vacuo. The resulting residue was purified by chromatography on silica gel with petroleum/ethyl acetate to give $\mathbf{S 1 0}$ as a white solid ($1.96 \mathrm{~g}, 78 \%$). mp: $125-128{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 7.75-$ $7.35(\mathrm{~m}, 10 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{SSi}[\mathrm{M}-\mathrm{H}]$ -396.1207, found 396.1202.
2-(2-((6-((tert-Butyldiphenylsilyl)oxy)-2-methyl-5-oxo-2,5-dihydro-1,2,4-triazin-3-yl)thio)ethoxy)isoindoline-1,3-dione (S11). Compound $\mathbf{S 1 1}(516 \mathrm{mg}, 52 \%)$ was prepared from S9 ($347 \mathrm{mg}, 1.68 \mathrm{mmol}$), $\mathbf{S 1 0}$ ($800 \mathrm{mg}, 2.01 \mathrm{mmol}$), $\mathrm{PPh}_{3}(661 \mathrm{mg}, 2.52 \mathrm{mmol})$ and DEAD (0.4 $\mathrm{mL}, 2.52 \mathrm{mmol})$ in the same manner as described for $\mathbf{S 8} . \mathrm{mp}: 69-70^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~m}, 4 \mathrm{H}), 7.75-7.34(\mathrm{~m}, 10 \mathrm{H}), 4.44(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=5.4 \mathrm{~Hz}$, 2 H), $3.39(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]{ }^{+}$ 587.1779, found 587.1770.

2-(2-((6-Hydroxy-2-methyl-5-oxo-2,5-dihydro-1,2,4-triazin-3-yl)thio)ethoxy)isoindoline-1,3-dione (S12). A solution of $\mathbf{S 1 1}(550 \mathrm{mg}, 0.94 \mathrm{mmol})$ in dry THF (30 mL) was treated with tetrabutylammonium fluoride $(0.94 \mathrm{~mL}, 0.94 \mathrm{mmol})$. The resulting mixture was stirred at room temperature for 0.5 h and then quenched with $3 M$ methanol hydrochloride solution $(0.33 \mathrm{~mL})$. Then petroleum (20 mL) was added to form precipitate. The precipitate was isolated by filtration and washed with petroleum and dried in vacuo to give S12 as a white solid, which was used next step without purification.
2-(2-((6-(Benzhydryloxy)-2-methyl-5-oxo-2,5-dihydro-1,2,4-triazin-3-yl)thio)ethoxy)isoi ndoline-1,3-dione (S13). Compound S13 ($240 \mathrm{mg}, 50 \%$ by two steps) was prepared from crude material $\mathbf{S 1 2}$ from the former step and diphenyldiazomethane ($547 \mathrm{mg}, 2.82 \mathrm{mmol}$) in the same manner as described for S7. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{dd}, J=5.5,3.1 \mathrm{~Hz}$, 2H), 7.78 (dd, $J=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.29(\mathrm{~m}, 10 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{t}, J=5.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H})$. MS (ESI): $m / z 514[\mathrm{M}]^{+}$.
3-((2-(Aminooxy)ethyl)thio)-6-(benzhydryloxy)-2-methyl-1,2,4-triazin-5(2H)-one (31c). Compound 31c ($162 \mathrm{mg}, 90 \%$) was prepared from $\mathbf{S 1 3}$ ($240 \mathrm{mg}, 0.47 \mathrm{mmol}$) and 85% hydrazine hydrate ($0.03 \mathrm{~mL}, 0.51 \mathrm{mmol}$) in the same manner as described for $\mathbf{3 1 b}$. MS (ESI): $m / z 385[\mathrm{M}+\mathrm{H}]^{+}$.
(Z)-2-((2-((6-(Benzhydryloxy)-2-methyl-5-oxo-2,5-dihydro-1,2,4-triazin-3-yl)thio)ethoxy) imino)-2-(2-(tritylamino)thiazol-4-yl)acetic Acid (32c). Compound 32c ($251 \mathrm{mg}, 76 \%$) was prepared from 31c ($160 \mathrm{mg}, 0.42 \mathrm{mmol}$) and $29(174 \mathrm{mg}, 0.42 \mathrm{mmol})$ in the same manner as described for 32a. mp: $163-167{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.86(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.23$
$(\mathrm{m}, 25 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~s}$, 3H). HRMS (ESI) m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{35} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{~S}_{2}[\mathrm{M}-\mathrm{H}]^{-} 779.2116$, found 779.2122.
(S,Z)-3-(2-((2-((6-(Benzhydryloxy)-2-methyl-5-oxo-2,5-dihydro-1,2,4-triazin-3-yl)thio)et hoxy)imino)-2-(2-(tritylamino)thiazol-4-yl)acetamido)-2,2-dimethyl-4-oxoazetidin-1-yl
Hydrogen Sulfate (33c). Compound 33c ($154 \mathrm{mg}, 83 \%$) was prepared from 32c (150 mg , $0.19 \mathrm{mmol})$ and $\mathbf{3 0}(61 \mathrm{mg}, 0.29 \mathrm{mmol})$ in the same manner as described for $\mathbf{3 3 a} . \mathrm{mp}: 155{ }^{\circ} \mathrm{C}$ decomp. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.38(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.87(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.15$ $(\mathrm{m}, 25 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{~s}$, $3 \mathrm{H}), 3.41(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{48} \mathrm{H}_{43} \mathrm{~N}_{8} \mathrm{O}_{9} \mathrm{~S}_{3}[\mathrm{M}-\mathrm{H}]{ }^{-} 971.2321$, found 971.2320 .
Preparation of intermediate 33d.

5-(Benzhydryloxy)-2-methyl-4H-pyran-4-one (S14). Compound S14 (2.33 g, 35\%) was prepared from commercial material 5-hydroxy-2-methyl-4H-pyran-4-one ($2.9 \mathrm{~g}, 23.00 \mathrm{mmol}$) and diphenyldiazomethane ($6.7 \mathrm{~g}, 34.50 \mathrm{mmol}$) in the same manner as described for $\mathbf{S} 7 . \mathrm{mp}$: $123-125{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.29(\mathrm{~m}, 11 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 6.22(\mathrm{q}, J=$ $0.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.21(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$ 315.0992, found 315.0987.

5-(Benzhydryloxy)-1-(2-hydroxyethyl)-2-methylpyridin-4(1H)-one (S15). A suspension of $\mathbf{S 1 4}(1.8 \mathrm{~g}, 6.15 \mathrm{mmol})$ in methanol $(5 \mathrm{~mL})$ was treated with ethanolamine $(18.4 \mathrm{~mL}, 307.50$ $\mathrm{mmol})$. The resulting mixture was heated to $60^{\circ} \mathrm{C}$ and stirred for 12 h . The reaction mixture was cooled to room temperature and water (30 mL) was added. The solution was extracted with ethyl acetate, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then the filtrate was concentrated in vacuo. The resulting residue was purified by chromatography on silica gel with dichloromethane/methanol to afford $\mathbf{S 1 5}(0.62 \mathrm{~g}, 30 \%), \mathrm{mp}: 209-210{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.19(\mathrm{~m}, 10 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H})$,
$3.72(\mathrm{dd}, J=5.6,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{dd}, J=5.5,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) . \operatorname{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 336.1594$, found 336.1601 .

2-(2-(5-(Benzhydryloxy)-2-methyl-4-oxopyridin-1(4H)-yl)ethoxy)isoindoline-1,3-dione

 (S16). Compound S16 (720 mg, 75\%) was prepared from S15 (670 mg, 1.99 mmol), N-hydroxyphthalimide ($489 \mathrm{mg}, 2.99 \mathrm{mmol}$), $\mathrm{PPh}_{3}(1.56 \mathrm{~g}, 5.99 \mathrm{mmol})$ and DEAD $(0.94 \mathrm{~mL}$, 5.99 mmol) in the same manner as described for S8. mp: $114-116{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.93-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.09(\mathrm{~m}, 11 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=$ $5.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}$ $+\mathrm{H}]^{+} 481.1758$, found 481.1766 .1-(2-(Aminooxy)ethyl)-5-(benzhydryloxy)-2-methylpyridin-4(1H)-one (31d). Compound 31d (190 mg, 30\%) was prepared from S16 ($850 \mathrm{mg}, 1.77 \mathrm{mmol}$) and 85% hydrazine hydrate $(0.11 \mathrm{~mL}, 1.95 \mathrm{mmol})$ in the same manner as described for 31b. $\mathrm{mp}: 169-171{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.25(\mathrm{~m}, 10 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{t}, J$ $=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / z$ calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+} 351.1703$, found 351.1711 .
(Z)-2-((2-(5-(Benzhydryloxy)-2-methyl-4-oxopyridin-1(4H)-yl)ethoxy)imino)-2-(2-(trityl amino)thiazol-4-yl)acetic Acid (32d). Compound 32d (300 mg, 79\%) was prepared from 31d ($178 \mathrm{mg}, 0.51 \mathrm{mmol}$) and $29(200 \mathrm{mg}, 0.48 \mathrm{mmol})$ in the same manner as described for 32a. mp: $165-167{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.87(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.17(\mathrm{~m}, 25 \mathrm{H})$, $6.85(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{t}, J=5.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{45} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]{ }^{+} 747.2636$, found 747.2649.
(S,Z)-3-(2-((2-(5-(Benzhydryloxy)-2-methyl-4-oxopyridin-1(4H)-yl)ethoxy)imino)-2-(2-(t ritylamino)thiazol-4-yl)acetamido)-2,2-dimethyl-4-oxoazetidin-1-yl Hydrogen Sulfate (33d). Compound 33d ($200 \mathrm{mg}, 53 \%$) was prepared from 32d ($300 \mathrm{mg}, 0.40 \mathrm{mmol}$) and 30 $(126 \mathrm{mg}, 0.60 \mathrm{mmol})$ in the same manner as described for $\mathbf{3 3 a} .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO-d ${ }_{6}$) $\delta 9.44(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.86(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.19(\mathrm{~m}, 25 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.61$ $(\mathrm{s}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{t}, J=5.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H})$.

Preparation of intermediate 39a-2.

5-(Benzhydryloxy)-2-(hydroxymethyl)-4H-pyran-4-one (S17). A suspension of kojic acid $34(17 \mathrm{~g}, 0.12 \mathrm{~mol})$ in ethanol $(350 \mathrm{~mL})$ was treated with diphenyldiazomethane $(46 \mathrm{~g}$, 0.24 mol). The mixture was stirred at $40^{\circ} \mathrm{C}$ for 20 h and concentrated in vacuo to remove ethanol. The resulting residue was taken up in petroleum/toluene/water ($5 / 3 / 2,500 \mathrm{~mL}$) to precipitate. The light yellow solid was filtered and suspended in tert-butyl methyl ether (100 mL) and then filtered to afford $\mathbf{S 1 7}$ as a white solid ($23.5 \mathrm{~g}, 64 \%$). mp: $126-128{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 10 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H})$, 4.39 (d, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$. MS (ESI): $m / z 331[\mathrm{M}+\mathrm{Na}]^{+}$.

5-(Benzhydryloxy)-1-hydroxy-2-(hydroxymethyl)pyridin-4(1H)-one (S18). A suspension of $\mathbf{S 1 7}(21.0 \mathrm{~g}, 68.10 \mathrm{mmol})$ in a mixture of ethanol $(75 \mathrm{~mL})$ and water $(75 \mathrm{~mL})$ was treated with hydroxylamine hydrochloride $(47.0 \mathrm{~g}, 0.68 \mathrm{~mol})$ and sodium acetate trihydrate $(92.5 \mathrm{~g}$, $0.68 \mathrm{~mol})$. The resulting mixture was heated to $70{ }^{\circ} \mathrm{C}$ and stirred for 18 h . The reaction mixture was cooled to room temperature and filtered to give white solid. The solid was washed sequentially with water, ethanol and tert-butyl methyl ether and dried in vacuo to provide $\mathbf{S 1 8}$ as a white solid ($10.0 \mathrm{~g}, 46 \%$) . mp: $222-224{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 10.71(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.23(\mathrm{~m}, 10 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H})$, 5.49 (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39$ (d, $J=3.2 \mathrm{~Hz}, 2 \mathrm{H}$). MS (ESI): $m / z 324[\mathrm{M}+\mathrm{H}]^{+}$.

1,5-Bis(benzhydryloxy)-2-(hydroxymethyl)pyridin-4(1H)-one (35). A suspension of S18 $(9.0 \mathrm{~g}, 27.8 \mathrm{mmol})$ in DMSO (150 mL) was heated to $85^{\circ} \mathrm{C}$ to dissolve the compound. The reaction mixture was cooled to room temperature and treated with potassium carbonate $(5.8 \mathrm{~g}$, $41.70 \mathrm{mmol})$, sodium iodide ($6.1 \mathrm{~g}, 41.70 \mathrm{mmol}$) and chlorodiphenylmethane ($7.2 \mathrm{~mL}, 41.70$ mmol). The mixture was stirred at room temperature for 20 h and then treated with ice cold water. The yellow solid was filtered, washed with water and suspended in ethyl acetate (100 mL) and petroleum (50 mL), collected by filtration and washed with ethyl acetate to afford 9 as a light yellow solid ($13.5 \mathrm{~g}, 99 \%$). mp: $123-125{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ
$7.60(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.22(\mathrm{~m}, 20 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{t}, J=6.0 \mathrm{~Hz}$, 1 H), 4.11 (d, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}$). MS (ESI): $m / z 490[\mathrm{M}+\mathrm{H}]^{+}$.
1,5-Bis(benzhydryloxy)-4-oxo-1,4-dihydropyridine-2-carbaldehyde (36). A suspension of $35(15.0 \mathrm{~g}, 30.64 \mathrm{mmol})$ in dichloromethane $(210 \mathrm{~mL})$ was added DMSO $(70 \mathrm{~mL})$ to dissolve the compound. The resulting mixture was then cooled to $0^{\circ} \mathrm{C}$, and triethylamine (27 mL) was added followed by sulfur trioxide pyridine complex ($24.4 \mathrm{~g}, 0.15 \mathrm{~mol}$). The solution was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 6 h , and then the reaction was concentrated in vacuo to remove dichloromethane and redissolved in ethyl acetate (200 mL). The mixture was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then the filtrate was concentrated in vacuo. The resulting residue was purified by chromatography on silica gel with dichloromethane/methanol to give 36 as a white solid ($12.0 \mathrm{~g}, 80 \%$). mp: $127-128{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.55(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.30(\mathrm{~m}, 16 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 5 \mathrm{H}), 6.65(\mathrm{~s}$, $1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 181.08, 172.27, 148.76, $140.02(2 \mathrm{C}), \quad 138.84, \quad 135.80(2 \mathrm{C}), \quad 129.76(2 \mathrm{C}), \quad 129.03(4 \mathrm{C}), \quad 128.65(4 \mathrm{C}), \quad 128.14(2 \mathrm{C})$, 127.94(4C), 127.36(4C), $126.83,116.34,93.49,82.40$. HRMS (EI) m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{NO}_{4}$ $[\mathrm{M}]^{+} 487.1784$, found 487.1775 .
1,5-Bis(benzhydryloxy)-2-(1-hydroxyethyl)pyridin-4(1H)-one (37a). A solution of 36 $(1.66 \mathrm{~g}, 3.40 \mathrm{mmol})$ in dry THF (20 mL) under argon atmosphere was cooled to $-20^{\circ} \mathrm{C}$, and then a solution of methylmagnesium bromide in THF ($3.4 \mathrm{~mL}, 10.20 \mathrm{mmol}$) was added dropwise to keep the reaction mixture below $10^{\circ} \mathrm{C}$. After addition, the resulting mixture was allowed to warm to room temperature and stirred for 3 h before quenched by slow addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The solution was extracted with ethyl acetate, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then the filtrate was concentrated in vacuo. The resulting residue was purified by chromatography on silica gel with petroleum/ethyl acetate to afford $\mathbf{3 7 a}$ as a white solid ($1.56 \mathrm{~g}, 91 \%$). mp: $87-90^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.54-7.11(\mathrm{~m}, 20 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{q}, J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.36(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.77,152.15,144.86,140.51$, $140.41,137.77,137.38,129.16,129.00,128.74(2 \mathrm{C}), 128.56(2 \mathrm{C}), 128.50(2 \mathrm{C}), 128.45(2 \mathrm{C})$, 127.84, 127.81, 127.20(4C), 126.98(4C), 126.82, 112.45, 92.51, 82.14, 63.23, 22.36. HRMS (ESI) m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 504.2169$, found 504.2182.
2-(1-(1,5-Bis(benzhydryloxy)-4-oxo-1,4-dihydropyridin-2-yl)ethoxy)isoindoline-1,3-dion e (38a). Compound 38a ($1.03 \mathrm{~g}, 67 \%$) was prepared from $\mathbf{3 7 a}(1.2 \mathrm{~g}, 2.38 \mathrm{mmol})$, N-hydroxyphthalimide ($0.47 \mathrm{~g}, 2.86 \mathrm{mmol}$), $\mathrm{PPh}_{3}(0.94 \mathrm{~g}, 3.58 \mathrm{mmol})$ and DEAD (0.56 mL , 3.58 mmol) in the same manner as described for S8. mp: $100-102{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{dd}, J=5.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{dd}, J=5.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.30(\mathrm{~m}, 20 \mathrm{H})$, $6.82(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.33,163.89(2 \mathrm{C}), 146.08,143.68,140.33,140.18$, $137.43,137.29,134.72(2 \mathrm{C}), 129.43,129.06(2 \mathrm{C}), 128.87(2 \mathrm{C}), 128.81,128.77(2 \mathrm{C}), 128.64$, 128.56(2C), 128.50(2C), 127.93, 127.87, 127.44(2C), 127.06(2C), 126.98(2C), 126.43,
123.79(2C), $114.52,92.10,82.05,77.75,17.23$. HRMS (ESI) m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+$ $\mathrm{H}]^{+} 649.2333$, found 649.2348 .
2-(1-(Aminooxy)ethyl)-1,5-bis(benzhydryloxy)pyridin-4(1H)-one (39a). Compound 39a ($800 \mathrm{mg}, 97 \%$) was prepared from $\mathbf{3 8 a}(1.03 \mathrm{~g}, 1.59 \mathrm{mmol})$ and 85% hydrazine hydrate (0.10 $\mathrm{mL}, 1.75 \mathrm{mmol}$) in the same manner as described for 31b. mp: 70-71 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.21(\mathrm{~m}, 20 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H})$, $5.39(\mathrm{~s}, 2 \mathrm{H}), 4.73(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.75,148.87,145.69,140.49,140.18,137.66,137.48,129.55,129.17(2 \mathrm{C}), 128.84(2 \mathrm{C})$, $128.82(2 \mathrm{C}), 128.75,128.56(2 \mathrm{C}), 128.43(2 \mathrm{C}), 127.84(2 \mathrm{C}), 127.38(2 \mathrm{C}), 126.99(2 \mathrm{C})$, $126.66(2 \mathrm{C}), 125.68,111.64,92.16,82.15,75.45,19.88$. HRMS (ESI) m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 519.2278$, found 519.2291.
(Z)-2-((1-(1,5-Bis(benzhydryloxy)-4-ox0-1,4-dihydropyridin-2-yl)ethoxy)imino)-2-(2-(trit ylamino)thiazol-4-yl)acetic Acid (39a-1). Compound 39a-1 (1.12 g, 79\%) was prepared from 39a ($800 \mathrm{mg}, 1.54 \mathrm{mmol}$) and $29(605 \mathrm{mg}, 1.46 \mathrm{mmol})$ in the same manner as described for 32a. mp: $157-159{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.17$ $(\mathrm{m}, 35 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.21$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}$) characteristic peaks: δ 171.37, 167.76, 163.66, 149.62, 147.93, 145.29, 144.20, 141.19, 141.12, 140.66, 137.50, 137.35, 129.57, 129.39, 129.31, 129.22, 129.04, 129.00, 128.45, 128.25, 128.15, 127.84, 127.27, 127.17, $127.05,126.35,111.67,110.93,90.95,81.12,74.59,71.91,19.32$. HRMS (ESI) m / z calcd for $\mathrm{C}_{57} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 915.3211$, found 915.3221.
(3S)-3-((Z)-2-((1-(1,5-Bis(benzhydryloxy)-4-oxo-1,4-dihydropyridin-2-yl)ethoxy)imino)-2 -(2-(tritylamino)thiazol-4-yl)acetamido)-2,2-dimethyl-4-oxoazetidin-1-yl Hydrogen
Sulfate (39a-2). Compound 39a-2 (a mixture of diastereomer (approximately 1:1), 670 mg , 92%) was prepared from 39a-1 ($600 \mathrm{mg}, 0.66 \mathrm{mmol}$) and $\mathbf{3 0}(206 \mathrm{mg}, 0.98 \mathrm{mmol})$ in the same manner as described for 33a. mp: $170{ }^{\circ} \mathrm{C}$ decomp. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $9.46(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.72(\mathrm{~s}, 1 / 2 \mathrm{H}), 8.69(\mathrm{~s}, 1 / 2 \mathrm{H}), 7.72(\mathrm{~s}, 1 / 2 \mathrm{H}), 7.69(\mathrm{~s}, 1 / 2 \mathrm{H}), 7.46-$ $7.18(\mathrm{~m}, 35 \mathrm{H}), 6.70(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.39(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.38(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.29(\mathrm{~s}, 1 / 2 \mathrm{H})$, $6.16(\mathrm{~s}, 1 / 2 \mathrm{H}), 5.15-5.01(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 / 2 \mathrm{H})$, $1.40(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.38(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.18-1.10(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO, most carbons show two peaks because of diastereomers) characteristic peaks: $\delta 170.78,167.87$, 162.90 and $162.76,162.05$ and $161.91,158.74$ and $158.47,150.90$ and $150.81,148.50$ and $148.42,148.21,146.15,145.17$ and $145.10,144.04,141.69$ and $141.63,140.80,137.36$ and 137.31, 137.27 and $137.24,129.76,129.39,129.29,129.26,129.10,129.09,129.06,128.71$, $128.63,128.48,128.37,128.24,127.96,127.66,127.60,127.37,127.16,127.14,127.05$, $126.91,126.83,126.65,112.18$ and $112.00,111.85$ and $111.75,91.54$ and $91.50,81.53$ and 81.48, 74.35 and $73.92,71.75,68.37$ and $68.22,61.44$ and $61.18,23.94,20.82$ and 20.69, 19.33 and 19.18. HRMS (ESI) m / z calcd for $\mathrm{C}_{62} \mathrm{H}_{53} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{~S}_{2}[\mathrm{M}-\mathrm{H}]{ }^{-} 1105.3270$, found 1105.3274 .

Preparation of intermediate 39b-2.

1,5-Bis(benzhydryloxy)-2-(1-hydroxypropyl)pyridin-4(1H)-one (37b). Compound 37b $(720 \mathrm{mg}, 68 \%)$ was prepared from $36(1.0 \mathrm{~g}, 2.05 \mathrm{mmol})$ and ethylmagnesium bromide (10.0 $\mathrm{mL}, 10.00 \mathrm{mmol}$) in the same manner as described for $\mathbf{3 7 a} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ $7.48(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.20(\mathrm{~m}, 20 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.26(\mathrm{dt}, J=6.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.43-1.33(\mathrm{~m}, 2 \mathrm{H}), 0.70(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 172.69,151.42,144.77,140.53,140.45,137.86,137.47,129.10,128.99$, $128.71(2 \mathrm{C}), 128.49(2 \mathrm{C}), 128.46(2 \mathrm{C}), 128.43(2 \mathrm{C}), 127.83,127.77,127.25(4 \mathrm{C}), 126.96(2 \mathrm{C})$, 126.94(2C), 126.92, 113.14, 92.43, 82.12, 68.33, 29.71, 9.97. HRMS (ESI) m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$518.2326, found 518.2327.

2-(1-(1,5-Bis(benzhydryloxy)-4-oxo-1,4-dihydropyridin-2-yl)propoxy)isoindoline-1,3-dio

 ne (38b). Compound 38b ($160 \mathrm{mg}, 62 \%$) was prepared from 37b ($200 \mathrm{mg}, 0.39 \mathrm{mmol}$), N-hydroxyphthalimide ($78 \mathrm{mg}, 0.46 \mathrm{mmol}$), $\mathrm{PPh}_{3}(254.4 \mathrm{mg}, 0.97 \mathrm{mmol})$ and DEAD (0.15 $\mathrm{mL}, 0.97 \mathrm{mmol})$ in the same manner as described for $\mathbf{S 8} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77$ $-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.12(\mathrm{~m}, 20 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H})$, $4.89(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 663[\mathrm{M}$ $+\mathrm{H}]^{+}$.2-(1-(Aminooxy)propyl)-1,5-bis(benzhydryloxy)pyridin-4(1H)-one (39b). Compound 39b $(110 \mathrm{mg}, 86 \%)$ was prepared from $\mathbf{3 8 b}(160 \mathrm{mg}, 0.24 \mathrm{mmol})$ and 85% hydrazine hydrate $(0.02 \mathrm{~mL}, 0.36 \mathrm{mmol})$ in the same manner as described for 31b. MS (ESI): $m / z 533[\mathrm{M}+\mathrm{H}]^{+}$. (Z)-2-((1-(1,5-Bis(benzhydryloxy)-4-0xo-1,4-dihydropyridin-2-yl)propoxy)imino)-2-(2-(t ritylamino)thiazol-4-yl)acetic Acid (39b-1). Compound 39b-1 (300 mg, 69\%) was prepared from 39b ($250 \mathrm{mg}, 0.47 \mathrm{mmol}$) and $29(195 \mathrm{mg}, 0.47 \mathrm{mmol})$ in the same manner as described for 32a. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.73(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.18(\mathrm{~m}, 35 \mathrm{H})$, $6.81(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.19(\mathrm{~m}, 2 \mathrm{H}), 0.67$ (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 929[\mathrm{M}+\mathrm{H}]^{+}$.
(3S)-3-((Z)-2-((1-(1,5-Bis(benzhydryloxy)-4-oxo-1,4-dihydropyridin-2-yl)propoxy)imino) -2-(2-(tritylamino)thiazol-4-yl)acetamido)-2,2-dimethyl-4-oxoazetidin-1-yl Hydrogen Sulfate (39b-2). Compound 39b-2 (a mixture of diastereomer (approximately 1:1), 250 mg , 70%) was prepared from $\mathbf{3 9 b} \mathbf{- 1}(300 \mathrm{mg}, 0.32 \mathrm{mmol})$ and $\mathbf{3 0}(95 \mathrm{mg}, 0.45 \mathrm{mmol})$ in the same manner as described for 33a. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 / 2 \mathrm{H}$), $9.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 8.65(\mathrm{~s}, 1 / 2 \mathrm{H}), 8.62(\mathrm{~s}, 1 / 2 \mathrm{H}), 7.43-7.19(\mathrm{~m}, 35 \mathrm{H}), 6.71(\mathrm{~s}, 1 / 2 \mathrm{H})$, $6.69(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.17(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.07(\mathrm{~s}, 1 / 2 \mathrm{H}), 5.95(\mathrm{~s}, 1 / 2 \mathrm{H}), 4.85$ (dd, $J=8.1,4.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.77(\mathrm{dd}, J=8.6,4.4 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.48$ (d, $J=7.5 \mathrm{~Hz}, 1 / 2 \mathrm{H}$), 1.99 (dt, $J=13.2,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.38(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.17$ (s, 3 H), 0.67 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. MS (ESI): $m / z 1119[\mathrm{M}-\mathrm{H}]^{-}$.

Preparation of intermediate 39d-2.

1,5-Bis(benzhydryloxy)-2-(cyclopropyl(hydroxy)methyl)pyridin-4(1H)-one
(37d).
Compound 37d ($477 \mathrm{mg}, 73 \%$) was prepared from 36 ($600 \mathrm{mg}, 1.23 \mathrm{mmol}$) and cyclopropylmagnesium bromide ($9.6 \mathrm{~mL}, 4.80 \mathrm{mmol}$) in the same manner as described for 37a. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.12(\mathrm{~m}, 20 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 6.28$ $(\mathrm{s}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.94-0.83(\mathrm{~m}, 1 \mathrm{H})$, $0.39-0.31(\mathrm{~m}, 1 \mathrm{H}), 0.30-0.23(\mathrm{~m}, 1 \mathrm{H}), 0.22-0.15(\mathrm{~m}, 1 \mathrm{H}),-0.03 \sim-0.12(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}$ (ESI): $m / z 530[\mathrm{M}+\mathrm{H}]^{+}$.
2-((1,5-Bis(benzhydryloxy)-4-oxo-1,4-dihydropyridin-2-yl)(cyclopropyl)methoxy)isoindo line-1,3-dione (38d). Compound 38d ($290 \mathrm{mg}, 48 \%$) was prepared from $\mathbf{3 7 d}(477 \mathrm{mg}, 0.90$ mmol), N-hydroxyphthalimide ($440 \mathrm{mg}, 2.70 \mathrm{mmol}$), $\mathrm{PPh}_{3}(708 \mathrm{mg}, 2.70 \mathrm{mmol})$ and DEAD $(0.42 \mathrm{~mL}, 2.70 \mathrm{mmol})$ in the same manner as described for $\mathbf{S 8}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.84-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.19(\mathrm{~m}, 20 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~s}$, $1 \mathrm{H}), 4.22(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.95-0.82(\mathrm{~m}, 1 \mathrm{H}), 0.72-0.61(\mathrm{~m}, 1 \mathrm{H}), 0.54-0.41(\mathrm{~m}, 2 \mathrm{H})$, $-0.11 \sim-0.22(\mathrm{~m}, 1 \mathrm{H})$. MS (ESI): $m / z 675[\mathrm{M}+\mathrm{H}]^{+}$.
2-((Aminooxy)(cyclopropyl)methyl)-1,5-bis(benzhydryloxy)pyridin-4(1H)-one
(39d).
Compound 39d ($200 \mathrm{mg}, 92 \%$) was prepared from $\mathbf{3 8 d}$ ($270 \mathrm{mg}, 0.40 \mathrm{mmol}$) and 85%
hydrazine hydrate ($0.03 \mathrm{~mL}, 0.44 \mathrm{mmol}$) in the same manner as described for 31b. MS (ESI): $m / z 545[\mathrm{M}+\mathrm{H}]^{+}$.
(Z)-2-(((1,5-Bis(benzhydryloxy)-4-oxo-1,4-dihydropyridin-2-yl)(cyclopropyl)methoxy)im ino)-2-(2-(tritylamino)thiazol-4-yl)acetic Acid (39d-1). Compound 39d-1 ($390 \mathrm{mg}, 65 \%$) was prepared from 39d ($350 \mathrm{mg}, 0.64 \mathrm{mmol}$) and $29(265 \mathrm{mg}, 0.64 \mathrm{mmol})$ in the same manner as described for 32a. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.63$ ($\mathrm{s}, 1 \mathrm{H}$), $6.24(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.48(\mathrm{~s}$, $1 \mathrm{H}), 0.36(\mathrm{~s}, 1 \mathrm{H}), 0.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.03(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 941[\mathrm{M}+\mathrm{H}]^{+}$.
(3S)-3-((Z)-2-(((1,5-Bis(benzhydryloxy)-4-0xo-1,4-dihydropyridin-2-yl)(cyclopropyl)met hoxy)imino)-2-(2-(tritylamino)thiazol-4-yl)acetamido)-2,2-dimethyl-4-oxoazetidin-1-yl Hydrogen Sulfate (39d-2). Compound 39d-2 (a mixture of diastereomer (approximately 1:1), $340 \mathrm{mg}, 73 \%)$ was prepared from 39d-1 ($390 \mathrm{mg}, 0.41 \mathrm{mmol}$) and $\mathbf{3 0}(126 \mathrm{mg}, 0.60 \mathrm{mmol})$ in the same manner as described for 33a. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.45(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 8.63(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.13(\mathrm{~m}, 35 \mathrm{H}), 6.73(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.34(\mathrm{~s}$, $1 / 2 \mathrm{H}), 6.31(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.20(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.16(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.13(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.12(\mathrm{~s}, 1 / 2 \mathrm{H}), 4.53(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.32(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 / 2 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.12(\mathrm{~s}, 3 / 2 \mathrm{H}), 0.90-0.83(\mathrm{~m}, 1 \mathrm{H}), 0.53-0.44(\mathrm{~m}, 1 \mathrm{H})$, $0.42-0.32(\mathrm{~m}, 1 \mathrm{H}), 0.30-0.24(\mathrm{~m}, 1 / 2 \mathrm{H}), 0.23-0.16(\mathrm{~m}, 1 / 2 \mathrm{H}),-0.04 \sim-0.17(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}$ (ESI): m/z $1131[\mathrm{M}-\mathrm{H}]^{-}$.

Preparation of intermediate 39e-2.

1,5-Bis(benzhydryloxy)-2-(1-hydroxyallyl)pyridin-4(1H)-one (37e). Compound 37e (800 $\mathrm{mg}, 76 \%$) was prepared from $\mathbf{3 6}(1.0 \mathrm{~g}, 2.05 \mathrm{mmol})$ and vinylmagnesium bromide (10.0 mL , 10.00 mmol) in the same manner as described for $\mathbf{3 7 a}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 7.58$ $(\mathrm{s}, 1 \mathrm{H}), 7.45-7.17(\mathrm{~m}, 20 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.58(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.11(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.55,149.23,145.02,140.44,140.36,137.68,137.45,136.17,129.15$, $128.99,128.77(2 \mathrm{C}), 128.60(2 \mathrm{C}), 128.51(2 \mathrm{C}), 128.47(2 \mathrm{C}), 127.88,127.81,127.20(2 \mathrm{C})$, 127.11(2C), 127.04, 126.91(4C), 116.95, 113.96, 92.58, 82.17, 67.83. HRMS (ESI) m / z calcd
for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 516.2169$, found 516.2171.
2-((1-(1,5-Bis(benzhydryloxy)-4-oxo-1,4-dihydropyridin-2-yl)allyl)oxy)isoindoline-1,3-di one (38e). Compound 38e ($661 \mathrm{mg}, 65 \%$) was prepared from 37e ($800 \mathrm{mg}, 1.55 \mathrm{mmol}$), N-hydroxyphthalimide ($310 \mathrm{mg}, 1.90 \mathrm{mmol}$), $\mathrm{PPh}_{3}(839 \mathrm{mg}, 3.20 \mathrm{mmol})$ and DEAD (0.50 $\mathrm{mL}, 3.20 \mathrm{mmol})$ in the same manner as described for $\mathbf{S 8} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83$ - 7.73 (m, 4H), $7.40-7.22(\mathrm{~m}, 20 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 5.96$ (dd, $J=$ $10.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=17.2,10.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.10 (d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}$). MS (ESI): $m / z 661[\mathrm{M}+\mathrm{H}]^{+}$.

2-(1-(Aminooxy)allyl)-1,5-bis(benzhydryloxy)pyridin-4(1H)-one (39e). Compound 39e $(479 \mathrm{mg}, 90 \%)$ was prepared from $\mathbf{3 8 e}(660 \mathrm{mg}, 1.0 \mathrm{mmol})$ and 85% hydrazine hydrate $(0.06$ $\mathrm{mL}, 1.05 \mathrm{mmol}$) in the same manner as described for 31b. MS (ESI): $m / z 531[\mathrm{M}+\mathrm{H}]^{+}$.
(Z)-2-(((1-(1,5-Bis(benzhydryloxy)-4-oxo-1,4-dihydropyridin-2-yl)allyl)oxy)imino)-2-(2-(tritylamino)thiazol-4-yl)acetic Acid (39e-1). Compound 39e-1 ($480 \mathrm{mg}, 61 \%$) was prepared from 39e ($450 \mathrm{mg}, 0.85 \mathrm{mmol}$) and $29(352 \mathrm{mg}, 0.85 \mathrm{mmol})$ in the same manner as described for 32a. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.15(\mathrm{~m}, 35 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H})$, $6.52(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 5.68(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.26-5.14(\mathrm{~m}, 2 \mathrm{H})$. MS (ESI): $m / z 927[\mathrm{M}+\mathrm{H}]^{+}$.
(3S)-3-((Z)-2-(((1-(1,5-Bis(benzhydryloxy)-4-oxo-1,4-dihydropyridin-2-yl)allyl)oxy)imino)-2-(2-(tritylamino)thiazol-4-yl)acetamido)-2,2-dimethyl-4-oxoazetidin-1-yl Hydrogen Sulfate (39e-2). Compound 39e-2 (a mixture of diastereomer (approximately 1:1), 300 mg , 52%) was prepared from $\mathbf{3 9 e}-1(480 \mathrm{mg}, 0.52 \mathrm{mmol})$ and $\mathbf{3 0}(164 \mathrm{mg}, 0.78 \mathrm{mmol})$ in the same manner as described for 33a. mp: $153{ }^{\circ} \mathrm{C}$ decomp. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $9.52(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.79(\mathrm{~s}, 1 / 2 \mathrm{H}), 8.73(\mathrm{~s}, 1 / 2 \mathrm{H}), 7.53-7.12(\mathrm{~m}, 35 \mathrm{H}), 6.72(\mathrm{~s}, 1 / 2 \mathrm{H})$, $6.70(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.32(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.31(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.22(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.18(\mathrm{~s}, 1 / 2 \mathrm{H}), 5.98(\mathrm{~s}, 1 / 2 \mathrm{H})$, 5.92 (s, 1/2H), 5.69 (ddd, $J=17.2,10.7,5.3 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 5.58$ (ddd, $J=17.5,10.7,5.4 \mathrm{~Hz}$, $1 / 2 \mathrm{H}$), 5.47 (dt, $J=5.4,1.4 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 5.44-5.41(\mathrm{~m}, 1 / 2 \mathrm{H}), 5.34-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.48(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 1.37(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.35(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.06(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.03$ (s, 3/2H). MS (ESI): $m / z 1117$ [M - H] .

Preparation of intermediate 49-2.

5-(Benzyloxy)-2-(hydroxymethyl)-4H-pyran-4-one (40). A suspension of $\mathbf{3 4}$ ($100 \mathrm{~g}, 0.70$ mol) in methanol (350 mL) was treated with 2.3 M aqueous sodium hydroxide ($300 \mathrm{~mL}, 0.70$ mol). Benzyl chloride ($89 \mathrm{~mL}, 0.77 \mathrm{~mol}$) was added to the mixture, and then the solution was heated to $60{ }^{\circ} \mathrm{C}$ and stirred 6 h . The reaction mixture was cooled to room temperature and concentrated, filtered, and the resulting precipitate was washed with water and ethyl acetate to give 40 as a white solid ($149.3 \mathrm{~g}, 91 \%$). mp: $124-126{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.54(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.54(\mathrm{t}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 4.46(\mathrm{dd}, J=6.6,0.9$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.31 (s, 1H). MS (ESI): $m / z 233[\mathrm{M}+\mathrm{H}]^{+}$.
5-(Benzyloxy)-2-(hydroxymethyl)pyridin-4(1H)-one (41). A suspension of $\mathbf{4 0}$ ($78 \mathrm{~g}, 0.34$ mol) in MeOH (150 mL) was treated with aqueous ammonium hydroxide ($400 \mathrm{~mL}, 4.44 \mathrm{~mol}$). The resulting mixture was heated to $55{ }^{\circ} \mathrm{C}$ and stirred overnight, then cooled to room temperature, the resulting precipitate was collected by filtration and washed with water, followed by ethyl acetate to afford 41 as a white solid ($70 \mathrm{~g}, 90 \%$). mp: $218-220{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.11$ (s, 1H), 7.44 - 7.27 (m, 6H), 6.08 (s, 1H), 5.59 (d, $J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 4.32(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 232[\mathrm{M}+\mathrm{H}]^{+}$.
(4,5-Bis(benzyloxy)pyridin-2-yl)methanol (42). A suspension of 41 ($10 \mathrm{~g}, 43.29 \mathrm{mmol}$) in DMSO (50 mL) was treated with potassium carbonate ($7.1 \mathrm{~g}, 51.90 \mathrm{mmol}$) and benzyl chloride ($6.0 \mathrm{~mL}, 51.90 \mathrm{mmol}$). The resulting mixture was stirred at room temperature overnight and then heated to $50{ }^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the mixture was poured into water $(100 \mathrm{~mL})$. The solution was extracted with ethyl acetate, washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then the filtrate was concentrated in vacuo. The resulting residue was purified by chromatography on silica gel with dichloromethane/methanol to afford $\mathbf{4 2}$ as a yellow solid ($6.0 \mathrm{~g}, 43 \%$). mp: $80-82{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.27(\mathrm{~m}, 10 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{t}, J=$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 322[\mathrm{M}+\mathrm{H}]$

4,5-Bis(benzyloxy)picolinaldehyde (43). Compound 43 (25.5 g , 95%) was prepared from $42(27 \mathrm{~g}, 0.08 \mathrm{~mol})$ and sulfur trioxide pyridine complex ($33.3 \mathrm{~g}, 0.21 \mathrm{~mol}$) in the same manner as described for $\mathbf{3 6} . \mathrm{mp}: 79-81{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.90(\mathrm{~s}, 1 \mathrm{H}), 8.31$ $(\mathrm{s}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.31(\mathrm{~m}, 10 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 192.39,155.14,148.34,148.33,136.15,135.72,135.23,128.79(2 \mathrm{C}), 128.76(2 \mathrm{C})$, $128.48,128.43,127.38(2 \mathrm{C}), 127.34(2 \mathrm{C}), 105.85,71.74,70.66$. HRMS (EI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{3}[\mathrm{M}]^{+}$319.1208, found 319.1211.
1-(4,5-Bis(benzyloxy)pyridin-2-yl)-2-methylpropan-1-ol (44). Compound 44 ($9.5 \mathrm{~g}, 68 \%$) was prepared from $43(12.3 \mathrm{~g}, 38.56 \mathrm{mmol})$ and isopropylmagnesium bromide (25.7 mL , $77.10 \mathrm{mmol})$ in the same manner as described for $\mathbf{3 7 a} . \mathrm{mp}: 61-63{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.30(\mathrm{~m}, 10 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 4.40(\mathrm{~d}$, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 1 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.36,155.60,144.24,136.61,135.69,135.62$, $128.72(2 \mathrm{C}), 128.59(2 \mathrm{C}), 128.29,128.14,127.54(2 \mathrm{C}), 127.24(2 \mathrm{C}), 105.57,77.15,72.40$, 70.40, 35.11, 19.33, 16.14. HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 364.1907$, found 364.1914.

4,5-Bis(benzyloxy)-2-(1-hydroxy-2-methylpropyl)pyridine 1-Oxide (45). Compound 45a ($8.0 \mathrm{~g}, 81 \%$) was prepared from $44(9.5 \mathrm{~g}, 26.09 \mathrm{mmol})$ and m-CPBA ($15.9 \mathrm{~g}, 78.32 \mathrm{mmol}$) in the same manner as described for S5. mp: $176-178{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87$ $(\mathrm{s}, 1 \mathrm{H}), 7.44-7.27(\mathrm{~m}, 10 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 5.25-5.15(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H})$, $4.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.90,145.43,145.35,135.01,128.84(2 \mathrm{C}), 128.82(2 \mathrm{C}), 128.63$, $128.58,128.52,127.47(2 \mathrm{C}), 127.31(2 \mathrm{C}), 109.04,77.24,72.20,71.37,31.54,19.65,18.23$. HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]{ }^{+} 380.1856$, found 380.1850 .
1,5-Dihydroxy-2-(1-hydroxy-2-methylpropyl)pyridin-4(1H)-one (46). Compound 46 (crude material) was prepared from $45(8.0 \mathrm{~g}, 21.11 \mathrm{mmol}$) and boron trichloride in n-hexane $(52.7 \mathrm{~mL}, 52.70 \mathrm{mmol})$ in the same manner as described for $\mathbf{S 6}$, which was used in the next step without purification.
4,5-Bis(benzhydryloxy)-2-(1-hydroxy-2-methylpropyl)pyridine 1-Oxide (47). Compound $47(4.3 \mathrm{~g}, 38 \%$ by two steps) was prepared from 46 (crude material) and diphenyldiazomethane ($20.4 \mathrm{~g}, 105.15 \mathrm{mmol}$) in the same manner as described for $\mathbf{S 7} . \mathrm{mp}$: $149-151{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.27(\mathrm{~m}, 20 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H})$, $6.27(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.12(\mathrm{~m}$, $1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.53(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $150.48,147.14,146.74,141.71,141.63,141.53,141.50,132.97,130.79$ (4C), 130.74 (4C), 130.29 (2C), 130.27 (2C), 128.63 (2C), 128.53 (2C), 128.50 (2C), 128.43 (2C), 113.60, 86.49, 85.36, 79.90, 33.03, 21.43, 20.23. HRMS (ESI) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{34} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 532.2482$, found 532.2490.

4,5-Bis(benzhydryloxy)-2-(1-((1,3-dioxoisoindolin-2-yl)oxy)-2-methylpropyl)pyridine

 1-Oxide (48). Compound 48 ($2.9 \mathrm{~g}, 56 \%$) was prepared from 47 ($4.1 \mathrm{~g}, 7.71 \mathrm{mmol}$), N-hydroxyphthalimide ($1.51 \mathrm{~g}, 9.26 \mathrm{mmol}$), $\mathrm{PPh}_{3}(3.04 \mathrm{~g}, 11.6 \mathrm{mmol})$ and DIAD $(2.27 \mathrm{~mL}$, 11.6 mmol) in the same manner as described for S8. mp: $191-193^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{dd}, J=5.6,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=5.6,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~s}$, $1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.27(\mathrm{~m}, 16 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.11(\mathrm{~h}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.64(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.64(2 \mathrm{C}), 147.46,145.49,142.83,140.66,140.11(2 \mathrm{C}), 140.04$, 134.48 (2C), 130.34(2C), 128.99(2C), 128.94, 128.80(2C), 128.72(2C), 128.53(2C), 128.29, $128.20,128.17,127.95,126.79(2 \mathrm{C}), 126.77(2 \mathrm{C}), 126.73(2 \mathrm{C}), 126.61(2 \mathrm{C}), 123.49(2 \mathrm{C})$, 111.50, 85.90, 84.39, 82.83, 31.02, 18.95, 15.66. HRMS (ESI) m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}$ $+\mathrm{H}]^{+} 677.2646$, found 677.2662 .2-(1-(Aminooxy)-2-methylpropyl)-4,5-bis(benzhydryloxy)pyridine 1-Oxide (49).
Compound $49(2.1 \mathrm{~g}, 79 \%)$ was prepared from $48(3.3 \mathrm{~g}, 4.88 \mathrm{mmol})$ and 85% hydrazine hydrate $(0.30 \mathrm{~mL}, 5.40 \mathrm{mmol})$ in the same manner as described for 31b. mp: $71-73{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.22(\mathrm{~m}, 20 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H})$, $6.69(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 2 \mathrm{H}), 4.68(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.76(\mathrm{~m}, 1 \mathrm{H}), 0.82(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.36(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.74,145.70,145.41,140.04$, $140.02, \quad 139.96,139.80,130.87,128.89(2 \mathrm{C}), 128.81(2 \mathrm{C}), 128.79(2 \mathrm{C}), 128.77(2 \mathrm{C})$, $128.31(2 \mathrm{C}), 128.25(2 \mathrm{C}), 126.73(4 \mathrm{C}), 126.68(4 \mathrm{C}), 110.29,84.58,84.48,83.14,30.41,19.00$, 16.59. HRMS (ESI) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 547.2591$, found 547.2600.
(Z)-4,5-Bis(benzhydryloxy)-2-(1-(((carboxy(2-(tritylamino)thiazol-4-yl)methylene)amino)oxy)-2-methylpropyl)pyridine 1-Oxide (49-1). Compound 49-1 ($236 \mathrm{mg}, 65 \%$) was prepared from $49(210 \mathrm{mg}, 0.38 \mathrm{mmol})$ and $29(141 \mathrm{mg}, 0.34 \mathrm{mmol})$ in the same manner as described for 32a. mp: $160-162{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.90(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}$, $1 \mathrm{H}), 7.62-7.15(\mathrm{~m}, 35 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.00(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.43(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}$) characteristic peaks: $\delta 167.84,164.35,145.66,145.08,144.14,143.87$, $141.10,140.86,140.62,140.60,140.52$, 129.40, 129.25, 129.21, 129.17, 129.00, 128.48, $128.40,128.33,128.16,127.28,126.80,126.74,126.69,111.61,111.39,83.21,81.78,81.62$, 71.85, 29.15, 19.62, 16.05. HRMS (ESI) m / z calcd for $\mathrm{C}_{59} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}-\mathrm{H}]{ }^{-} 941.3378$, found 941.3379 .
4,5-Bis(benzhydryloxy)-2-(1-((($(Z)-2-(((S)-2,2-d i m e t h y l-4-0 x 0-1-(s u l f o o x y) a z e t i d i n-3-y l) a ~$ mino)-2-oxo-1-(2-(tritylamino)thiazol-4-yl)ethylidene)amino)oxy)-2-methylpropyl)pyridi ne 1-Oxide (49-2). Compound 49-2 (a mixture of diastereomer (approximately 1:1), 294 mg , 94%) was prepared from $\mathbf{4 9 - 1}(260 \mathrm{mg}, 0.27 \mathrm{mmol})$ and $\mathbf{3 0}(86 \mathrm{mg}, 0.41 \mathrm{mmol})$ in the same manner as described for $\mathbf{3 3 a} . \mathrm{mp}: 186{ }^{\circ} \mathrm{C}$ decomp. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.77(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 9.68(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 8.90(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 / 2 \mathrm{H}), 7.99(\mathrm{~s}, 1 / 2 \mathrm{H}), 7.63$ $-7.16(\mathrm{~m}, 35 \mathrm{H}), 7.04(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.87(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.79(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.74(\mathrm{~s}, 1 / 2 \mathrm{H})$,
$6.73(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 / 2 \mathrm{H}), 5.32(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 5.26(\mathrm{~d}, J=3.7 \mathrm{~Hz}$, $1 / 2 \mathrm{H}$), 4.81 (d, $J=7.8 \mathrm{~Hz}, 1 / 2 \mathrm{H}$), 4.65 (d, $J=7.1 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 2.05-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.57$ (s, $3 / 2 \mathrm{H}), 1.52(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.37(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.34(\mathrm{~s}, 3 / 2 \mathrm{H}), 0.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 / 2 \mathrm{H}), 0.82(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 / 2 \mathrm{H}), 0.36(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 / 2 \mathrm{H}), 0.32(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 / 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO, most carbons show two peaks because of diastereomers) characteristic peaks: δ 168.23 and $168.17,163.68$ and $163.63,162.07$ and $161.88,151.28$ and $150.93,145.72$ and 145.67, 144.94 and 144.87, 144.30 and 144.10, 143.93, 141.75 and 141.71, 141.21, 141.10, $140.98,140.80$ and $140.54,129.40,129.26,129.23,129.05,129.02,128.48,128.44,128.26$, $128.19,127.44,126.85,126.75,126.72,126.64,112.97$ and $112.72,111.75$ and $111.65,83.27$ and $83.09,81.60$ and $81.57,81.44$ and $81.26,71.62,68.01$ and $67.89,61.58$ and $61.22,29.57$ and 29.12, 24.02 and $23.97,21.17$ and 21.07, 19.46 and19.37, 16.22 and 15.99. HRMS (ESI) m / z calcd for $\mathrm{C}_{64} \mathrm{H}_{57} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{~S}_{2}[\mathrm{M}-\mathrm{H}]^{-}$1133.3583, found 1133.3608.

Preparation of intermediate 55a-2.

2-(Hydroxymethyl)-5-((4-methoxybenzyl)oxy)-4H-pyran-4-one (S19). A suspension of $\mathbf{3 4}$ ($10.0 \mathrm{~g}, 70.40 \mathrm{mmol}$) in DMF (60 mL) was treated with potassium carbonate ($11.6 \mathrm{~g}, 84.05$ mmol) and p-methoxybenzyl chloride ($10.5 \mathrm{~mL}, 77.42 \mathrm{mmol}$). The resulting mixture was heated to $80{ }^{\circ} \mathrm{C}$ and stirred overnight, then cooled to room temperature and poured into ice water (200 mL), and then the resulting suspension was stirred for 0.5 h . The precipitate was collected by filtration and washed with water, followed by ethyl acetate to afford $\mathbf{S 1 9}$ as a yellow solid ($13.3 \mathrm{~g}, 73 \%$). mp: $122-123{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.15(\mathrm{~s}, 1 \mathrm{H})$, $7.34(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.85$ ($\mathrm{s}, 2 \mathrm{H}$), 4.29 (d, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 285[\mathrm{M}+\mathrm{Na}]^{+}$.
2-(Hydroxymethyl)-5-((4-methoxybenzyl)oxy)pyridin-4(1H)-one (S20). Compound S20 ($12.4 \mathrm{~g}, 78 \%$) was prepared from $\mathbf{S 1 9}(16.0 \mathrm{~g}, 61.07 \mathrm{mmol}$) and aqueous ammonium hydroxide ($82 \mathrm{~mL}, 910 \mathrm{mmol}$) in the same manner as described for $41 . \mathrm{mp}: 213-216{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$

NMR (400 MHz, DMSO- d_{6}) $\delta 11.12(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 4.32(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$. MS (ESI): $m / z 262[\mathrm{M}+\mathrm{H}]^{+}$.
(4,5-Bis((4-methoxybenzyl)oxy)pyridin-2-yl)methanol (S21). Compound S21(6.4 g, 35\%) was prepared from S20 ($12.4 \mathrm{~g}, 47.51 \mathrm{mmol}$) and p-methoxybenzyl chloride $(8.2 \mathrm{~mL}, 60.41$ mmol) in the same manner as described for 42. mp: 103-105 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H})$, $6.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.31(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 5.05$ (s, 2H), $4.43(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 382[\mathrm{M}+\mathrm{H}]^{+}$.
4,5-Bis((4-methoxybenzyl)oxy)picolinaldehyde (50). Compound 50 ($5.5 \mathrm{~g}, 86 \%$) was prepared from $\mathbf{S 2 1}(6.4 \mathrm{~g}, 16.79 \mathrm{mmol})$ and sulfur trioxide pyridine complex ($8.0 \mathrm{~g}, 50.39$ mmol) in the same manner as described for 36. mp: $85-87^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.88(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.93-6.87(\mathrm{~m}, 4 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.44,159.77,159.73,155.23,148.36,148.24,136.42,129.27(2 \mathrm{C})$, $129.23(2 \mathrm{C}), 127.74,127.22,114.16(2 \mathrm{C}), 114.12(2 \mathrm{C}), 105.91,71.65,70.53,55.30(2 \mathrm{C})$. HRMS (EI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{5}[\mathrm{M}]^{+} 379.1420$, found 379.1419 .
(4,5-Bis((4-methoxybenzyl)oxy)pyridin-2-yl)(phenyl)methanol (52a). Compound 52a (3.9 $\mathrm{g}, 92 \%$) was prepared from $50(3.5 \mathrm{~g}, 9.26 \mathrm{mmol})$ and phenylmagnesium chloride (14.0 mL , 28.00 mmol) in the same manner as described for $\mathbf{3 7 a}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08$ (s, $1 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.31-7.19(\mathrm{~m}, 4 \mathrm{H}), 6.90-6.83(\mathrm{~m}, 4 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H})$, 5.07 (s, 2H), $5.04-4.96(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $159.60,159.55,155.96,155.75,144.44,143.32,135.52,129.31(2 \mathrm{C}), 129.20(2 \mathrm{C}), 128.62$, 128.54(2C), 127.74, 127.51, 126.97(2C), 114.04(2C), 113.97(2C), 105.87, 74.85, 72.21, 70.20, 55.29(2C). HRMS (ESI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]{ }^{+} 458.1962$, found 458.1951 .

2-((4,5-Bis((4-methoxybenzyl)oxy)pyridin-2-yl)(phenyl)methoxy)isoindoline-1,3-dione (53a). Compound 53a ($4.1 \mathrm{~g}, 80 \%$) was prepared from 52a ($3.9 \mathrm{~g}, 8.53 \mathrm{mmol}$), N-hydroxyphthalimide ($1.7 \mathrm{~g}, 10.29 \mathrm{mmol}$), $\mathrm{PPh}_{3}(3.4 \mathrm{~g}, 12.80 \mathrm{mmol})$ and DEAD (2.0 mL , $12.80 \mathrm{mmol})$ in the same manner as described for $\mathbf{S 8} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~s}$, $1 \mathrm{H}), 7.76(\mathrm{dd}, J=5.6,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{dd}, J=5.6,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.32-$ $7.28(\mathrm{~m}, 5 \mathrm{H}), 6.93(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 5.36-5.22(\mathrm{~m}$, $2 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.59(2 \mathrm{C})$, $159.58,159.51,155.61,152.39,144.86,136.93,136.56,134.40(2 \mathrm{C}), 129.41(2 \mathrm{C}), 129.32(2 \mathrm{C})$, 128.91, 128.86, 128.60, 128.42(2C), 128.25(2C), 127.98, 126.95, 123.48(2C), 114.06(2C), 113.94(2C), 107.48, 90.40, 71.98, 70.34, 55.31, 55.27. HRMS (ESI) m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 603.2126$, found 603.2122 .
2-(((1,3-Dioxoisoindolin-2-yl)oxy)(phenyl)methyl)-4,5-bis((4-methoxybenzyl)oxy)pyridin e 1-Oxide (54a). Compound 54a ($3.7 \mathrm{~g}, 88 \%$) was prepared from 53a ($4.07 \mathrm{~g}, 6.75 \mathrm{mmol}$)
and m-CPBA ($4.11 \mathrm{~g}, 20.26 \mathrm{mmol}$) in the same manner as described for $\mathbf{S 5} . \mathrm{mp}: 76-78{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.71$ (dd, $J=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.47-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.94$ (d, $J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.45-5.29(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.51(2 \mathrm{C}), 159.81,159.79,149.20,146.23,142.38$, $134.59(2 \mathrm{C}), 134.48,132.87,132.14,132.07,131.97,131.95,129.59,129.39,128.83$, 128.56(2C), 128.46(2C), 128.00, 127.44, 123.62(2C), 114.17(2C), 114.15(2C), 108.52, 83.34, 71.96, 71.27, 55.34, 55.28. HRMS (ESI) m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]{ }^{+}$619.2075, found 619.2065.
2-((Aminooxy)(phenyl)methyl)-4,5-bis((4-methoxybenzyl)oxy)pyridine 1-Oxide (55a). Compound 55a ($230 \mathrm{mg}, 55 \%$) was prepared from 54a ($530 \mathrm{mg}, 0.86 \mathrm{mmol}$) and 85% hydrazine hydrate ($0.07 \mathrm{~mL}, 1.22 \mathrm{mmol}$) in the same manner as described for 31b. $\mathrm{mp}: 175$ $178{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 9 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.93-$ $6.89(\mathrm{~m}, 4 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.84,159.76,148.14,145.93,144.50,137.36,129.32(2 \mathrm{C})$, $129.28(2 \mathrm{C}), \quad 128.49(2 \mathrm{C}), 128.42,128.38,127.58(2 \mathrm{C}), 127.33,127.23,114.20(2 \mathrm{C})$, 114.16(2C), 107.52, 81.55, 71.97, 71.15, 55.32(2C). HRMS (ESI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}$ $[\mathrm{M}+\mathrm{H}]^{+} 489.2020$, found 489.2011.
(Z)-2-((((Carboxy(2-(tritylamino)thiazol-4-yl)methylene)amino)oxy)(phenyl)methyl)-4,5 -bis((4-methoxybenzyl)oxy)pyridine 1-Oxide (55a-1). Compound 55a-1 (570 mg, 70\%) was prepared from $55 \mathrm{a}(448 \mathrm{mg}, 0.92 \mathrm{mmol})$ and $29(344 \mathrm{mg}, 0.83 \mathrm{mmol})$ in the same manner as described for 32a. mp: $140-142{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.89$ (s, $1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.15(\mathrm{~m}, 24 \mathrm{H}), 6.97-6.84(\mathrm{~m}, 5 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 5.05$ (s, 2H), $3.74\left(\mathrm{~s}, 3 \mathrm{H}\right.$), $3.73(\mathrm{~s}, 3 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{52} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}-\mathrm{H}]{ }^{-}$ 883.2807, found 883.2807.

2-((()(Z)-2-(((S)-2,2-Dimethyl-4-ox0-1-(sulfooxy)azetidin-3-yl)amino)-2-oxo-1-(2-(trityla mino)thiazol-4-yl)ethylidene)amino)oxy)(phenyl)methyl)-4,5-bis((4-methoxybenzyl)oxy) pyridine 1-Oxide (55a-2). Compound 55a-2 (a mixture of diastereomer (approximately 1:1), $240 \mathrm{mg}, 66 \%$) was prepared from 55a-1 ($300 \mathrm{mg}, 0.34 \mathrm{mmol}$) and $\mathbf{3 0}(92.6 \mathrm{mg}, 0.44 \mathrm{mmol})$ in the same manner as described for 33a. mp: $177{ }^{\circ} \mathrm{C}$ decomp. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6}) $8.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 9.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 8.94(\mathrm{~s}, 1 / 2 \mathrm{H}), 8.93$ (s, $1 / 2 \mathrm{H}$), 8.07 ($\mathrm{s}, 1 / 2 \mathrm{H}$), 8.05 ($\mathrm{s}, 1 / 2 \mathrm{H}$), 7.39 - $7.09(\mathrm{~m}, 24 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.93$ (s, $1 / 2 \mathrm{H}), 6.91(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.88(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.86(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.82(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.54(\mathrm{~s}$, $1 \mathrm{H}), 5.30-5.17(\mathrm{~m}, 2 \mathrm{H}), 5.10-5.04(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{dd}, J=7.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.73(\mathrm{~m}$, 6 H), $1.40(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.36(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.11(\mathrm{~s}, 3 / 2 \mathrm{H}), 0.88(\mathrm{~s}, 3 / 2 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{57} \mathrm{H}_{51} \mathrm{~N}_{6} \mathrm{O}_{12} \mathrm{~S}_{2}[\mathrm{M}-\mathrm{H}]^{-}$1075.3012, found 1075.3008 .

Preparation of intermediate 55b-2.

(4,5-Bis((4-methoxybenzyl)oxy)pyridin-2-yl)(thiophen-2-yl)methanol (52b). Under argon atmosphere, a solution of thiophene ($2.1 \mathrm{~mL}, 26.30 \mathrm{mmol}$) in dry THF $(10 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$, a solution of n-butyllithium in n-hexane ($3.3 \mathrm{~mL}, 7.92 \mathrm{mmol}$) was added dropwise to keep the reaction mixture below $-70^{\circ} \mathrm{C}$. After addition, the resulting mixture was stirred for 30 min . After which time, a solution of $\mathbf{5 0}(1.0 \mathrm{~g}, 2.63 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$ was added dropwise and stirred for 3 h . The reaction was allowed to warm to $0^{\circ} \mathrm{C}$ and quenched by slow addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The solution was extracted with ethyl acetate, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then the filtrate was concentrated in vacuo. The resulting residue was purified by chromatography on silica gel with petroleum/ethyl acetate to afford 52b as a light yellow oil ($0.99 \mathrm{~g}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{dd}, J=$ $4.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.85(\mathrm{~m}, 4 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}$, $2 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.61,159.53$, $156.02,154.83,147.47,144.63,135.49,129.29(2 \mathrm{C}), 129.16(2 \mathrm{C}), 128.51,127.47,126.51$, 125.46, 124.93, 114.05(2C), 113.95(2C), 105.73, 72.15, 70.72, 70.27, 55.27(2C). HRMS (ESI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 464.1526$, found 464.1514 .
2-((4,5-Bis((4-methoxybenzyl)oxy)pyridin-2-yl)(thiophen-2-yl)methoxy)isoindoline-1,3-d ione (53b). Compound 53b ($2.91 \mathrm{~g}, 82 \%$) was prepared from $\mathbf{5 2 b}$ ($2.7 \mathrm{~g}, 5.82 \mathrm{mmol}$), N-hydroxyphthalimide ($2.85 \mathrm{~g}, 17.48 \mathrm{mmol}$) , $\mathrm{PPh}_{3}(4.55 \mathrm{~g}, 17.48 \mathrm{mmol})$ and DIAD $(3.4 \mathrm{~mL}$, $17.48 \mathrm{mmol})$ in the same manner as described for $\mathbf{S 8}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 88.07 (s, 1H), 7.78 - 7.75 (m, 2H), 7.72 (s, 1H), 7.72 - 7.69 (m, 2H), 7.44 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.35$ (dd, $J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.93-$ $6.90(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.26 (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.07$ (s, 2H), 3.83 (s, 3H), 3.79 (s, 3H).

2-(((1,3-Dioxoisoindolin-2-yl)oxy)(thiophen-2-yl)methyl)-4,5-bis((4-methoxybenzyl)oxy) pyridine 1-Oxide (54b). Compound 54b ($1.6 \mathrm{~g}, 54 \%$) was prepared from 53b $(2.91 \mathrm{~g}, 4.78$ $\mathrm{mmol})$ and m-CPBA $(1.94 \mathrm{~g}, 9.56 \mathrm{mmol})$ in the same manner as described for $\mathbf{S 5} \mathrm{mp}: 77$ -
$78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.71$ (m, 2H), 7.46 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35$ (dd, $J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.08-$ $7.05(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.92(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}$, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 625[\mathrm{M}+\mathrm{H}]^{+}$.
2-((Aminooxy)(thiophen-2-yl)methyl)-4,5-bis((4-methoxybenzyl)oxy)pyridine 1-Oxide (55b). Compound 55b ($0.98 \mathrm{~g}, 83 \%$) was prepared from 54b ($1.5 \mathrm{~g}, 2.45 \mathrm{mmol}$) and 85% hydrazine hydrate ($0.15 \mathrm{~mL}, 2.57 \mathrm{mmol}$) in the same manner as described for 31b. mp : 152 $153{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{dd}, \mathrm{J}=5.1$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dt}, \mathrm{J}=3.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{dd}, \mathrm{J}=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-$ $6.89(\mathrm{~m}, 4 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}):$ $m / z 495[\mathrm{M}+\mathrm{H}]^{+}$.
(Z)-2-((((Carboxy(2-(tritylamino)thiazol-4-yl)methylene)amino)oxy)(thiophen-2-yl)meth yl)-4,5-bis((4-methoxybenzyl)oxy)pyridine 1-Oxide (55b-1). Compound 55b-1 (474 mg, 58%) was prepared from 55b ($450 \mathrm{mg}, 0.91 \mathrm{mmol}$) and $29(339 \mathrm{mg}, 0.81 \mathrm{mmol})$ in the same manner as described for 32a. mp: $165-167{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.90$ (s, 1 H), 8.12 (s, 1H), 7.54 (dd, $J=5.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.24$ (m, 18H), 7.20 (d, $J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.99-6.90(\mathrm{~m}, 4 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 5.15-5.04(\mathrm{~m}, 4 \mathrm{H}), 3.75(\mathrm{~s}$, 3H), 3.73 (s, 3H). MS (ESI): m/z $889[\mathrm{M}-\mathrm{H}]{ }^{-}$.
2-((()(Z)-2-(((S)-2,2-Dimethyl-4-oxo-1-(sulfooxy)azetidin-3-yl)amino)-2-oxo-1-(2-(trityla mino)thiazol-4-yl)ethylidene)amino)oxy)(thiophen-2-yl)methyl)-4,5-bis((4-methoxybenz $\mathbf{y l}$)oxy)pyridine 1-Oxide (55b-2). Compound 55b-2 (a mixture of diastereomer (approximately 1:1), $500 \mathrm{mg}, 91 \%$) was prepared from $\mathbf{5 5 b} \mathbf{- 1}(450 \mathrm{mg}, 0.51 \mathrm{mmol})$ and $\mathbf{3 0}$ $(160 \mathrm{mg}, 0.76 \mathrm{mmol})$ in the same manner as described for 33a. mp: $179{ }^{\circ} \mathrm{C}$ decomp. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$) $\delta 9.72(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}$), $9.69(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 8.95(\mathrm{~s}, 1 \mathrm{H})$, $8.13(\mathrm{~s}, 1 / 2 \mathrm{H}), 8.10(\mathrm{~s}, 1 / 2 \mathrm{H}), 7.53(\mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 7.51(\mathrm{dd}, J=5.1,1.3 \mathrm{~Hz}$, 1/2H), $7.40-7.26(\mathrm{~m}, 18 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~s}$, 1/2H), $6.90(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.88(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.87-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 6.79(\mathrm{~d}$, $J=0.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.75(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 5.29-5.14(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.62$ (d, $J=7.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.59$ (d, $J=7.6 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 3.75$ (d, $J=1.3 \mathrm{~Hz}, 3 \mathrm{H})$, $3.74(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.39(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.16(\mathrm{~s}, 3 / 2 \mathrm{H}), 0.99(\mathrm{~s}, 3 / 2 \mathrm{H}) . \mathrm{MS}$ (ESI): $m / z 1081[\mathrm{M}-\mathrm{H}]^{-}$.

Preparation of intermediate 55 c -2.

(4,5-Bis((4-methoxybenzyl)oxy)pyridin-2-yl)(thiazol-2-yl)methanol (52c). A solution of $50(2.5 \mathrm{~g}, 6.59 \mathrm{mmol})$ in dry THF (20 mL) was treated with 2-bromothiazole ($3.6 \mathrm{~mL}, 39.54$ mmol), and then the solution was cooled to $-78{ }^{\circ} \mathrm{C}$. Under argon atmosphere, a solution of n-butyllithium in n-hexane ($2.7 \mathrm{~mL}, 6.48 \mathrm{mmol}$) was added dropwise to keep the reaction mixture below $-70^{\circ} \mathrm{C}$. After addition, the resulting mixture was stirred for 1 h . The reaction mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$ and quenched by slow addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The solution was extracted with ethyl acetate, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then the filtrate was concentrated in vacuo. The resulting residue was purified by chromatography on silica gel with petroleum/ethyl acetate to give 52c as a light yellow oil $(1.68 \mathrm{~g}, 55 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.74$ (d, $J=$ $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.30 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27$ (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ ($\mathrm{s}, 1 \mathrm{H}$), 6.88 (t, $J=8.7 \mathrm{~Hz}, 4 \mathrm{H}$), 5.96 (s, 1H), 5.11 ($\mathrm{s}, 2 \mathrm{H}$), 5.07 (s, 2H), 3.81 ($\mathrm{s}, 3 \mathrm{H}), 3.80$ (s , $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl3}$) $\delta 159.63,159.52,156.35,151.97,144.96,142.51,135.13$, 130.88 , 129.35(2C), 129.23(2C), 128.42, 127.40, 119.26, 114.00(2C), 113.95(2C), 105.84, $72.10,70.35,55.25(2 \mathrm{C})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 465.1479$, found 465.1482 .

2-((4,5-Bis((4-methoxybenzyl)oxy)pyridin-2-yl)(thiazol-2-yl)methoxy)isoindoline-1,3-dio ne (53c). Compound $\mathbf{5 3 c}(0.8 \mathrm{~g}, 36 \%)$ was prepared from $52 \mathrm{c}(1.68 \mathrm{~g}, 3.61 \mathrm{mmol})$, N-hydroxyphthalimide ($1.77 \mathrm{~g}, 10.85 \mathrm{mmol}$), $\mathrm{PPh}_{3}(4.73 \mathrm{~g}, 18.05 \mathrm{mmol})$ and DEAD (2.83 $\mathrm{mL}, 18.05 \mathrm{mmol})$ in the same manner as described for $\mathbf{S 8}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.13 (s, 1H), 7.77 (dd, $J=5.6,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=5.6,3.0 \mathrm{~Hz}$, 3 H), 7.61 (s, 1H), 7.44 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.30 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $6.91(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.21 (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.08$ (s, 2H), 3.82 (s, 3H), 3.78 (s, 3H). MS (ESI): m/z $610[\mathrm{M}+$ $\mathrm{H}]^{+}$.
2-(((1,3-Dioxoisoindolin-2-yl)oxy)(thiazol-2-yl)methyl)-4,5-bis((4-methoxybenzyl)oxy)py ridine 1-Oxide (54c). Compound 54c ($328 \mathrm{mg}, 40 \%$) was prepared from $\mathbf{5 3 c}(800 \mathrm{mg}, 1.31$
mmol) and m-CPBA ($798 \mathrm{mg}, 3.93 \mathrm{mmol}$) in the same manner as described for $\mathbf{S 5} . \mathrm{mp}: 75$ $76{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=5.5,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.80(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=5.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.37$ $-5.22(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 626[\mathrm{M}+\mathrm{H}]^{+}$.
2-((Aminooxy)(thiazol-2-yl)methyl)-4,5-bis((4-methoxybenzyl)oxy)pyridine 1-Oxide (55c). Compound 55c ($176 \mathrm{mg}, 65 \%$) was prepared from $\mathbf{5 4 c}(340 \mathrm{mg}, 0.54 \mathrm{mmol})$ and 85% hydrazine hydrate ($0.04 \mathrm{~mL}, 0.69 \mathrm{mmol}$) in the same manner as described for 31b. $\mathrm{mp}: 127$ $129{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.90-6.86(\mathrm{~m}, 4 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 2 \mathrm{H})$, $5.16-5.06(\mathrm{~m}, 2 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 496[\mathrm{M}+\mathrm{H}]^{+}$.
(Z)-2-((((Carboxy(2-(tritylamino)thiazol-4-yl)methylene)amino)oxy)(thiazol-2-yl)methyl)-4,5-bis((4-methoxybenzyl)oxy)pyridine 1-Oxide (55c-1). Compound 55c-1 ($400 \mathrm{mg}, 45 \%$) was prepared from $\mathbf{5 5 c}(495 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $29(373 \mathrm{mg}, 0.90 \mathrm{mmol})$ in the same manner as described for 32a. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.79-7.74$ $(\mathrm{m}, 1 \mathrm{H}), 7.42-7.20(\mathrm{~m}, 20 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}$, $1 \mathrm{H}), 5.35-5.10(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$. MS (ESI): m/z $890[\mathrm{M}-$ H] .
2-((()(Z)-2-(((S)-2,2-Dimethyl-4-ox0-1-(sulfooxy)azetidin-3-yl)amino)-2-oxo-1-(2-(trityla mino)thiazol-4-yl)ethylidene)amino)oxy)(thiazol-2-yl)methyl)-4,5-bis((4-methoxybenzyl) oxy)pyridine 1-Oxide (55c-2). Compound 55c-2 (a mixture of diastereomer (approximately $1: 1), 230 \mathrm{mg}, 47 \%)$ was prepared from $\mathbf{5 5 c} \mathbf{- 1}(400 \mathrm{mg}, 0.45 \mathrm{mmol})$ and $\mathbf{3 0}(141 \mathrm{mg}, 0.67$ $\mathrm{mmol})$ in the same manner as described for 33a. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.73(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.94(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 / 2 \mathrm{H}), 8.12(\mathrm{~s}, 1 / 2 \mathrm{H}), 7.82-7.76(\mathrm{~m}, 2 \mathrm{H})$, $7.39-7.15(\mathrm{~m}, 20 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 2 \mathrm{H}), 5.25-$ $5.05(\mathrm{~m}, 4 \mathrm{H}), 4.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $1.35(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 / 2 \mathrm{H}), 0.88(\mathrm{~s}, 3 / 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 1082[\mathrm{M}-\mathrm{H}]^{-}$.

Preparation of intermediate 59a-2.

4,5-Bis((4-methoxybenzyl)oxy)-2-(oxiran-2-yl)pyridine (51). A solution of trimethylsulfoxonium iodide $(6.4 \mathrm{~g}, 29.00 \mathrm{mmol})$ in DMSO $(60 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$, then sodium hydride 60 pecent dispersion in oil ($1.16 \mathrm{~g}, 29.00 \mathrm{mmol}$) was added and stirred at $0{ }^{\circ} \mathrm{C}$ for 0.5 h . Compound $50(10.0 \mathrm{~g}, 26.46 \mathrm{mmol})$ was dissolved in DMSO (40 mL), which was added dropwise to the reaction mixture at the same temperature. The reaction mixture was allowed to warm to room temperature and stirred for 2 h . Reaction was monitored by TLC, after completion of the reaction, the reaction mixture was quenched by addition of water $(10 \mathrm{~mL})$ in an ice bath and extracted with ethyl acetate twice. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then the filtrate was concentrated in vacuo. The resulting residue was purified by chromatography on silica gel with petroleum/ethyl acetate to afford $\mathbf{5 1}$ as a white solid ($4.7 \mathrm{~g}, 45 \%$). mp: $76-78^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 6.91 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.86$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.10$ (s, 2H), 5.07 (s, 2H), 3.91 (dd, $J=4.1$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{dd}, J=5.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=5.7,2.5$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.67,159.54,156.25,152.10,144.74,137.80$, 129.37(2C), 129.18(2C), 128.59, 127.67, 114.08(2C), 113.95(2C), 104.07, 72.29, 70.23, $55.31,52.88,50.34(2 \mathrm{C})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]{ }^{+} 394.1649$, found 394.1657.

1-(4,5-Bis((4-methoxybenzyl)oxy)pyridin-2-yl)-2-(tert-butoxy)ethan-1-ol (56a). A solution of $\mathbf{5 1}(1.5 \mathrm{~g}, 3.82 \mathrm{mmol})$ in tert-butanol $(15 \mathrm{~mL})$ was treated with potassium tert-butanolate $(2.13 \mathrm{~g}, 19.10 \mathrm{mmol})$, and the reaction mixture was heated to $50^{\circ} \mathrm{C}$ and stirred overnight. After completion of the reaction, the reaction mixture was cooled to room temperature and diluted with water $(30 \mathrm{~mL})$. The resulting solution was extracted with ethyl acetate twice. The combined organic layers were washed with brine solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then the filtrate was concentrated in vacuo. The resulting residue was purified by chromatography on silica gel with petroleum/ethyl acetate to afford $\mathbf{5 6 a}$ as an oil $(600 \mathrm{mg}$,
$34 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.10 (s, 1H), 6.91 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 6.86 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 5.13 (s, 2H), 5.07 (s, $2 \mathrm{H}), 4.73-4.67(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{dd}, J=9.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}$, $J=9.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.63,159.50,155.94$, $155.20,144.15,136.87,129.37(2 \mathrm{C}), 129.17(2 \mathrm{C}), 128.77,127.86,114.06(2 \mathrm{C}), 113.92(2 \mathrm{C})$, 105.76, 73.44, 72.62, 72.38, 70.16, 66.45, 55.31(2C), 27.57(3C). HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+} 468.2381$, found 468.2379 .
2-(1-(4,5-Bis((4-methoxybenzyl)oxy)pyridin-2-yl)-2-(tert-butoxy)ethoxy)isoindoline-1,3-d ione (57a). Compound $\mathbf{5 7 a}(600 \mathrm{mg}, 77 \%)$ was prepared from $\mathbf{5 6 a}(600 \mathrm{mg}, 1.28 \mathrm{mmol})$, N-hydroxyphthalimide ($314 \mathrm{mg}, 1.92 \mathrm{mmol}$), $\mathrm{PPh}_{3}(499 \mathrm{mg}, 1.92 \mathrm{mmol})$ and DIAD (0.24 mL , 1.92 mmol) in the same manner as described for $\mathbf{S 8} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07$ (s, $1 \mathrm{H}), 7.80-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.52-5.48(\mathrm{~m}, 1 \mathrm{H}), 5.28$ $-5.18(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 3.90-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.51(2 \mathrm{C}), 159.62,159.50,155.74,150.76,144.85,136.47$, $134.24(2 \mathrm{C}), 129.42(2 \mathrm{C}), 129.35(2 \mathrm{C}), 129.09(2 \mathrm{C}), 128.55,127.93,123.35(2 \mathrm{C}), 114.03(2 \mathrm{C})$, 113.92(2C), 108.20, 88.63, 73.49, 72.05, 70.40, 64.12, 55.26(2C), 27.13(3C). HRMS (ESI) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+} 613.2544$, found 613.2528 .

2-(2-(tert-Butoxy)-1-((1,3-dioxoisoindolin-2-yl)oxy)ethyl)-4,5-bis((4-methoxybenzyl)oxy)

pyridine 1-Oxide (58a). Compound 58a ($540 \mathrm{mg}, 88 \%$) was prepared from $\mathbf{5 7 a}(600 \mathrm{mg}$, $0.98 \mathrm{mmol})$ and m-CPBA ($604 \mathrm{mg}, 2.94 \mathrm{mmol}$) in the same manner as described for $\mathbf{S 5} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.74-7.71(\mathrm{~m}$, $2 \mathrm{H}), 7.47$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 3 \mathrm{H}), 6.86(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.09(\mathrm{dd}, J=4.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.40-5.28(\mathrm{~m}, 2 \mathrm{H}), 5.06-4.97(\mathrm{~m}, 2 \mathrm{H}), 4.11$ (dd, $J=11.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}$, $9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.38(2 \mathrm{C}), 159.78,159.73,148.69,145.90,140.77$, $134.52(2 \mathrm{C}), 129.48(2 \mathrm{C}), 129.35(2 \mathrm{C}), 128.91(2 \mathrm{C}), 127.96,127.67,127.21,123.55(2 \mathrm{C})$, 114.12(2C), 114.10(2C), 109.65, 82.95, 73.89, 71.99, 71.18, 61.17, 55.29(2C), 27.16(3C). HRMS (ESI) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{~N} 2 \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]^{+}$629.2494, found 629.2492.
2-(1-(Aminooxy)-2-(tert-butoxy)ethyl)-4,5-bis((4-methoxybenzyl)oxy)pyridine 1-Oxide (59a). Compound 59a ($415 \mathrm{mg}, 99 \%$) was prepared from $\mathbf{5 8 a}(530 \mathrm{mg}, 0.84 \mathrm{mmol})$ and 85% hydrazine hydrate $(0.05 \mathrm{~mL}, 0.87 \mathrm{mmol})$ in the same manner as described for 31b. $\mathrm{mp}: 118$ $120{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.94-6.89(\mathrm{~m}, 4 \mathrm{H}), 5.41(\mathrm{~s}, 2 \mathrm{H}), 5.32(\mathrm{dd}, \mathrm{J}=5.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-$ $5.10(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 3.86-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{dd}, \mathrm{J}=10.8$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 159.66(2 \mathrm{C}), 147.23,145.29$, 143.06, 130.14(2C), 130.10(2C), 128.31, 128.24, 127.95, 114.35(4C), 108.34, 80.98, 73.05, $71.10,70.65,61.30,55.52(2 \mathrm{C}), 27.61(3 \mathrm{C})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]{ }^{+}$ 499.2439, found 499.2426.
(Z)-2-(2-(tert-Butoxy)-1-(((carboxy(2-(tritylamino)thiazol-4-yl)methylene)amino)oxy)eth yl)-4,5-bis((4-methoxybenzyl)oxy)pyridine 1-Oxide (59a-1). Compound 59a-1 (584 mg, 80%) was prepared from 59a ($408 \mathrm{mg}, 0.82 \mathrm{mmol}$) and $29(323 \mathrm{mg}, 0.78 \mathrm{mmol})$ in the same manner as described for 32a. mp: $137-139{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.88$ (s, $1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.14(\mathrm{~m}, 19 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H})$, 6.85 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.60(\mathrm{dd}, J=6.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-4.97(\mathrm{~m}, 4 \mathrm{H}), 3.74$ (s, 3H), 3.71 (s, 3H), 3.66 (dd, $J=11.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=11.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.03$ (s, 9 H$)$. HRMS (ESI) m / z calcd for $\mathrm{C}_{51} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{~S}[\mathrm{M}-\mathrm{H}]-$ 893.3226, found 893.3233.
2-(2-(tert-Butoxy)-1-((((\boldsymbol{Z})-2-(((S)-2,2-dimethyl-4-oxo-1-(sulfooxy)azetidin-3-yl)amino)-2-oxo-1-(2-(tritylamino)thiazol-4-yl)ethylidene)amino)oxy)ethyl)-4,5-bis((4-methoxybenzyl)oxy)pyridine 1-Oxide (59a-2). Compound 59a-2 (a mixture of diastereomer (approximately $1: 1), 600 \mathrm{mg}, 92 \%$) was prepared from $\mathbf{5 9 a} \mathbf{- 1}(540 \mathrm{mg}, 0.60 \mathrm{mmol})$ and $\mathbf{3 0}(190 \mathrm{mg}, 0.90$ $\mathrm{mmol})$ in the same manner as described for 33a. mp: $110-112{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6}) $\delta 9.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 9.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 8.91(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~s}$, $1 / 2 \mathrm{H}), 8.08(\mathrm{~s}, 1 / 2 \mathrm{H}), 7.37-7.25(\mathrm{~m}, 15 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.97$ (s, $1 / 2 \mathrm{H}), 6.93$ (dd, $J=8.7,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (s, $1 / 2 \mathrm{H}$), $6.72(\mathrm{~s}, 1 / 2 \mathrm{H}), 5.63(\mathrm{dd}, J=5.9,2.2 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 5.57(\mathrm{dd}, J=5.9,2.4 \mathrm{~Hz}, 1 / 2 \mathrm{H})$, $5.29-5.19(\mathrm{~m}, 1 \mathrm{H}), 5.11-4.98(\mathrm{~m}, 3 \mathrm{H}), 4.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 / 2 \mathrm{H}$), 3.74 (s, $3 / 2 \mathrm{H}$), 3.73 (s, $3 / 2 \mathrm{H}$), 3.72 (s, $3 / 2 \mathrm{H}$), 3.71 (s, $3 / 2 \mathrm{H}$), $3.62-3.57$ (m, 1H), 3.54 $-3.47(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.34(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.33(\mathrm{~s}, 3 / 2 \mathrm{H}), 0.99(\mathrm{~s}, 9 / 2 \mathrm{H})$, 0.97 (s, 9/2H). HRMS (ESI) m / z calcd for $\mathrm{C}_{56} \mathrm{H}_{57} \mathrm{~N}_{6} \mathrm{O}_{13} \mathrm{~S}_{2}[\mathrm{M}-\mathrm{H}]{ }^{-}$1085.3431, found 1085.3429.

Preparation of intermediate 59b-2.

1-(4,5-Bis((4-methoxybenzyl)oxy)pyridin-2-yl)-2-methoxyethan-1-ol (56b). A solution of $51(2.47 \mathrm{~g}, 6.28 \mathrm{mmol})$ in methanol $(20 \mathrm{~mL})$ was treated with sodium methanolate (12.5 mL , 62.80 mmol), and then the reaction mixture was stirred at room temperature overnight. After completion of the reaction, the reaction mixture was diluted with water and extracted with
ethyl acetate twice. The combined organic layers were washed with brine solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then the filtrate was concentrated in vacuo. The resulting residue was purified by chromatography on silica gel with petroleum/ethyl acetate to afford $\mathbf{5 6 b}$ as an oil $(1.87 \mathrm{~g}, 70 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, 5.13 (s, 2H), 5.07 (s, 2H), 4.78 (dd, $J=7.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82$ (s, $3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{dd}, J=9.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=9.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.65,159.53,156.05,154.33,144.35,136.62,129.33(2 \mathrm{C})$, 129.21(2C), 128.70, 127.76, 114.07(2C), 113.95(2C), 105.52, 72.31, 71.83, 70.24, 59.20, 55.32, 55.29. HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]{ }^{+} 426.1911$, found 426.1916 .

2-(1-(4,5-Bis((4-methoxybenzyl)oxy)pyridin-2-yl)-2-methoxyethoxy)isoindoline-1,3-dion e (57b). Compound 57b $(2.0 \mathrm{~g}, 80 \%)$ was prepared from 56b ($1.87 \mathrm{~g}, 4.40 \mathrm{mmol}$), N-hydroxyphthalimide ($861 \mathrm{mg}, 5.28 \mathrm{mmol}$), $\mathrm{PPh}_{3}(1.73 \mathrm{~g}, 6.60 \mathrm{mmol})$ and DIAD $(0.91 \mathrm{~mL}$, $6.60 \mathrm{mmol})$ in the same manner as described for $\mathbf{S 8} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05$ (s, $1 \mathrm{H}), 7.81-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{dd}, J=7.0,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.29-5.19(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{dd}, J=11.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=11.5,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H})$. MS (ESI): m/z $571[\mathrm{M}+\mathrm{H}]^{+}$.
2-(1-((1,3-Dioxoisoindolin-2-yl)oxy)-2-methoxyethyl)-4,5-bis((4-methoxybenzyl)oxy)pyri dine 1-Oxide (58b). Compound $\mathbf{5 8 b}(1.72 \mathrm{~g}, 84 \%)$ was prepared from $\mathbf{5 7 b}(2.0 \mathrm{~g}, 3.51 \mathrm{mmol})$ and m-CPBA ($2.13 \mathrm{~g}, 10.49 \mathrm{mmol}$) in the same manner as described for $\mathbf{S 5}$. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=5.6,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=5.5$, $3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.23(\mathrm{dd}, J=5.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.40-5.27(\mathrm{~m}, 2 \mathrm{H}), 5.05-4.98(\mathrm{~m}, 2 \mathrm{H})$, $4.04-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.44$ (s, 3H). MS (ESI): m/z $587[\mathrm{M}+\mathrm{H}]^{+}$.
2-(1-(Aminooxy)-2-methoxyethyl)-4,5-bis((4-methoxybenzyl)oxy)pyridine 1-Oxide (59b). Compound 59b ($1.02 \mathrm{~g}, 76 \%$) was prepared from 58b ($1.72 \mathrm{~g}, 2.93 \mathrm{mmol}$) and 85% hydrazine hydrate ($0.18 \mathrm{~mL}, 3.22 \mathrm{mmol}$) in the same manner as described for $\mathbf{3 1 b} . \mathrm{mp}: 108$ $110{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8.8$ $\mathrm{Hz}, 2 \mathrm{H}$), $6.95-6.88(\mathrm{~m}, 5 \mathrm{H}), 5.43(\mathrm{~s}, 2 \mathrm{H}), 5.40(\mathrm{dd}, \mathrm{J}=5.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.10(\mathrm{~m}, 2 \mathrm{H})$, $5.04(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{dd}, \mathrm{J}=10.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, \mathrm{J}=10.8,5.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.37 (s, 3H). MS (ESI): $m / z 457[\mathrm{M}+\mathrm{H}]^{+}$.
(Z)-2-(1-(((Carboxy(2-(tritylamino)thiazol-4-yl)methylene)amino)oxy)-2-methoxyethyl)-4,5-bis((4-methoxybenzyl)oxy)pyridine 1-Oxide (50b-1). Compound 59b-1 ($810 \mathrm{mg}, 85 \%$) was prepared from 59b ($510 \mathrm{mg}, 1.12 \mathrm{mmol}$) and $29(440 \mathrm{mg}, 1.06 \mathrm{mmol})$ in the same manner as described for 32a. mp: $158-160{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.89$ (s, $1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 15 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.95-6.91(\mathrm{~m}$, $3 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{dd}, J=6.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 3.74$ (s, 3H), $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 851[\mathrm{M}-\mathrm{H}]^{-}$.

2-(1-((((Z)-2-(((S)-2,2-Dimethyl-4-oxo-1-(sulfooxy)azetidin-3-yl)amino)-2-oxo-1-(2-(trityl amino)thiazol-4-yl)ethylidene)amino)oxy)-2-methoxyethyl)-4,5-bis((4-methoxybenzyl)ox y)pyridine 1-Oxide (59b-2). Compound 59b-2 (a mixture of diastereomer (approximately 1:1), $450 \mathrm{mg}, 89 \%$) was prepared from $\mathbf{5 9 b} \mathbf{- 1}(410 \mathrm{mg}, 0.48 \mathrm{mmol})$ and $\mathbf{3 0}(151 \mathrm{mg}, 0.72$ mmol) in the same manner as described for 33a. mp: $161^{\circ} \mathrm{C}$ decomp. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.78(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 9.73(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 8.94(\mathrm{~s}, 1 / 2 \mathrm{H}), 8.93$ (s, $1 / 2 \mathrm{H}), 8.21(\mathrm{~s}, 1 / 2 \mathrm{H}), 8.19(\mathrm{~s}, 1 / 2 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 15 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.13$ (s, $1 / 2 \mathrm{H}), 7.06(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 / 2 \mathrm{H}), 5.73(\mathrm{dd}, J=6.2,2.3 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 5.69$ (dd, $J=6.2,2.4 \mathrm{~Hz}$, $1 / 2 \mathrm{H}), 5.28-5.06(\mathrm{~m}, 4 \mathrm{H}), 4.66(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.59(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 3.74(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 3 / 2 \mathrm{H}), 3.20(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.47(\mathrm{~s}, 3 / 2 \mathrm{H})$, 1.44 (s, 3/2H), 1.34 (s, 3/2H), 1.31 (s, 3/2H). MS (ESI): m/z 1043 [M - H] ${ }^{-}$.

Preparation of intermediate $59 \mathrm{c}-2$.

1-(4,5-Bis((4-methoxybenzyl)oxy)pyridin-2-yl)-2-isopropoxyethan-1-ol (56c). A solution of isopropanol ($2.9 \mathrm{~mL}, 38 \mathrm{mmol}$) in THF (30 mL) was cooled to $0^{\circ} \mathrm{C}$ and treated with sodium hydride 60 pecent dispersion in oil $(1.5 \mathrm{~g}, 38 \mathrm{mmol})$. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , and then a solution of $51(1.5 \mathrm{~g}, 3.8 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added dropwise. After addition, the mixture was heated to $50^{\circ} \mathrm{C}$ and stirred overnight. After completion of the reaction, the reaction mixture was diluted with water and extracted with ethyl acetate twice. The combined organic layers were washed with brine solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then the filtrate was concentrated in vacuo. The residue was purified by chromatography on silica gel with petroleum/ethyl acetate to afford 56c as an oil $(880 \mathrm{mg}, 51 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H})$, 5.07 (s, 2H), 4.75 (dd, $J=7.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.89$ (s, 1H), 3.81 (s, 3H), 3.79 (s, 3H), 3.66 $3.57(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{dd}, J=9.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.64,159.51,156.01,154.88,144.22,136.78,129.36(2 \mathrm{C})$,
$129.18(2 \mathrm{C}), 128.74,127.82,114.07(2 \mathrm{C}), 113.93(2 \mathrm{C}), 105.62,72.62,72.36,72.30,72.21$, 70.19, 55.31, 55.28, 22.15, 22.06. HRMS (ESI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+} 454.2224$, found 454.2214.
2-(1-(4,5-Bis((4-methoxybenzyl)oxy)pyridin-2-yl)-2-isopropoxyethoxy)isoindoline-1,3-di one (57c). Compound $57 \mathrm{c}(1.0 \mathrm{~g}, 86 \%)$ was prepared from $\mathbf{5 6 c}(880 \mathrm{mg}, 1.94 \mathrm{mmol})$, N-hydroxyphthalimide ($475 \mathrm{mg}, 2.91 \mathrm{mmol}$), $\mathrm{PPh}_{3}(763 \mathrm{mg}, 2.91 \mathrm{mmol})$ and DIAD (0.36 mL , $2.91 \mathrm{mmol})$ in the same manner as described for $\mathbf{S 8} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06$ (s, $1 \mathrm{H}), 7.80-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{dd}, J=6.6,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.31-5.17(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 3.99-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{p}$, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 599[\mathrm{M}+$ $\mathrm{H}]^{+}$.

2-(1-((1,3-Dioxoisoindolin-2-yl)oxy)-2-isopropoxyethyl)-4,5-bis((4-methoxybenzyl)oxy)p

 yridine 1-Oxide (58c). Compound 58c ($900 \mathrm{mg}, 88 \%$) was prepared from $\mathbf{5 7 c}(1.0 \mathrm{~g}, 1.67$ $\mathrm{mmol})$ and m-CPBA ($1.02 \mathrm{~g}, 5.01 \mathrm{mmol}$) in the same manner as described for $\mathbf{S 5} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.74-7.71(\mathrm{~m}, 2 \mathrm{H})$, $7.46(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.16(\mathrm{dd}, J=5.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.40-5.24(\mathrm{~m}, 2 \mathrm{H}), 5.07-4.95(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.06$ (m, 1H), $3.88(\mathrm{dd}, J=12.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.62(\mathrm{~m}, 1 \mathrm{H}), 1.15$ (d, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}$), 1.01 (d, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}$). MS (ESI): $m / z 615[\mathrm{M}+\mathrm{H}]^{+}$.2-(1-(Aminooxy)-2-isopropoxyethyl)-4,5-bis((4-methoxybenzyl)oxy)pyridine 1-Oxide (59c). Compound 59c ($590 \mathrm{mg}, 83 \%$) was prepared from 58c ($900 \mathrm{mg}, 1.46 \mathrm{mmol}$) and 85% hydrazine hydrate ($0.09 \mathrm{~mL}, 1.61 \mathrm{mmol}$) in the same manner as described for 31b. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 4 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.91-6.87(\mathrm{~m}, 4 \mathrm{H})$, $5.41(\mathrm{~s}, 2 \mathrm{H}), 5.34(\mathrm{dd}, \mathrm{J}=5.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.07(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{dd}, \mathrm{J}=$ $11.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.53(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H})$, 1.04 (d, J = $6.1 \mathrm{~Hz}, 3 \mathrm{H}$). MS (ESI): $m / z 485[\mathrm{M}+\mathrm{H}]^{+}$.
(Z)-2-(1-(((Carboxy(2-(tritylamino)thiazol-4-yl)methylene)amino)oxy)-2-isopropoxyethy l)-4,5-bis((4-methoxybenzyl)oxy)pyridine 1-Oxide (59c-1). Compound 50c-1 (990 mg , 92%) was prepared from $\mathbf{5 9 c}(590 \mathrm{mg}, 1.22 \mathrm{mmol})$ and $29(479 \mathrm{mg}, 1.16 \mathrm{mmol})$ in the same manner as described for 32a. mp: $131-133{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.66$ (s, $1 \mathrm{H}), 8.04$ (s, 1H), 7.75 (s, 1H), 7.39 - 7.18 (m, 19H), 6.92 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.83$ (d, $J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 5.59-5.53(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=11.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.47-$ $3.41(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 879[\mathrm{M}-\mathrm{H}]$

2-(1-((((Z)-2-(((S)-2,2-Dimethyl-4-0xo-1-(sulfooxy)azetidin-3-yl)amino)-2-oxo-1-(2-(trityl amino)thiazol-4-yl)ethylidene)amino)oxy)-2-isopropoxyethyl)-4,5-bis((4-methoxybenzyl) oxy)pyridine 1-Oxide (59c-2). Compound 59c-2 (a mixture of diastereomer (approximately

1:1), $525 \mathrm{mg}, 88 \%)$ was prepared from $\mathbf{5 9 c} \mathbf{- 1}(490 \mathrm{mg}, 0.56 \mathrm{mmol})$ and $\mathbf{3 0}(174 \mathrm{mg}, 0.83$ mmol) in the same manner as described for 33a. mp: $169{ }^{\circ} \mathrm{C}$ decomp. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.75(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 9.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 8.91(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $8.11(\mathrm{~s}, 1 / 2 \mathrm{H}), 8.09(\mathrm{~s}, 1 / 2 \mathrm{H}), 7.37-7.16(\mathrm{~m}, 19 \mathrm{H}), 7.09(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.99(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.96-6.91$ (m, 2H), $6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 6.80(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 / 2 \mathrm{H})$, $6.74(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 5.67(\mathrm{dd}, J=6.5,2.1 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 5.62(\mathrm{dd}, J=6.1,2.3 \mathrm{~Hz}, 1 / 2 \mathrm{H})$, $5.25-5.01(\mathrm{~m}, 4 \mathrm{H}), 4.65(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.60(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 3.74(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 3 / 2 \mathrm{H}), 3.16(\mathrm{~s}, 3 / 2 \mathrm{H})$, $1.47(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.45(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.33(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.31(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.01(\mathrm{dd}, J=6.1,3.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.95(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 / 2 \mathrm{H}), 0.93$ (d, $J=6.2 \mathrm{~Hz}, 3 / 2 \mathrm{H})$. MS (ESI): $m / z 1071[\mathrm{M}-\mathrm{H}]^{-}$.

Preparation of intermediate 66a-2.

2-(4,5-Bis(benzyloxy)pyridin-2-yl)-2-hydroxyacetonitrile (60). A solution of 43 (31.8 g , $99.96 \mathrm{mmol})$ in THF $(120 \mathrm{~mL})$ and water $(350 \mathrm{~mL})$ was treated with $\mathrm{NaHSO}_{3}(15.5 \mathrm{~g}, 149.97$ mmol), the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and stirred for 1 h . After which time, sodium cyanide ($7.5 \mathrm{~g}, 150.96 \mathrm{mmol}$) was added in one portion and the solution was stirred at $0{ }^{\circ} \mathrm{C}$ overnight. The resulting precipitate was collected by filtration and washed with water, followed by petroleum to afford $\mathbf{6 0}$ as a light yellow solid ($33 \mathrm{~g}, 96 \%$). mp: $114-117^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.34(\mathrm{~m}, 10 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H})$, $5.27(\mathrm{~s}, 2 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.59,147.00,145.79,135.97$, 135.37, 135.02, 128.85(2C), 128.71(2C), 128.58, 128.36, 127.44(2C), 127.38(2C), 118.68, 105.50, 72.18, 70.87, 62.20.

Methyl 2-(4,5-bis(benzyloxy)pyridin-2-yl)-2-hydroxyacetate (61). Compound 60 (5.0 g , 14.4 mmol) was dissolved in $2 M$ methanol hydrochloride solution (40 mL). The resulting mixture was stirred at room temperature for 10 h and then concentrated in vacuo to remove methanol. Then the residue was treated with water (50 mL) and extracted with dichloromethane twice. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then the filtrate was concentrated in vacuo. The resulting
residue was purified by chromatography on silica gel with dichloromethane/methanol to afford 61 as a light oil ($5.1 \mathrm{~g}, 93 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.28$ $(\mathrm{m}, 10 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.70,155.97,150.21,145.19,136.35,135.68,135.48,128.74(2 \mathrm{C})$, 128.64(2C), 128.36, 128.22, 127.45(2C), 127.31(2C), 106.08, 72.83, 72.20, 70.54, 52.80. MS (ESI): $m / z 380[\mathrm{M}+\mathrm{H}]^{+}$.
4,5-Bis(benzyloxy)-2-(1-hydroxy-2-methoxy-2-oxoethyl)pyridine 1-Oxide (62). Compound $62(3.79 \mathrm{~g}, 72 \%)$ was prepared from $61(5.1 \mathrm{~g}, 13.46 \mathrm{mmol})$ and m-CPBA (5.46 g , 26.92 mmol) in the same manner as described for S5. mp: $156-158{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 10 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{q}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.16(\mathrm{~s}$, $2 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.60,149.22,146.52$, 141.01, 134.87, 134.85, 128.88(4C), 128.70, 128.68, 127.89, 127.41(2C), 127.35(2C), 109.51, 72.25, 71.56, 71.37, 52.94. HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]{ }^{+} 396.1442$, found 396.1442 .

Methyl 2-(1,5-dihydroxy-4-oxo-1,4-dihydropyridin-2-yl)-2-hydroxyacetate
(63).

Compound 63 (crude material) was prepared from $62(2.5 \mathrm{~g}, 6.32 \mathrm{mmol})$ and boron trichloride in n-hexane $(19.0 \mathrm{~mL}, 19.00 \mathrm{mmol})$ in the same manner as described for $\mathbf{S 6}$. Compound 63 was used in the next step without purification.

4,5-Bis(benzhydryloxy)-2-(1-hydroxy-2-methoxy-2-oxoethyl)pyridine 1-Oxide (64b).

 Compound 64b ($2.12 \mathrm{~g}, 61 \%$ by two steps) was prepared from 63 (crude material) and diphenyldiazomethane ($6.13 \mathrm{~g}, 31.6 \mathrm{mmol}$) in the same manner as described for $\mathbf{S 7} . \mathrm{mp}: 92$ $94{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.28(\mathrm{~m}, 20 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{~s}$, $1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.39,149.43$, $146.30,141.37,139.69,139.61,139.56,139.51,130.08,129.00(2 \mathrm{C}), 128.90(2 \mathrm{C}), 128.87(2 \mathrm{C})$, 128.84(2C), 128.51, 128.46, 128.44, 128.39, 126.65(4C), 126.51(4C), 111.72, 84.67, 83.86, 71.24, 52.88. HRMS (ESI) m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+} 548.2068$, found 548.2084.4,5-Bis(benzhydryloxy)-2-(carboxy(hydroxy)methyl)pyridine 1-Oxide (S22). A solution of $\mathbf{6 4 b}(2.0 \mathrm{~g}, 3.65 \mathrm{mmol})$ in mixed solvent of THF $(25 \mathrm{~mL})$ and water $(25 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$, then lithium hydrate ($306 \mathrm{mg}, 7.30 \mathrm{mmol}$) was added in one portion. The resulting mixture was allowed to warm to room temperature and stirred for 1 h , and then the pH of solution was adjusted to 5 with 1 M aqueous hydrogen chloride. The resulting solution was extracted with ethyl acetate ($60 \mathrm{~mL} \times 2$). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then the filtrate was concentrated in vacuo to afford $\mathbf{S 2 2}(1.85 \mathrm{~g}, 95 \%)$ as a light yellow solid, which was used in the next step without purification. MS (ESI): $m / z 532[\mathrm{M}-\mathrm{H}]^{-}$.
4,5-Bis(benzhydryloxy)-2-(2-(benzhydryloxy)-1-hydroxy-2-oxoethyl)pyridine 1-Oxide (64a). Compound $\mathbf{6 4 a}$ ($2.15 \mathrm{~g}, 84 \%$ by two steps) was prepared from $\mathbf{S 2 2}(1.85 \mathrm{~g}, 3.47 \mathrm{mmol})$ and diphenyldiazomethane ($2.12 \mathrm{~g}, 10.95 \mathrm{mmol}$) in the same manner as described for $\mathbf{S 7} . \mathrm{mp}$: $85-88{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.02(\mathrm{~m}, 30 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H})$,
$6.76(\mathrm{~s}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{46} \mathrm{H}_{38} \mathrm{NO}_{6}$ $[\mathrm{M}+\mathrm{H}]^{+} 700.2694$, found 700.2700.
4,5-Bis(benzhydryloxy)-2-(2-(benzhydryloxy)-1-((1,3-dioxoisoindolin-2-yl)oxy)-2-oxoeth $\mathbf{y l})$ pyridine 1-Oxide (65a). Compound $\mathbf{6 5 a}(1.2 \mathrm{~g}, 46 \%)$ was prepared from $\mathbf{6 4 a}(2.15 \mathrm{~g}, 3.08$ mmol), N-hydroxyphthalimide ($1.51 \mathrm{~g}, 9.23 \mathrm{mmol}$), $\mathrm{PPh}_{3}(2.42 \mathrm{~g}, 9.23 \mathrm{mmol})$ and DIAD $(1.81 \mathrm{~mL}, 9.23 \mathrm{mmol})$ in the same manner as described for $\mathbf{S 8} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.87(\mathrm{~s}, 1 \mathrm{H}), 7.73-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.15(\mathrm{~m}, 30 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{~s}$, $1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ characteristic peaks: $\delta 168.93$, $148.83,146.27,141.20,139.61,139.60,139.57,139.54,139.52,130.15,128.94,128.88$, $128.47,128.45,128.40,128.34,128.04,127.84,127.27,126.87,126.68,126.65,126.53$, 111.82, 84.64, 83.79, 78.03, 71.82. MS (ESI): $m / z 845[\mathrm{M}+\mathrm{H}]^{+}$.

2-(1-(Aminooxy)-2-(benzhydryloxy)-2-oxoethyl)-4,5-bis(benzhydryloxy)pyridine

 1-Oxide (66a). Compound 66a ($340 \mathrm{mg}, 34 \%$) was prepared from $\mathbf{6 5 a}(1.2 \mathrm{~g}, 1.42 \mathrm{mmol}$) and 85% hydrazine hydrate ($0.09 \mathrm{~mL}, 1.56 \mathrm{mmol}$) in the same manner as described for 31b.
(Z)-4,5-Bis(benzhydryloxy)-2-(2-(benzhydryloxy)-1-(((carboxy (2-(tritylamino)thiazol-4-

 yl)methylene)amino)oxy)-2-oxoethyl)pyridine 1-Oxide (66a-1). Compound 66a-1 (370 mg , 70%) was prepared from $\mathbf{6 6 a}(340 \mathrm{mg}, 0.48 \mathrm{mmol})$ and $29(199 \mathrm{mg}, 0.48 \mathrm{mmol})$ in the same manner as described for 32a. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.63(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H})$, $8.03(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.13(\mathrm{~m}, 45 \mathrm{H}), 7.02-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}$, $1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 1111[\mathrm{M}+\mathrm{H}]^{+}$.4,5-Bis(benzhydryloxy)-2-(2-(benzhydryloxy)-1-((((Z)-2-(((S)-2,2-dimethyl-4-oxo-1-(sulf ooxy)azetidin-3-yl)amino)-2-oxo-1-(2-(tritylamino)thiazol-4-yl)ethylidene)amino)oxy)-2oxoethyl)pyridine 1-Oxide (66a-2). Compound 66a-2 (a mixture of diastereomer (approximately $1: 1$), $321 \mathrm{mg}, 76 \%$) was prepared from $\mathbf{6 6 a}-\mathbf{1}(360 \mathrm{mg}, 0.32 \mathrm{mmol})$ and $\mathbf{3 0}$ ($101 \mathrm{mg}, 0.48 \mathrm{mmol}$) in the same manner as described for 33a. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta 9.80(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 9.73(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 8.96(\mathrm{~s}, 1 / 2 \mathrm{H}), 8.92$ (s, $1 / 2 \mathrm{H}), 8.15(\mathrm{~s}, 1 / 2 \mathrm{H}), 8.11(\mathrm{~s}, 1 / 2 \mathrm{H}), 7.64-7.09(\mathrm{~m}, 35 \mathrm{H}), 6.91(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.83(\mathrm{~s}, 1 / 2 \mathrm{H})$, $6.77(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.73(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.69(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.67(\mathrm{~s}, 1 / 2 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 4.63$ (d, $J=7.5 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.56(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.02(\mathrm{~s}, 3 / 2 \mathrm{H})$. MS (ESI): $m / z 1301[\mathrm{M}-\mathrm{H}]^{-}$.
Preparation of intermediate 66b-2.

4,5-Bis(benzhydryloxy)-2-(1-((1,3-dioxoisoindolin-2-yl)oxy)-2-methoxy-2-oxoethyl)pyrid ine 1-Oxide (65b). Compound $\mathbf{6 5 b}(1.5 \mathrm{~g}, 67 \%)$ was prepared from 64b ($1.79 \mathrm{~g}, 3.26 \mathrm{mmol}$), N-hydroxyphthalimide ($1.6 \mathrm{~g}, 9.78 \mathrm{mmol}$), $\mathrm{PPh}_{3}(2.57 \mathrm{~g}, 9.78 \mathrm{mmol})$ and DIAD (1.92 mL , 9.78 mmol) in the same manner as described for $\mathbf{S 8} . \mathrm{mp}: 79-81{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.84-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.26(\mathrm{~m}, 21 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H})$, $6.09(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$. MS (ESI): $m / z 693[\mathrm{M}+\mathrm{H}]^{+}$.
2-(1-(Aminooxy)-2-methoxy-2-oxoethyl)-4,5-bis(benzhydryloxy)pyridine 1-Oxide (66b). Compound 66b ($324 \mathrm{mg}, 80 \%$) was prepared from 65b ($500 \mathrm{mg}, 0.72 \mathrm{mmol}$) and 85% hydrazine hydrate ($0.04 \mathrm{~mL}, 0.72 \mathrm{mmol}$) in the same manner as described for 31b. MS (ESI): $m / z 563[\mathrm{M}+\mathrm{H}]^{+}$.
(Z)-4,5-Bis(benzhydryloxy)-2-(1-(((carboxy(2-(tritylamino)thiazol-4-yl)methylene)amino)oxy)-2-methoxy-2-oxoethyl)pyridine 1-Oxide (66b-1). Compound 66b-1 (200 mg, 41\%) was prepared from 66b ($286 \mathrm{mg}, 0.51 \mathrm{mmol}$) and $29(211 \mathrm{mg}, 0.51 \mathrm{mmol})$ in the same manner as described for 32a. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.64(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H})$, $7.95(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.13(\mathrm{~m}, 35 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 3.60$ ($\mathrm{s}, 3 \mathrm{H}$). MS (ESI): $m / z 957[\mathrm{M}-\mathrm{H}]^{-}$.
4,5-Bis(benzhydryloxy)-2-(1-((((Z)-2-(((S)-2,2-dimethyl-4-0xo-1-(sulfooxy)azetidin-3-yl)a mino)-2-oxo-1-(2-(tritylamino)thiazol-4-yl)ethylidene)amino)oxy)-2-methoxy-2-oxoethyl)pyridine 1-Oxide (66b-2). Compound 66b-2 (a mixture of diastereomer (approximately 1:1), $140 \mathrm{mg}, 36 \%)$ was prepared from $\mathbf{6 6 b} \mathbf{- 1}(320 \mathrm{mg}, 0.33 \mathrm{mmol})$ and $\mathbf{3 0}(105 \mathrm{mg}, 0.50 \mathrm{mmol})$ in the same manner as described for 33a. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.84(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 / 2 \mathrm{H}), 9.67$ (d, $J=7.3 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 8.97$ (s, 1/2H), 8.91 (s, 1/2H), 8.05 (s, 1H), 7.62 - 7.03 (m, $35 \mathrm{H}), 6.94$ (s, 1/2H), 6.86 (s, 1/2H), 6.79 - $6.64(\mathrm{~m}, 2 \mathrm{H}), 5.73(\mathrm{~s}, 1 / 2 \mathrm{H}), 5.69(\mathrm{~s}, 1 / 2 \mathrm{H}), 4.65$ (d, $J=7.4 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.60(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 3.53(\mathrm{~s}, 3 / 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.46(\mathrm{~s}, 3 / 2 \mathrm{H})$, 1.45 (s, 3/2H), 1.19 - 1.12 (m, 3H). MS (ESI): m/z $1149[\mathrm{M}-\mathrm{H}]^{-}$.

Preparation of intermediate 66c-2.

4,5-Bis(benzhydryloxy)-2-(1-hydroxy-2-(methylamino)-2-oxoethyl)pyridine 1-Oxide (64c). A solution of $\mathbf{6 4 b}(930 \mathrm{mg}, 1.70 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$ was treated with methylamine in methanol ($4.5 \mathrm{~mL}, 34.00 \mathrm{mmol}$), and the resulting mixture was stirred at room temperature for 1 h . After which time, the solution was extracted with ethyl acetate twice. The combined organic layers were washed with brine solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then the filtrate was concentrated in vacuo. The residue was purified by chromatography on silica gel with petroleum/ethyl acetate to afford $\mathbf{6 4 c}$ as a white solid (553 $\mathrm{mg}, 60 \%$) $\mathrm{mp}: 78-80^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.35(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.79 (s , $1 \mathrm{H}), 7.47-7.27(\mathrm{~m}, 20 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.91(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.41$, 150.37, 145.49, 144.41, 139.75, 139.70, 139.68, 139.65, 130.37, 128.88(4C), 128.85(4C), $128.41(2 \mathrm{C}), 128.39(2 \mathrm{C}), 126.75(2 \mathrm{C}), 126.69(2 \mathrm{C}), 126.59(4 \mathrm{C}), 108.44,84.66,83.44,66.63$, 26.48. HRMS (ESI) m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 547.2227$, found 547.2234.

4,5-Bis(benzhydryloxy)-2-(1-((1,3-dioxoisoindolin-2-yl)oxy)-2-(methylamino)-2-oxoethyl

)pyridine 1-Oxide (65c). Compound $\mathbf{6 5 c}(420 \mathrm{mg}, 62 \%)$ was prepared from $\mathbf{6 4 c}(535 \mathrm{mg}$, 0.98 mmol), N-hydroxyphthalimide ($480 \mathrm{mg}, 2.94 \mathrm{mmol}$), $\mathrm{PPh}_{3}(771 \mathrm{mg}, 2.94 \mathrm{mmol})$ and DIAD ($0.58 \mathrm{~mL}, 2.94 \mathrm{mmol}$) in the same manner as described for $\mathbf{S 8}$. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{q}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.28(\mathrm{~m}, 20 \mathrm{H})$, $6.68(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z$ $692[\mathrm{M}+\mathrm{H}]^{+}$.2-(1-(Aminooxy)-2-(methylamino)-2-oxoethyl)-4,5-bis(benzhydryloxy)pyridine 1-Oxide (66 c). Compound $\mathbf{6 6 c}(256 \mathrm{mg}, 49 \%$) was prepared from $\mathbf{6 5 c}(640 \mathrm{mg}, 0.93 \mathrm{mmol})$ and 85% hydrazine hydrate ($0.06 \mathrm{~mL}, 1.11 \mathrm{mmol}$) in the same manner as described for $\mathbf{3 1 b}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.60(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.28(\mathrm{~m}, 20 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H})$, $6.34(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 5.47(\mathrm{~s}, 2 \mathrm{H}), 2.70(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z$ $562[\mathrm{M}+\mathrm{H}]^{+}$.
(Z)-4,5-Bis(benzhydryloxy)-2-(1-(((carboxy(2-(tritylamino)thiazol-4-yl)methylene)amino)oxy)-2-(methylamino)-2-oxoethyl)pyridine 1-Oxide (66c-1). Compound $\mathbf{6 6 c}-\mathbf{1}$ (160 mg ,
19%) was prepared from $\mathbf{6 6 c}(500 \mathrm{mg}, 0.89 \mathrm{mmol})$ and $29(278 \mathrm{mg}, 0.67 \mathrm{mmol})$ in the same manner as described for 32a. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H})$, $7.95(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.00(\mathrm{~m}, 35 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 2.55$ (d, $J=4.5 \mathrm{~Hz}, 3 \mathrm{H})$. MS (ESI): $m / z 956[\mathrm{M}-\mathrm{H}]^{-}$.
4,5-Bis(benzhydryloxy)-2-(1-((((Z)-2-(((S)-2,2-dimethyl-4-oxo-1-(sulfooxy)azetidin-3-yl)a mino)-2-oxo-1-(2-(tritylamino)thiazol-4-yl)ethylidene)amino)oxy)-2-(methylamino)-2-ox oethyl)pyridine 1-Oxide (66c-2). Compound 66c-2 (a mixture of diastereomer (approximately $1: 1$), $120 \mathrm{mg}, 62 \%$) was prepared from $\mathbf{6 6 c}-\mathbf{1}(160 \mathrm{mg}, 0.17 \mathrm{mmol})$ and $\mathbf{3 0}$ $(53 \mathrm{mg}, 0.25 \mathrm{mmol})$ in the same manner as described for 33a. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 9.67(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 8.96(\mathrm{~s}, 1 / 2 \mathrm{H}), 8.92(\mathrm{~s}, 1 / 2 \mathrm{H}), 8.25(\mathrm{q}$, $J=4.8 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 8.17(\mathrm{q}, J=4.9 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 8.06(\mathrm{~s}, 1 / 2 \mathrm{H}), 8.04(\mathrm{~s}, 1 / 2 \mathrm{H}), 7.59-7.07(\mathrm{~m}$, $35 \mathrm{H}), 6.88(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.84(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.76(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.75(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.73(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.70(\mathrm{~s}$, $1 / 2 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=7.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{t}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.46$ (s, 3/2H), $1.45(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.20(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.15(\mathrm{~s}, 3 / 2 \mathrm{H})$. MS (ESI): $m / z 1148[\mathrm{M}-\mathrm{H}]{ }^{-}$.
Preparation of intermediate 73a-2.

4,5-Bis(benzyloxy)-2-(oxiran-2-yl)pyridine (67). Compound 67 ($1.89 \mathrm{~g}, 57 \%$) was prepared from $43(3.2 \mathrm{~g}, 10.00 \mathrm{mmol})$ and trimethylsulfoxonium iodide $(2.42 \mathrm{~g}, 11.00 \mathrm{mmol})$ in the same manner as described for 51. mp: 73-74 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{~s}, 1 \mathrm{H})$, 7.46 - 7.29 (m, 10H), 6.78 ($\mathrm{s}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 3.91$ (dd, $J=4.2,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.11(\mathrm{dd}, J=5.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=5.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $156.08,152.18,144.80,137.37,136.51,135.66,128.72(2 \mathrm{C}), 128.59(2 \mathrm{C}), 128.32,128.15$, 127.53(2C), 127.32(2C), 104.02, 72.38, 70.40, 52.86, 50.34. HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 334.1438$, found 334.1442 .
4,5-Bis(benzyloxy)-2-(oxiran-2-yl)pyridine 1-Oxide (68). Compound 68 ($3.2 \mathrm{~g}, 80 \%$) was
prepared from $67(3.8 \mathrm{~g}, 11.41 \mathrm{mmol})$ and $m-\operatorname{CPBA}(7.05 \mathrm{~g}, 34.23 \mathrm{mmol})$ in the same manner as described for S5. mp: $135-137{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.45-$ $7.32(\mathrm{~m}, 10 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 5.21-5.13(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.48(\mathrm{dd}, J=4.2,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.25(\mathrm{dd}, J=5.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=5.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $148.89,145.89,141.96,135.05,135.03,128.82(2 \mathrm{C}), 128.78(2 \mathrm{C}), 128.60,128.57,128.44$, 127.48(2C), 127.38(2C), 105.20, 72.16, 71.32, 50.28, 47.71. HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 350.1387$, found 350.1387 .
4,5-Bis(benzyloxy)-2-(1-hydroxy-2-(methylthio)ethyl)pyridine 1-Oxide (69a). A solution of $68(3.0 \mathrm{~g}, 8.58 \mathrm{mmol})$ in dioxane $(20 \mathrm{~mL})$ was treated with 20 percent aqueous sodium methanethiolate ($29.8 \mathrm{~mL}, 85.80 \mathrm{mmol}$) and stirred at room temperature overnight. Then the resulting precipitate was collected by filtration and washed with water, followed by petroleum to afford 69a as a white solid ($1.43 \mathrm{~g}, 42 \%$). mp: $190-193{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.33(\mathrm{~m}, 10 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.22(\mathrm{~s}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.83(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=13.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}$, $J=13.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO) $\delta 147.43,146.29,145.36$, $136.43,136.41,129.00(2 \mathrm{C}), 128.98(2 \mathrm{C}), 128.67,128.65,128.28(2 \mathrm{C}), 128.22(2 \mathrm{C}), 127.81$, 107.87, 71.40, 70.87, 67.81, 38.26, 16.35. HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 398.1421, found 398.1421.

1,5-Dihydroxy-2-(1-hydroxy-2-(methylthio)ethyl)pyridin-4(1H)-one (70a). Compound 70a (crude material) was prepared from $69 \mathrm{a}(7.2 \mathrm{~g}, 18.11 \mathrm{mmol})$ and boron trichloride in n-hexane ($45.3 \mathrm{~mL}, 45.27 \mathrm{mmol}$) in the same manner as described for $\mathbf{S 6}$, which was used in the next step without purification.

4,5-Bis(benzhydryloxy)-2-(1-hydroxy-2-(methylthio)ethyl)pyridine 1-Oxide (71a).

 Compound 71a ($4.3 \mathrm{~g}, 43 \%$ by two steps) was prepared from 70a (crude material) and diphenyldiazomethane ($21.1 \mathrm{~g}, 108.70 \mathrm{mmol}$) in the same manner as described for $\mathbf{S 7} \mathbf{~ m p : ~} 67$ $-69{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.28(\mathrm{~m}, 20 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.31$ $(\mathrm{s}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.76(\mathrm{dd}, J=13.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.99$, 145.52, 144.00, 139.71(2C), 139.68(2C), 130.91, 128.89(2C), 128.87(2C), 128.84(2C), 128.83(2C), $128.40(4 \mathrm{C}), 126.72(2 \mathrm{C}), 126.70(2 \mathrm{C}), 126.63(2 \mathrm{C}), 126.59(2 \mathrm{C}), 110.83,84.60,83.51,70.62$, 37.57, 15.93. HRMS (ESI) m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]{ }^{+} 550.2047$, found 550.2053.4,5-Bis(benzhydryloxy)-2-(1-((1,3-dioxoisoindolin-2-yl)oxy)-2-(methylthio)ethyl)pyridin e 1-Oxide (72a). Under argon atmosphere, a solution of 71a ($3.1 \mathrm{~g}, 5.64 \mathrm{mmol}$) in dry THF $(40 \mathrm{~mL})$ was treated with N-hydroxyphthalimide ($4.6 \mathrm{~g}, 28.2 \mathrm{mmol}$) and $\mathrm{PBu}_{3}(3.84 \mathrm{~mL}$, 16.92 mmol), then the mixture was cooled to $-10{ }^{\circ} \mathrm{C}$. A solution of DIAD ($2.1 \mathrm{~mL}, 16.92$ mmol) in dry THF (5 mL) was added dropwise. After addition, the resulting mixture was stirred at the same temperature overnight. After completion of the reaction, the reaction was quenched by addition of water. The solution was extracted with ethyl acetate, washed with saturated aqueous NaHCO_{3} and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then the
filtrate was concentrated in vacuo. The resulting residue was purified by chromatography on silica gel with petroleum/ethyl acetate to afford 72a as a yellow solid ($2.0 \mathrm{~g}, 51 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.76-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.27(\mathrm{~m}$, $20 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=5.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=14.9,3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.90(\mathrm{dd}, J=14.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.47(2 \mathrm{C})$, $148.36,145.84,141.89,140.61,140.00,139.92,139.87,134.68(2 \mathrm{C}), 130.07,128.97(2 \mathrm{C})$, $128.82(2 \mathrm{C}), \quad 128.80(2 \mathrm{C}), \quad 128.75(2 \mathrm{C}), 128.54(2 \mathrm{C}), 128.30,128.25,128.24,127.97$, $126.87(2 \mathrm{C}), 126.74(2 \mathrm{C}), 126.73(2 \mathrm{C}), 126.67(2 \mathrm{C}), 123.68(2 \mathrm{C}), 110.92,84.32,82.93,81.70$, 35.67, 16.70. HRMS (ESI) m / z calcd for $\mathrm{C}_{42} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 695.2210$, found 695.2222 .

2-(1-(Aminooxy)-2-(methylthio)ethyl)-4,5-bis(benzhydryloxy)pyridine 1-Oxide (73a).

 Compound 73a ($206 \mathrm{mg}, 69 \%$) was prepared from 72a ($366 \mathrm{mg}, 0.53 \mathrm{mmol}$) and 85% hydrazine hydrate ($0.04 \mathrm{~mL}, 0.53 \mathrm{mmol}$) in the same manner as described for 31b. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.26(\mathrm{~m}, 20 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~s}$, $1 \mathrm{H}), 5.20(\mathrm{dd}, \mathrm{J}=7.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 2.96(\mathrm{dd}, \mathrm{J}=14.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, \mathrm{J}=$ $14.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.95,145.60,144.43$, 140.01, 139.94(2C), 139.87, 130.80, 128.97(2C), 128.83(2C), 128.79(2C), 128.74(2C), $128.35(2 \mathrm{C}), 128.28(2 \mathrm{C}), 126.81(2 \mathrm{C}), 126.77(2 \mathrm{C}), 126.66(2 \mathrm{C}), 126.64(2 \mathrm{C}), 109.72,84.51$, 83.22, 79.91, 35.52, 16.54. HRMS (ESI) m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]{ }^{+}$565.2156, found 565.2160.(Z)-4,5-Bis(benzhydryloxy)-2-(1-(((carboxy(2-(tritylamino)thiazol-4-yl)methylene)amino)oxy)-2-(methylthio)ethyl)pyridine 1-Oxide (73a-1). Compound 73a-1 (380 mg, 77\%) was prepared from 73a ($290 \mathrm{mg}, 0.51 \mathrm{mmol}$) and $29(191 \mathrm{mg}, 0.46 \mathrm{mmol})$ in the same manner as described for 32a. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta 8.77(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.08$ $(\mathrm{m}, 35 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.90(\mathrm{~m}$, 1 H), $2.66(\mathrm{dd}, J=14.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{58} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 961.3088$, found 961.3091 .
4,5-Bis(benzhydryloxy)-2-(1-((($(Z)-2-(((S)-2,2-d i m e t h y l-4-0 x 0-1-(s u l f o o x y) a z e t i d i n-3-y l) a ~$ mino)-2-oxo-1-(2-(tritylamino)thiazol-4-yl)ethylidene)amino)oxy)-2-(methylthio)ethyl)p yridine 1-Oxide (73a-2). Compound 73a-2 (a mixture of diastereomer (approximately 1:1), $310 \mathrm{mg}, 66 \%)$ was prepared from 73a-1 ($380 \mathrm{mg}, 0.40 \mathrm{mmol}$) and $\mathbf{3 0}(124 \mathrm{mg}, 0.59 \mathrm{mmol})$ in the same manner as described for 33a. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 / 2 \mathrm{H}$), $9.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 8.92(\mathrm{~s}, 1 / 2 \mathrm{H}), 8.89(\mathrm{~s}, 1 / 2 \mathrm{H}), 8.02(\mathrm{~s}, 1 / 2 \mathrm{H}), 8.01(\mathrm{~s}, 1 / 2 \mathrm{H})$, $7.60-7.18(\mathrm{~m}, 35 \mathrm{H}), 6.83(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.83(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.72-$ $6.70(\mathrm{~m}, 1 \mathrm{H}), 5.57(\mathrm{td}, J=6.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.65(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 / 2 \mathrm{H}$), 2.84 (ddd, $J=15.0,7.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dt}, J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.87$ (s, 3/2H), $1.73(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.54(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.52(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.36(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.32(\mathrm{~s}, 3 / 2 \mathrm{H})$. HRMS (ESI) m/z calcd for $\mathrm{C}_{63} \mathrm{H}_{55} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{~S}_{3}[\mathrm{M}-\mathrm{H}]{ }^{-}$1151.3147, found 1151.3147.
Preparation of intermediate 73b-2.

4,5-Bis(benzyloxy)-2-(1-hydroxy-2-(isopropylthio)ethyl)pyridine 1-Oxide (69b). A solution of 2-propanethiol ($2.66 \mathrm{~mL}, 28.60 \mathrm{mmol}$) in dioxane (20 mL) was cooled to $0^{\circ} \mathrm{C}$ and treated with sodium hydride 60 pecent dispersion in oil $(1.14 \mathrm{~g}, 28.60 \mathrm{mmol})$. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , then a solution of $\mathbf{6 8}(2.0 \mathrm{~g}, 5.72 \mathrm{mmol})$ in dioxane $(10 \mathrm{~mL})$ was added dropwise. After addition, the mixture was warm to room temperature and stirred for 1 h . After completion of the reaction, water was added, and then the resulting precipitate was filtered and washed sequentially with water and petroleum and dried in vacuo to provide 69b as a white solid ($1.3 \mathrm{~g}, 53 \%$). mp: $132-134{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88$ (s, 1H), $7.48-7.32(\mathrm{~m}, 10 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 5.14$ (s, 2H), $4.85(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=13.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.83(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.05,145.70$, $144.18,135.07,135.02,128.83(4 \mathrm{C}), 128.62,128.59,128.42,127.41(4 \mathrm{C}), 108.28,72.22$, $71.41,70.57,35.52,34.30,23.49(2 \mathrm{C})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]{ }^{+}$ 426.1734, found 426.1741.

1,5-Dihydroxy-2-(1-hydroxy-2-(isopropylthio)ethyl)pyridin-4(1H)-one (70b). Compound 70b (crude material) was prepared from 69b ($2.17 \mathrm{~g}, 5.10 \mathrm{mmol}$) and boron trichloride in n-hexane ($12.70 \mathrm{~mL}, 12.70 \mathrm{mmol}$) in the same manner as described for $\mathbf{S 6}$, which was used in the next step without purification.
4,5-Bis(benzhydryloxy)-2-(1-hydroxy-2-(isopropylthio)ethyl)pyridine 1-Oxide (71b). Compound 71b ($1.03 \mathrm{~g}, 35 \%$ by two steps) was prepared from 70b (crude material) and diphenyldiazomethane ($5.94 \mathrm{~g}, 30.62 \mathrm{mmol}$) in the same manner as described for $\mathbf{S 7} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.28(\mathrm{~m}, 20 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H})$, $6.18(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=13.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.71(\mathrm{~m}, 2 \mathrm{H})$, 1.16 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$), 1.14 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$). MS (ESI): $m / z 578[\mathrm{M}+\mathrm{H}]^{+}$.

4,5-Bis(benzhydryloxy)-2-(1-((1,3-dioxoisoindolin-2-yl)oxy)-2-(isopropylthio)ethyl)pyrid ine 1-Oxide (72b). Compound 72b ($641 \mathrm{mg}, 50 \%$) was prepared from 71b ($1.03 \mathrm{~g}, 1.78$ mmol), N-hydroxyphthalimide ($873 \mathrm{mg}, 5.35 \mathrm{mmol}$), $\mathrm{PBu}_{3}(1.34 \mathrm{~mL}, 5.35 \mathrm{mmol})$ and DIAD $(1.05 \mathrm{~mL}, 5.35 \mathrm{mmol})$ in the same manner as described for 72a. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 7.81-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.75-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.63-7.28(\mathrm{~m}, 20 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H})$, $6.09(\mathrm{dd}, J=6.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=14.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.81(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{~d}, J$ $=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{44} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]{ }^{+}$ 723.2523 , found 723.2520 .

2-(1-(Aminooxy)-2-(isopropylthio)ethyl)-4,5-bis(benzhydryloxy)pyridine 1-Oxide (73b). Compound 73b ($314 \mathrm{mg}, 66 \%$) was prepared from 72b ($580 \mathrm{mg}, 0.81 \mathrm{mmol}$) and 85% hydrazine hydrate ($0.05 \mathrm{~mL}, 0.86 \mathrm{mmol}$) in the same manner as described for 31b. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.27(\mathrm{~m}, 20 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~s}$, 1 H), 5.14 (dd, J = 7.8, $3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.04 (s, 2H), 3.05 (dd, J = 14.0, $3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.88 (h, J = $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, \mathrm{J}=14.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H})$. MS (ESI): $m / z 593[\mathrm{M}+\mathrm{H}]^{+}$.
(Z)-4,5-Bis(benzhydryloxy)-2-(1-(((carboxy(2-(tritylamino)thiazol-4-yl)methylene)amino)oxy)-2-(isopropylthio)ethyl)pyridine 1-Oxide (73b-1). Compound 73b-1 ($390 \mathrm{mg}, 77 \%$) was prepared from 73b ($305 \mathrm{mg}, 0.51 \mathrm{mmol}$) and $29(203 \mathrm{mg}, 0.49 \mathrm{mmol})$ in the same manner as described for 32a. mp: $147-149{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.92$ (s, 1 H), $8.01(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.03(\mathrm{~m}, 35 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{dd}, J=$ $7.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=14.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{p}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=14.7$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 987[\mathrm{M}-\mathrm{H}]{ }^{-}$.
4,5-Bis(benzhydryloxy)-2-(1-((((Z)-2-(((S)-2,2-dimethyl-4-oxo-1-(sulfooxy)azetidin-3-yl)a mino)-2-oxo-1-(2-(tritylamino)thiazol-4-yl)ethylidene)amino)oxy)-2-(isopropylthio)ethyl)pyridine 1-Oxide (73b-2). Compound 73b-2 (a mixture of diastereomer (approximately 1:1), $400 \mathrm{mg}, 93 \%)$ was prepared from 73b-1 $(362 \mathrm{mg}, 0.37 \mathrm{mmol})$ and $\mathbf{3 0}(116 \mathrm{mg}, 0.55 \mathrm{mmol})$ in the same manner as described for 33a. mp: $157{ }^{\circ} \mathrm{C}$ decomp. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ $9.86-9.78(\mathrm{~m}, 1 \mathrm{H}), 8.95(\mathrm{~s}, 1 / 2 \mathrm{H}), 8.91(\mathrm{~s}, 1 / 2 \mathrm{H}), 8.04(\mathrm{~s}, 1 / 2 \mathrm{H}), 8.03(\mathrm{~s}, 1 / 2 \mathrm{H}), 7.62-7.15$ $(\mathrm{m}, 35 \mathrm{H}), 6.85(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.83(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.81(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.72(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, 1 H), $5.57-5.47(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.61(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 2.93-2.79$ $(\mathrm{m}, 2 \mathrm{H}), 2.67-2.57(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.53(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.38(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.33(\mathrm{~s}, 3 / 2 \mathrm{H})$, 1.02 (d, $J=6.8 \mathrm{~Hz}, 3 / 2 \mathrm{H}), 0.99$ (dd, $J=6.7,2.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 / 2 \mathrm{H}) . \mathrm{MS}$ (ESI): m/z $1179[\mathrm{M}-\mathrm{H}]^{-}$.

Preparation of intermediate 73c-2.

4,5-Bis(benzhydryloxy)-2-(1-((1,3-dioxoisoindolin-2-yl)oxy)-2-(methylsulfonyl)ethyl)pyri dine 1-Oxide (72c). Compound 72c (1.90 g, 91\%) was prepared from 72a ($2.0 \mathrm{~g}, 2.88 \mathrm{mmol}$) and m-CPBA $(2.34 \mathrm{~g}, 11.52 \mathrm{mmol})$ in the same manner as described for $\mathbf{S 5} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.57-$ $7.27(\mathrm{~m}, 20 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.20-6.16(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.34(2 \mathrm{C}), 149.80,146.37,140.26,140.11,139.58,139.56(2 \mathrm{C})$, $134.94(2 \mathrm{C}), 130.16,129.07(2 \mathrm{C}), 128.88(2 \mathrm{C}), 128.80(2 \mathrm{C}), 128.65(2 \mathrm{C}), 128.63(2 \mathrm{C}), 128.51$, $128.45,128.36,128.16,126.78(2 \mathrm{C}), 126.72(2 \mathrm{C}), 126.69(2 \mathrm{C}), 126.67(2 \mathrm{C}), 123.90(2 \mathrm{C})$, 109.71, 84.32, 83.18, 77.95, 56.16, 41.72. HRMS (ESI) m / z calcd for $\mathrm{C}_{42} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{H}]{ }^{+}$ 727.2109 , found 727.2114 .

2-(1-(Aminooxy)-2-(methylsulfonyl)ethyl)-4,5-bis(benzhydryloxy)pyridine 1-Oxide (73c). Compound 73c ($980 \mathrm{mg}, 63 \%$) was prepared from 72 c ($1.89 \mathrm{~g}, 2.61 \mathrm{mmol}$) and 85% hydrazine hydrate ($0.16 \mathrm{~mL}, 2.87 \mathrm{mmol}$) in the same manner as described for 31b. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.29(\mathrm{~m}, 20 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{~s}$, 1 H), 5.32 (dd, J = 9.0, 2.2 Hz, 1H), 3.64 (dd, J = 15.0, 2.2 Hz, 1H), 3.10 (dd, J = 14.9, 8.9 Hz, 1 H), $3.00(\mathrm{~s}, 3 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]{ }^{+} 597.2054$, found 597.2052 .
(Z)-4,5-Bis(benzhydryloxy)-2-(1-(((carboxy)(2-(tritylamino)thiazol-4-yl)methylene)amino)oxy)-2-(methylsulfonyl)ethyl)pyridine 1-Oxide (73c-1). Compound $\mathbf{7 3 c} \mathbf{c}$ ($1.07 \mathrm{~g}, 76 \%$) was prepared from $73 \mathrm{c}(850 \mathrm{mg}, 1.42 \mathrm{mmol})$ and $29(560 \mathrm{mg}, 1.35 \mathrm{mmol})$ in the same manner as described for 32a. mp: $166-168{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.97$ (s, $1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.62-6.89(\mathrm{~m}, 36 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 5.71$ (dd, $J=9.3,3.2 \mathrm{~Hz}$, 1H), $3.69-3.52$ (m, 2H), 3.01 (s, 3H). MS (ESI): $m / z 991[\mathrm{M}-\mathrm{H}]^{-}$.
4,5-Bis(benzhydryloxy)-2-(1-((()Z)-2-(((S)-2,2-dimethyl-4-oxo-1-(sulfooxy)azetidin-3-yl)a mino)-2-oxo-1-(2-(tritylamino)thiazol-4-yl)ethylidene)amino)oxy)-2-(methylsulfonyl)eth yl)pyridine 1-Oxide (73c-2). Compound 73c-2 (a mixture of diastereomer (approximately

1:1), $960 \mathrm{mg}, 75 \%$) was prepared from $\mathbf{7 3 c}-1(1.07 \mathrm{~g}, 1.08 \mathrm{mmol})$ and $30(340 \mathrm{mg}, 1.62$ mmol) in the same manner as described for 32a. mp: $183{ }^{\circ} \mathrm{C}$ decomp. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $_{6}$) $\delta 9.84(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 9.82(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 8.94(\mathrm{~s}, 1 / 2 \mathrm{H}), 8.93$ (s , $1 / 2 \mathrm{H}), 8.08(\mathrm{~s}, 1 / 2 \mathrm{H}), 8.07(\mathrm{~s}, 1 / 2 \mathrm{H}), 7.60-7.05(\mathrm{~m}, 35 \mathrm{H}), 6.93(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.91(\mathrm{~s}, 1 / 2 \mathrm{H})$, $6.89(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.75(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{dd}, J=9.7,2.2 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 5.76(\mathrm{dd}, J=9.7$, $2.2 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.74(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.69(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 3.52-3.37(\mathrm{~m}, 2 \mathrm{H})$, $3.03(\mathrm{~s}, 3 / 2 \mathrm{H}), 3.01(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.52(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.51(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.34(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.31(\mathrm{~s}, 3 / 2 \mathrm{H})$. MS (ESI): $m / z 1183[\mathrm{M}-\mathrm{H}]^{-}$.

Preparation of intermediate 17-2.

(Z)-2-((1-(1,5-Bis(benzhydryloxy)-4-oxo-1,4-dihydropyridin-2-yl)ethoxy)imino)-2-(2-((te $\boldsymbol{r t}$-butoxycarbonyl)amino)-5-chlorothiazol-4-yl)acetic Acid (17-1). Compound 17-1 (348 $\mathrm{mg}, 66 \%$) was prepared from $\mathbf{3 9 a}(340 \mathrm{mg}, 0.65 \mathrm{mmol})$ and $\mathbf{2 9 - 1}(191 \mathrm{mg}, 0.62 \mathrm{mmol})$ in the same manner as described for 32a. For synthesis of 29-1, see Yamawaki, K. et al., Bioorg. Med. Chem. 2007, 15,6716 - 6732. mp: $154-157{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $12.05(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.08(\mathrm{~m}, 20 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.19$ (q, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{38} \mathrm{ClN}_{4} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}-\mathrm{H}]-805.2104$, found 805.2112.
(3S)-3-((Z)-2-((1-(1,5-Bis(benzhydryloxy)-4-0xo-1,4-dihydropyridin-2-yl)ethoxy)imino)-2 -(2-((tert-butoxycarbonyl)amino)-5-chlorothiazol-4-yl)acetamido)-2,2-dimethyl-4-oxoaze tidin-1-yl Hydrogen Sulfate (17-2). Compound 17-2 (a mixture of diastereomer (approximately 1:1), $333 \mathrm{mg}, 81 \%$) was prepared from $\mathbf{1 7 - 1}(330 \mathrm{mg}, 0.41 \mathrm{mmol})$ and $\mathbf{3 0}$ $(122 \mathrm{mg}, 0.58 \mathrm{mmol})$ in the same manner as described for 33a. mp: $172{ }^{\circ} \mathrm{C}$ decomp. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.60(\mathrm{dd}, J=7.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.60(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.02(\mathrm{~m}, 20 \mathrm{H})$, $6.32(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.25(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.15(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.03(\mathrm{~s}, 1 / 2 \mathrm{H}), 5.24-5.08(\mathrm{~m}, 1 \mathrm{H})$, $4.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.41(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.39(\mathrm{~s}$, $3 / 2 \mathrm{H}), 1.18(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.17(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.10(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 / 2 \mathrm{H}), 1.03(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 / 2 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{48} \mathrm{H}_{46} \mathrm{ClN}_{6} \mathrm{O}_{12} \mathrm{~S}_{2}[\mathrm{M}-\mathrm{H}]{ }^{-} 997.2309$, found 997.2304.

Preparation of intermediate 18-2.

(Z)-2-((1-(1,5-Bis(benzhydryloxy)-4-oxo-1,4-dihydropyridin-2-yl)ethoxy)imino)-2-(5-((te $\boldsymbol{r t}$-butoxycarbonyl)amino)-1,2,4-thiadiazol-3-yl)acetic Acid (18-1). Compound 18-1 (188 $\mathrm{mg}, 32 \%$) was prepared from $\mathbf{3 9}$ ($387 \mathrm{mg}, 0.75 \mathrm{mmol}$) and 29-2 ($136 \mathrm{mg}, 0.50 \mathrm{mmol}$) in the same manner as described for 32a. For synthesis of 29-2, see Yamawaki, K., et al., Bioorg. Med. Chem. 2007, 15, 6716 - 6732. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.59(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~s}$, $1 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 20 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.50(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
(3S)-3-((Z)-2-((1-(1,5-Bis(benzhydryloxy)-4-oxo-1,4-dihydropyridin-2-yl)ethoxy)imino)-2 -(5-((tert-butoxycarbonyl)amino)-1,2,4-thiadiazol-3-yl)acetamido)-2,2-dimethyl-4-oxoaze tidin-1-yl Hydrogen Sulfate (18-2). Compound 18-2 (a mixture of diastereomer (approximately $1: 1$), $200 \mathrm{mg}, 88 \%$) was prepared from $\mathbf{1 8 - 1}(183 \mathrm{mg}, 0.24 \mathrm{mmol})$ and $\mathbf{3 0}$ $(75.6 \mathrm{mg}, 0.36 \mathrm{mmol})$ in the same manner as described for 33a. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.61(\mathrm{~s}, 1 \mathrm{H}), 9.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 / 2 \mathrm{H}), 7.47(\mathrm{~s}, 1 / 2 \mathrm{H}), 7.42-$ $7.11(\mathrm{~m}, 20 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.20(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.09(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.00(\mathrm{~s}, 1 / 2 \mathrm{H}), 5.25$ $-5.08(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.54(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~s}$, $3 / 2 \mathrm{H}), 1.37(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.20-1.16(\mathrm{~m}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.13(\mathrm{~s}, 3 / 2 \mathrm{H})$. MS (ESI): $m / z 964$ [$\mathrm{M}-\mathrm{H}]^{-}$.

Preparation of intermediate 19-2.

(Z)-4,5-Bis(benzhydryloxy)-2-(1-((((2-((tert-butoxycarbonyl)amino)-5-chlorothiazol-4-yl) (carboxy)methylene)amino)oxy)-2-methylpropyl)pyridine 1-Oxide (19-1). Compound $\mathbf{1 9 - 1}(770 \mathrm{mg}, 92 \%)$ was prepared from $49(550 \mathrm{mg}, 1.01 \mathrm{mmol})$ and $\mathbf{2 9 - 1}(293 \mathrm{mg}, 0.96$ mmol) in the same manner as described for 32a. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.06$ (s , $1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.18(\mathrm{~m}, 20 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{td}, J=7.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.49(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}$). HRMS (ESI) m / z calcd for $\mathrm{C}_{45} \mathrm{H}_{42} \mathrm{ClN}_{4} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}-\mathrm{H}]-833.2417$, found
833.2411.

4,5-Bis(benzhydryloxy)-2-(1-((((Z)-1-(2-((tert-butoxycarbonyl)amino)-5-chlorothiazol-4-yl)-2-(((S)-2,2-dimethyl-4-0xo-1-(sulfooxy)azetidin-3-yl)amino)-2-oxoethylidene)amino)o xy)-2-methylpropyl)pyridine 1-Oxide (19-2). Compound 19-2 (a mixture of diastereomer (approximately 1:1), $750 \mathrm{mg}, 79 \%$) was prepared from $\mathbf{1 9 - 1}(770 \mathrm{mg}, 0.92 \mathrm{mmol}$) and $\mathbf{3 0}$ ($290 \mathrm{mg}, 1.38 \mathrm{mmol}$) in the same manner as described for 33a. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.06(\mathrm{~s}, 1 / 2 \mathrm{H}), 12.03(\mathrm{~s}, 1 / 2 \mathrm{H}), 9.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 9.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 / 2 \mathrm{H}), 8.01(\mathrm{~s}, 1 / 2 \mathrm{H}), 7.98(\mathrm{~s}, 1 / 2 \mathrm{H}), 7.63-7.19(\mathrm{~m}, 20 \mathrm{H}), 7.09(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.94(\mathrm{~s}, 1 / 2 \mathrm{H})$, 6.77 (s, 1/2H), $6.74(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 / 2 \mathrm{H}), 6.69(\mathrm{~s}, 1 / 2 \mathrm{H}), 5.40(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 5.33$ (d, $J=4.2 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.73(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 2.10-1.88(\mathrm{~m}$, $1 \mathrm{H}), 1.59(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.54(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.45(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 9 \mathrm{H}), 1.42(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.40(\mathrm{~s}, 3 / 2 \mathrm{H})$, $0.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 / 2 \mathrm{H}), 0.82(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 / 2 \mathrm{H}), 0.45(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 / 2 \mathrm{H}), 0.38(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 / 2 \mathrm{H}$). HRMS (ESI) m / z calcd for $\mathrm{C}_{50} \mathrm{H}_{50} \mathrm{ClN}_{6} \mathrm{O}_{12} \mathrm{~S}_{2}[\mathrm{M}-\mathrm{H}]{ }^{-} 1025.2622$, found 1025.2638.

Preparation of intermediate 20-2.

(Z)-4,5-Bis(benzhydryloxy)-2-(1-((()5-((tert-butoxycarbonyl)amino)-1,2,4-thiadiazol-3-yl)(carboxy)methylene)amino)oxy)-2-methylpropyl)pyridine 1-Oxide (20-1). Compound 20-1 ($68 \mathrm{mg}, 16 \%$) was prepared from $49(300 \mathrm{mg}, 0.55 \mathrm{mmol})$ and $\mathbf{2 9 - 2}(149 \mathrm{mg}, 0.54$ mmol) in the same manner as described for 32a. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.54$ (s, $1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.06(\mathrm{~m}, 20 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=$ $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.52(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, 3H). HRMS (ESI) m / z calcd for $\mathrm{C}_{44} \mathrm{H}_{42} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}-\mathrm{H}]^{-} 800.2760$, found 800.2751.
4,5-Bis(benzhydryloxy)-2-(1-((((Z)-1-(5-((tert-butoxycarbonyl)amino)-1,2,4-thiadiazol-3-yl)-2-(((S)-2,2-dimethyl-4-oxo-1-(sulfooxy)azetidin-3-yl)amino)-2-oxoethylidene)amino)o xy)-2-methylpropyl)pyridine 1-Oxide (20-2). Compound 20-2 (a mixture of diastereomer (approximately 1:1), $57 \mathrm{mg}, 75 \%$) was prepared from $\mathbf{2 0 - 1}(62 \mathrm{mg}, 0.08 \mathrm{mmol})$ and $\mathbf{3 0}$ (24 $\mathrm{mg}, 0.12 \mathrm{mmol}$) in the same manner as described for 33a. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ $12.54(\mathrm{~s}, 1 \mathrm{H}), 9.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 9.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 8.05(\mathrm{~s}, 1 / 2 \mathrm{H}), 8.03(\mathrm{~s}$, 1/2H), 7.63 - 7.16 (m, 20H), 6.99 (s, 1/2H), 6.89 (s, 1/2H), 6.76 (s, 1/2H), 6.73 (s, 1H), 6.71 ($\mathrm{s}, 1 / 2 \mathrm{H}$) , $5.47(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 5.41(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 4.91(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 / 2 \mathrm{H})$, $4.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 / 2 \mathrm{H}), 2.08-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.57(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$, $1.46(\mathrm{~s}, 3 / 2 \mathrm{H}), 1.42(\mathrm{~s}, 3 / 2 \mathrm{H}), 0.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 / 2 \mathrm{H}), 0.83(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 / 2 \mathrm{H}), 0.46(\mathrm{~d}, J$
$=6.9 \mathrm{~Hz}, 3 / 2 \mathrm{H}), 0.38(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 / 2 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{49} \mathrm{H}_{50} \mathrm{~N}_{7} \mathrm{O}_{12} \mathrm{~S}_{2}[\mathrm{M}-$ H] ${ }^{-} 992.2964$, found 992.2962 .

Preparation of intermediate 21-2.

4,5-Bis(benzhydryloxy)-2-isobutyrylpyridine 1-Oxide (74). Compound 74 ($3.58 \mathrm{~g}, 65 \%$) was prepared from $47(5.5 \mathrm{~g}, 10.36 \mathrm{mmol})$ and sulfur trioxide pyridine complex $(4.94 \mathrm{~g}$, 31.08 mmol) in the same manner as described for $\mathbf{3 6} . \mathrm{mp}: 140-142^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.29(\mathrm{~m}, 20 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{p}$, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.50$, 148.19, $147.45,140.38,139.73(2 \mathrm{C}), 139.50(2 \mathrm{C}), 130.57,128.92(4 \mathrm{C}), 128.84(4 \mathrm{C}), 128.49(2 \mathrm{C})$, 128.35(2C), 126.65(4C), 126.61(4C), 112.29, 84.29, 83.46, 39.09, 18.07(2C). HRMS (ESI) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 530.2326$, found 530.2327.
(R)-4,5-Bis(benzhydryloxy)-2-(1-hydroxy-2-methylpropyl)pyridine 1-Oxide ((R)-75). The catalyst for the reaction was freshly prepared by mixing together in solution in DMF (20 mL), dichloro(p-cymene)ruthenium(II) dimer $(49.9 \mathrm{mg}, 0.08 \mathrm{mmol})$, $(1 S$, $2 S)-(+)-N$-(4-toluenesulphonyl)-1,2-ethane diamine ($59.8 \mathrm{mg}, 0.16 \mathrm{mmol}$) and triethylamine $(24.2 \mathrm{mg}, 0.24 \mathrm{mmol})$. The mixture was stirred at room temperature under argon for 1 h . In parallel, a mixture of formic acid/triethylamine $5: 2$ [($1.4 \mathrm{~mL}, 37.1 \mathrm{mmol}):(2.1 \mathrm{~mL}, 15.1$ $\mathrm{mmol})$] was prepared. To this formic acid/trimethylamine solution was added $74(2.55 \mathrm{~g}, 4.81$ $\mathrm{mmol})$ dissolved in tert-Butyl methyl ether $(20 \mathrm{~mL})$. The preformed catalyst solution was then added to tert-Butyl methyl ether solution and the reaction mixture stirred at room temperature for 14 h . Water (20 mL) was added and the effervescent solution stirred for a further 20 min . The reaction mixture was extracted with ethyl acetate $(50 \mathrm{~mL} \times 2)$. The combined organic layers were washed with brine solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then the filtrate was concentrated in vacuo. The residue was purified by chromatography on silica gel with petroleum/ethyl acetate to afford $(R)-\mathbf{7 5}$ as a white solid ($2.45 \mathrm{~g}, 96 \%$). After recrystallization in ethyl acetate, the $e e$ value was raised to 98.1%. Chiral HPLC retention time 6.68 min ; column: CHIRALCEL OD-H column ($250 \times 4.6 \mathrm{~mm}$, $5 \mu \mathrm{~m}$); column temperature $30^{\circ} \mathrm{C}$; flow rate $0.5 \mathrm{~mL} / \mathrm{min}$; detection UV 254 nm ; mobile phase:
solvent $\mathrm{A}=$ ethanol (40%), solvent $\mathrm{B}=n$-hexane (60%); total run time $15.0 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.27(\mathrm{~m}, 20 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{~d}, \mathrm{~J}$ $=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.12(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, 3 H), 0.53 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$). HRMS (ESI) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{34} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$532.2482, found 532.2484 .
(S)-4,5-Bis(benzhydryloxy)-2-(1-((1,3-dioxoisoindolin-2-yl)oxy)-2-methylpropyl)pyridine 1-Oxide ((S)-48). Compound (S)-48 (2.5 g, 71\%) was prepared from (R)-75 ($2.75 \mathrm{~g}, 5.17$ mmol), N-hydroxyphthalimide ($844 \mathrm{mg}, 5.17 \mathrm{mmol}$), $\mathrm{PBu}_{3}(1.94 \mathrm{~mL}, 7.75 \mathrm{mmol}$) and DIAD $(1.52 \mathrm{~mL}, 7.75 \mathrm{mmol})$ in the same manner as described for 72a. After recrystallization in ethyl acetate, the ee value of (S)-48 was raised to 99.7%. Chiral HPLC retention time 9.13 min ; column: CHIRALCEL OD-H column ($250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$); column temperature $30^{\circ} \mathrm{C}$; flow rate $0.5 \mathrm{~mL} / \mathrm{min}$; detection UV 254 nm ; mobile phase: solvent $\mathrm{A}=$ ethanol (40%), solvent $\mathrm{B}=n$-hexane (60%); total run time $20.0 \mathrm{~min} . \mathrm{mp}: 86-88{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.77-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.26(\mathrm{~m}$, $20 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{pd}, J=7.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.07$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$), $0.63(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]$ ${ }^{+}$677.2646, found 677.2645.
(S)-2-(1-(Aminooxy)-2-methylpropyl)-4,5-bis(benzhydryloxy)pyridine 1-Oxide ((S)-76). Compound (S)-76 (2.36 g, 83\%) was prepared from (S)-48 (3.54 g, 5.32 mmol) and 85% hydrazine hydrate ($0.33 \mathrm{~mL}, 5.75 \mathrm{mmol}$) in the same manner as described for $\mathbf{3 1 b}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.27(\mathrm{~m}, 20 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~s}$, $1 \mathrm{H}), 4.93(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{pd}, J=6.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.66(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$). HRMS (ESI) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]{ }^{+} 547.2591$, found 547.2596.
(S,Z)-4,5-Bis(benzhydryloxy)-2-(1-(((carboxy(2-(tritylamino)thiazol-4-yl)methylene)ami no)oxy)-2-methylpropyl)pyridine 1-Oxide (21-1). Compound $\mathbf{2 1 - 1}$ ($683 \mathrm{mg}, 83 \%$) was prepared from $(S)-76(480 \mathrm{mg}, 0.88 \mathrm{mmol})$ and $29(327 \mathrm{mg}, 0.79 \mathrm{mmol})$ in the same manner as described for 32a. mp: $170-171{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 8.63(\mathrm{~s}, 1 \mathrm{H}), 7.89$ (s, 1H), $7.61-7.10(\mathrm{~m}, 37 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.05$ $(\mathrm{m}, 1 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.45(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 941[\mathrm{M}-\mathrm{H}]^{-}$.
4,5-Bis(benzhydryloxy)-2-((S)-1-((((Z)-2-(((S)-2,2-dimethyl-4-oxo-1-(sulfooxy)azetidin-3-yl)amino)-2-oxo-1-(2-(tritylamino)thiazol-4-yl)ethylidene)amino)oxy)-2-methylpropyl)p yridine 1-Oxide (21-2). Compound 21-2 ($740 \mathrm{mg}, 93 \%$) was prepared from 21-1 (663 mg , 0.70 mmol) and $30(221 \mathrm{mg}, 1.05 \mathrm{mmol})$ in the same manner as described for $\mathbf{3 3 a} . \mathrm{mp}$: $179{ }^{\circ} \mathrm{C}$ decomp. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta 9.78$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.91 (s, 1H), $8.00(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.17(\mathrm{~m}, 35 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 5.32$ (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$, 0.88 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$), 0.32 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 1133[\mathrm{M}-\mathrm{H}]^{-}$.

Preparation of intermediate 22-2.

(S)-4,5-Bis(benzhydryloxy)-2-(1-hydroxy-2-methylpropyl)pyridine 1-Oxide ((S)-75). Compound (S)-75 ($2.55 \mathrm{~g}, 85 \%$) was prepared from $74(2.99 \mathrm{~g}, 5.66 \mathrm{mmol})$, dichloro(p-cymene)ruthenium(II) dimer $\quad(55.7 \mathrm{mg}, \quad 0.09 \mathrm{mmol})$ and $(1 R$, $2 R)-(+)-N$-(4-toluenesulphonyl)-1,2-ethane diamine ($66.0 \mathrm{mg}, 0.18 \mathrm{mmol}$) in the same manner as described for $(R)-\mathbf{7 5}$. After recrystallization in ethyl acetate, the ee value of $(S)-\mathbf{7 5}$ was raised to 99.0%. Chiral HPLC retention time 8.49 min ; column: CHIRALCEL OD-H column ($250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$); column temperature $30^{\circ} \mathrm{C}$; flow rate $0.5 \mathrm{~mL} / \mathrm{min}$; detection UV 254 nm ; mobile phase: solvent $\mathrm{A}=$ ethanol (40%), solvent $\mathrm{B}=n$-hexane (60%); total run time $15.0 \mathrm{~min} . \mathrm{mp}: 93-95{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.28(\mathrm{~m}$, $20 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.25-2.12(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.53(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{34} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 532.2482$, found 532.2484 .
(R)-4,5-Bis(benzhydryloxy)-2-(1-((1,3-dioxoisoindolin-2-yl)oxy)-2-methylpropyl)pyridin e 1-Oxide ((\boldsymbol{R})-48). Compound $(R)-\mathbf{4 8}(1.57 \mathrm{~g}, 71 \%)$ was prepared from $(S)-75(1.75 \mathrm{~g}, 3.29$ mmol), N-hydroxyphthalimide ($537 \mathrm{mg}, 3.29 \mathrm{mmol}$), $\mathrm{PBu}_{3}(1.24 \mathrm{~mL}, 4.94 \mathrm{mmol}$) and DIAD $(1.03 \mathrm{~mL}, 5.24 \mathrm{mmol})$ in the same manner as described for 72a. After recrystallization in ethyl acetate, the $e e$ value of $(R)-\mathbf{4 8}$ was raised to 97.9%. Chiral HPLC retention time 12.29 min; column: CHIRALCEL OD-H column ($250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$); column temperature $30^{\circ} \mathrm{C}$; flow rate $0.5 \mathrm{~mL} / \mathrm{min}$; detection UV 254 nm ; mobile phase: solvent $\mathrm{A}=$ ethanol (40%), solvent $\mathrm{B}=n$-hexane (60%); total run time 20.0 min . mp: $87-89^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.77-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.25(\mathrm{~m}$, $20 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{pd}, J=7.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.08$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$), $0.63(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]$ ${ }^{+}$677.2646, found 677.2644.
(R)-2-(1-(Aminooxy)-2-methylpropyl)-4,5-bis(benzhydryloxy)pyridine 1-Oxide ((R)-76).

Compound (R)-76 (600 mg, 89\%) was prepared from (R)-48 ($840 \mathrm{mg}, 1.24 \mathrm{mmol}$) and 85% hydrazine hydrate ($0.08 \mathrm{~mL}, 1.36 \mathrm{mmol}$) in the same manner as described for 31b. mp: 72 $74{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.27(\mathrm{~m}, 21 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{~s}$, $1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{pd}, J=6.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, 3 H), $0.66(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]{ }^{+} 547.2591$, found 547.2594.
(R,Z)-4,5-Bis(benzhydryloxy)-2-(1-(((carboxy(2-(tritylamino)thiazol-4-yl)methylene)ami no)oxy)-2-methylpropyl)pyridine 1-Oxide (22-1). Compound 22-1 ($500 \mathrm{mg}, 72 \%$) was prepared from $(R)-76(400 \mathrm{mg}, 0.73 \mathrm{mmol})$ and $29(245 \mathrm{mg}, 0.59 \mathrm{mmol})$ in the same manner as described for 32a. mp: $170-172{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.90(\mathrm{~s}, 1 \mathrm{H}), 7.99$ $(\mathrm{s}, 1 \mathrm{H}), 7.62-7.16(\mathrm{~m}, 35 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J$ $=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.00(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.43(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. MS (ESI): m/z 941 [M - H] ${ }^{-}$
4,5-Bis(benzhydryloxy)-2-((R)-1-((((Z)-2-(((S)-2,2-dimethyl-4-oxo-1-(sulfooxy)azetidin-3-yl)amino)-2-oxo-1-(2-(tritylamino)thiazol-4-yl)ethylidene)amino)oxy)-2-methylpropyl)p yridine 1-Oxide (22-2). Compound 22-2 ($520 \mathrm{mg}, 90 \%$) was prepared from 22-1 (480 mg , $0.51 \mathrm{mmol})$ and $\mathbf{3 0}(160 \mathrm{mg}, 0.76 \mathrm{mmol})$ in the same manner as described for $\mathbf{3 3 a} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta 9.68(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.91(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.17(\mathrm{~m}$, $35 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J$ $=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.36$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$). MS (ESI): $m / z 1133[\mathrm{M}-\mathrm{H}]^{-}$.

Preparation of intermediate 23-2.

(S,Z)-4,5-Bis(benzhydryloxy)-2-(1-((((2-((tert-butoxycarbonyl)amino)-5-chlorothiazol-4-yl)(carboxy)methylene)amino)oxy)-2-methylpropyl)pyridine 1-Oxide (23-1). Compound 23-1 ($595 \mathrm{mg}, 82 \%$) was prepared from $(S)-76(475 \mathrm{mg}, 0.87 \mathrm{mmol})$ and $\mathbf{2 9 - 1}(239 \mathrm{mg}, 0.78$ mmol) in the same manner as described for 32a. mp: $161-162{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.00(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.16(\mathrm{~m}, 22 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.17-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.47(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. MS (ESI): $m / z 833[\mathrm{M}-\mathrm{H}]^{-}$.
4,5-Bis(benzhydryloxy)-2-((S)-1-((((Z)-1-(2-((tert-butoxycarbonyl)amino)-5-chlorothiazo l-4-yl)-2-(((S)-2,2-dimethyl-4-oxo-1-(sulfooxy)azetidin-3-yl)amino)-2-oxoethylidene)amin o)oxy)-2-methylpropyl)pyridine 1-Oxide (23-2). Compound 23-2 ($640 \mathrm{mg}, 90 \%$) was
prepared from 23-1 ($580 \mathrm{mg}, 0.69 \mathrm{mmol})$ and $\mathbf{3 0}(219 \mathrm{mg}, 1.04 \mathrm{mmol})$ in the same manner as described for 33a. mp: $165{ }^{\circ} \mathrm{C}$ decomp. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.07(\mathrm{~d}, J=3.9$ $\mathrm{Hz}, 1 \mathrm{H}), 9.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.21(\mathrm{~m}, 20 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~s}$, $1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{td}, J=7.0,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.38(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. MS (ESI): $m / z 1025[\mathrm{M}-\mathrm{H}]^{-}$.

Preparation of intermediate 24-2.

(R,Z)-4,5-Bis(benzhydryloxy)-2-(1-((((2-((tert-butoxycarbonyl)amino)-5-chlorothiazol-4-yl)(carboxy)methylene)amino)oxy)-2-methylpropyl)pyridine 1-Oxide (24-1). Compound 24-1 ($510 \mathrm{mg}, 81 \%$) was prepared from $(R)-76(415 \mathrm{mg}, 0.76 \mathrm{mmol})$ and 29-1 ($209 \mathrm{mg}, 0.68$ mmol) in the same manner as described for 32a. mp: $159-162{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 11.92(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.19(\mathrm{~m}, 22 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H})$, $2.12(\mathrm{~s}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.47(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z$ 833 [M-H] ${ }^{-}$.
4,5-Bis(benzhydryloxy)-2-((R)-1-((((Z)-1-(2-((tert-butoxycarbonyl)amino)-5-chlorothiazo l-4-yl)-2-(((S)-2,2-dimethyl-4-oxo-1-(sulfooxy)azetidin-3-yl)amino)-2-oxoethylidene)amin o)oxy)-2-methylpropyl)pyridine 1-Oxide (24-2). Compound $\mathbf{2 4 - 2}$ ($567 \mathrm{mg}, 90 \%$) was prepared from 24-1 $(510 \mathrm{mg}, 0.61 \mathrm{mmol})$ and $\mathbf{3 0}(193 \mathrm{mg}, 0.92 \mathrm{mmol})$ in the same manner as described for 33a. mp: $171{ }^{\circ} \mathrm{C}$ decomp. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.03(\mathrm{~s}, 1 \mathrm{H}), 9.79$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.19(\mathrm{~m}, 22 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H})$, $5.33(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}$, 9H), $1.42(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.45(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 1025$ [M $-\mathrm{H}]^{-}$.
Preparation of intermediate 25-2.

(S,Z)-4,5-Bis(benzhydryloxy)-2-(1-((((5-((tert-butoxycarbonyl)amino)-1,2,4-thiadiazol-3-
yl)(carboxy)methylene)amino)oxy)-2-methylpropyl)pyridine 1-Oxide (25-1). Compound 25-1 ($560 \mathrm{mg}, 85 \%$) was prepared from (S) - $76(450 \mathrm{mg}, 0.82 \mathrm{mmol}$) and 29-2 ($224 \mathrm{mg}, 0.82$ mmol) in the same manner as described for 32a. mp: $182-184{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.54(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.06(\mathrm{~m}, 20 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H})$, $6.54(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, 3 H), 0.52 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$). MS (ESI): $m / z 800[\mathrm{M}-\mathrm{H}]{ }^{-}$.
4,5-Bis(benzhydryloxy)-2-((S)-1-((((Z)-1-(5-((tert-butoxycarbonyl)amino)-1,2,4-thiadiazo l-3-yl)-2-(((S)-2,2-dimethyl-4-oxo-1-(sulfooxy)azetidin-3-yl)amino)-2-oxoethylidene)amin o)oxy)-2-methylpropyl)pyridine 1-Oxide (25-2). Compound $\mathbf{2 5 - 2}$ ($545 \mathrm{mg}, 86 \%$) was prepared from 25-1 $(510 \mathrm{mg}, 0.64 \mathrm{mmol})$ and $\mathbf{3 0}(200 \mathrm{mg}, 0.95 \mathrm{mmol})$ in the same manner as described for 33a. mp: $182{ }^{\circ} \mathrm{C}$ decomp. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.52(\mathrm{~s}, 1 \mathrm{H}), 9.92$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.18(\mathrm{~m}, 20 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H})$, $5.47(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}$, $9 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.38(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$. MS (ESI): $m / z 992[\mathrm{M}-$ $\mathrm{H}]^{-}$.

Preparation of intermediate 26-2.

(R,Z)-4,5-Bis(benzhydryloxy)-2-(1-((((5-((tert-butoxycarbony))amino)-1,2,4-thiadiazol-3-yl)(carboxy)methylene)amino)oxy)-2-methylpropyl)pyridine 1-Oxide (26-1). Compound 26-1 (533 mg, 76\%) was prepared from (R)-76 ($480 \mathrm{mg}, 0.88 \mathrm{mmol}$) and 29-2 ($240 \mathrm{mg}, 0.88$ mmol) in the same manner as described for 32a. mp: $184-186{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.54(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.06(\mathrm{~m}, 20 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H})$, $6.54(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.52$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$. MS (ESI): $m / z 800[\mathrm{M}-\mathrm{H}]^{-}$.
4,5-Bis(benzhydryloxy)-2-((R)-1-((((Z)-1-(5-((tert-butoxycarbonyl)amino)-1,2,4-thiadiazo l-3-yl)-2-(((S)-2,2-dimethyl-4-oxo-1-(sulfooxy)azetidin-3-yl)amino)-2-oxoethylidene)amin o)oxy)-2-methylpropyl)pyridine 1-Oxide (26-2). Compound $\mathbf{2 6 - 2}$ ($520 \mathrm{mg}, 82 \%$) was prepared from 26-1 $(513 \mathrm{mg}, 0.64 \mathrm{mmol})$ and $\mathbf{3 0}(202 \mathrm{mg}, 0.96 \mathrm{mmol})$ in the same manner as described for 33a. mp: $181{ }^{\circ} \mathrm{C}$ decomp. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.52(\mathrm{~s}, 1 \mathrm{H}), 9.84$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.19(\mathrm{~m}, 20 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H})$, $5.40(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}$, 9H), 1.45 (s, 3H), $0.82(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.45(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$. MS (ESI): $m / z 992[\mathrm{M}-$ $\mathrm{H}]{ }^{-}$.

Preparation of intermediate 27-2.

4,5-Bis(benzhydryloxy)-2-(2-(methylthio)acetyl)pyridine 1-Oxide (77). Compound 77 ($2.57 \mathrm{~g}, 48 \%$) was prepared from 71a ($5.4 \mathrm{~g}, 9.84 \mathrm{mmol}$) and sulfur trioxide pyridine complex ($4.69 \mathrm{~g}, 29.52 \mathrm{mmol}$) in the same manner as described for $\mathbf{3 6} . \mathrm{mp}$: $115-116{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77$ ($\mathrm{s}, 1 \mathrm{H}$), $7.48-7.27$ (m, 21H), 6.35 (s, 1H), 6.23 ($\mathrm{s}, 1 \mathrm{H}$), $4.01(\mathrm{~s}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.37,148.93$, 147.26, 139.71(2C), $139.39(2 \mathrm{C}), 138.95,130.39,128.95(4 \mathrm{C}), 128.85(4 \mathrm{C}), 128.54(2 \mathrm{C}), 128.35(2 \mathrm{C}), 126.65(4 \mathrm{C})$, 126.56(4C), 112.84, 84.31, 83.38, 44.17, 15.14. HRMS (ESI) m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+$ H] ${ }^{+} 548.1890$, found 548.1900 .
(S)-4,5-Bis(benzhydryloxy)-2-(1-hydroxy-2-(methylthio)ethyl)pyridine 1-Oxide ((S)-78). Compound (S)-78 (1.56 g, 86\%) was prepared from $77(1.8 \mathrm{~g}, 3.29 \mathrm{mmol})$, dichloro(p-cymene)ruthenium(II) dimer ($31.1 \mathrm{mg}, \quad 0.05 \mathrm{mmol}$) and $(1 S, 2 S)$ -$(+)-N$-(4-toluenesulphonyl)-1,2-ethane diamine ($37.3 \mathrm{mg}, 0.10 \mathrm{mmol}$) in the same manner as described for $(R)-\mathbf{7 5}$. After recrystallization in ethyl acetate, the $e e$ value of (S)-78 was raised to 97.9%. Chiral HPLC retention time 11.97 min ; column: CHIRALCEL OD-H column (250 $\times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$); column temperature $30^{\circ} \mathrm{C}$; flow rate $0.5 \mathrm{~mL} / \mathrm{min}$; detection UV 254 nm ; mobile phase: solvent $\mathrm{A}=$ ethanol (40%), solvent $\mathrm{B}=n$-hexane (60%); total run time 15.0 min . $\mathrm{mp}: 75-77{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.28(\mathrm{~m}, 20 \mathrm{H}), 6.80(\mathrm{~s}$, $1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.63(\mathrm{~m}, 1 \mathrm{H}), 3.04$ (dd, $J=$ $13.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=13.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 550.2047$, found 550.2048 .
(R)-4,5-Bis(benzhydryloxy)-2-(1-((1,3-dioxoisoindolin-2-yl)oxy)-2-(methylthio)ethyl)pyri dine 1-Oxide ((R)-72a). Compound (R)-72a ($341 \mathrm{mg}, 42 \%$) was prepared from (S)-78 (640 $\mathrm{mg}, 1.16 \mathrm{mmol}), N$-hydroxyphthalimide ($1.89 \mathrm{~g}, 11.60 \mathrm{mmol}$), $\mathrm{PBu}_{3}(1.74 \mathrm{~mL}, 6.96 \mathrm{mmol})$ and DIAD ($1.36 \mathrm{~mL}, 6.96 \mathrm{mmol}$) in the same manner as described for 72a. After recrystallization in ethyl acetate, the $e e$ value of $(R)-\mathbf{7 2 a}$ was raised to 97.1%. Chiral HPLC
retention time 24.42 min ; column: CHIRALPAK AD-H column ($250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$); column temperature $30{ }^{\circ} \mathrm{C}$; flow rate $0.5 \mathrm{~mL} / \mathrm{min}$; detection UV 254 nm ; mobile phase: solvent $\mathrm{A}=$ ethanol (30%), solvent $\mathrm{B}=n$-hexane (70%); total run time $30.0 \mathrm{~min} . \mathrm{mp}$: $77-$ $79{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~s}, 2 \mathrm{H}), 7.74-$ $7.72(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.27(\mathrm{~m}, 20 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{dd}, J=5.8,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.15 (dd, $J=14.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=14.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.88$ (s, 3H). HRMS (ESI) m / z calcd for $\mathrm{C}_{42} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 695.2210$, found 695.2211 .
(R)-2-(1-(Aminooxy)-2-(methylthio)ethyl)-4,5-bis(benzhydryloxy)pyridine 1-Oxide ((R)79). Compound (R)-79 ($287 \mathrm{mg}, 81 \%$) was prepared from $(R)-72 \mathrm{a}(439 \mathrm{mg}, 0.63 \mathrm{mmol})$ and 85% hydrazine hydrate ($0.04 \mathrm{~mL}, 0.67 \mathrm{mmol}$) in the same manner as described for 31b. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.27(\mathrm{~m}, 21 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H})$, $6.18(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=7.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 2.95(\mathrm{dd}, J=14.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.62$ (dd, $J=14.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.01(\mathrm{~s}, 3 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 565.2156, found 565.2153.
(R,Z)-4,5-Bis(benzhydryloxy)-2-(1-(((carboxy(2-(tritylamino)thiazol-4-yl)methylene)ami no)oxy)-2-(methylthio)ethyl)pyridine 1-Oxide (27-1). Compound $\mathbf{2 7 - 1}$ ($371 \mathrm{mg}, 76 \%$) was prepared from $(R)-\mathbf{7 9}(287 \mathrm{mg}, 0.51 \mathrm{mmol})$ and $29(199 \mathrm{mg}, 0.48 \mathrm{mmol})$ in the same manner as described for 32a. mp: $188-190{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.89(\mathrm{~s}, 1 \mathrm{H}), 7.97$ $(\mathrm{s}, 1 \mathrm{H}), 7.60-7.04(\mathrm{~m}, 35 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.53(\mathrm{dd}, J=6.6,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.96$ (dd, $J=14.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71$ (dd, $J=14.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.91$ (s, 3H). MS (ESI): m/z $959[\mathrm{M}-\mathrm{H}]^{-}$.
4,5-Bis(benzhydryloxy)-2-((R)-1-((((Z)-2-(((S)-2,2-dimethyl-4-oxo-1-(sulfooxy)azetidin-3-yl)amino)-2-oxo-1-(2-(tritylamino)thiazol-4-yl)ethylidene)amino)oxy)-2-(methylthio)ethy 1)pyridine 1-Oxide (27-2). Compound 27-2 ($335 \mathrm{mg}, 83 \%$) was prepared from $\mathbf{2 7 - 1}(336 \mathrm{mg}$, $0.35 \mathrm{mmol})$ and $\mathbf{3 0}(109 \mathrm{mg}, 0.52 \mathrm{mmol})$ in the same manner as described for $\mathbf{3 3 a} \mathrm{mp}$: $184{ }^{\circ} \mathrm{C}$ decomp. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta 9.82(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.94(\mathrm{~s}, 1 \mathrm{H})$, $8.02(\mathrm{~s}, 1 \mathrm{H}), 7.66-7.05(\mathrm{~m}, 35 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{dd}, J=6.6$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=14.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=14.6,6.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 1.73 (s, 3H), 1.55 (s, 3H), 1.33 (s, 3H). MS (ESI): m/z $1151[\mathrm{M}-\mathrm{H}]^{-}$.

Preparation of intermediate 28-2.

(R)-4,5-bis(benzhydryloxy)-2-(1-hydroxy-2-(methylthio)ethyl)pyridine 1-Oxide ((R)-78). Compound (R)-78 (780 mg, 68\%) was prepared from $77(1.14 \mathrm{~g}, 2.08 \mathrm{mmol}$), dichloro(p-cymene)ruthenium(II) dimer $(18.7 \mathrm{mg}, 0.03 \mathrm{mmol})$ and $(1 R$, $2 R)-(+)-N$-(4-toluenesulphonyl)-1,2-ethane diamine $(22.4 \mathrm{mg}, 0.06 \mathrm{mmol})$ in the same manner as described for $(R)-75$. After recrystallization in ethyl acetate, the $e e$ value of $(R)-78$ was raised to 96.7%. Chiral HPLC retention time 9.26 min ; column: CHIRALCEL OD-H column $(250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m})$; column temperature $30^{\circ} \mathrm{C}$; flow rate $0.5 \mathrm{~mL} / \mathrm{min}$; detection UV 254 nm ; mobile phase: solvent $\mathrm{A}=$ ethanol (40%), solvent $\mathrm{B}=n$-hexane (60%); total run time $15.0 \mathrm{~min} . \mathrm{mp}: 73-75{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.29(\mathrm{~m}$, $20 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.61(\mathrm{~m}, 1 \mathrm{H})$, $3.04(\mathrm{dd}, J=13.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=13.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$550.2047, found 550.2046.

(S)-4,5-bis(benzhydryloxy)-2-(1-((1,3-dioxoisoindolin-2-yl)oxy)-2-(methylthio)ethyl)pyri

 dine 1-Oxide ($(\mathbf{S})-\mathbf{7 2 a})$. Compound $(S)-\mathbf{7 2 a}(648 \mathrm{mg}, 61 \%)$ was prepared from $(R)-78$ (848 $\mathrm{mg}, 1.54 \mathrm{mmol}), N$-hydroxyphthalimide $(2.51 \mathrm{~g}, 15.40 \mathrm{mmol}), \mathrm{PBu}_{3}(2.31 \mathrm{~mL}, 9.24 \mathrm{mmol})$ and DIAD ($1.81 \mathrm{~mL}, 9.24 \mathrm{mmol}$) in the same manner as described for 72a. After recrystallization in ethyl acetate, the ee value of $(S)-\mathbf{7 2 a}$ was raised to 94.9%. Chiral HPLC retention time 21.67 min ; column: CHIRALPAK AD-H column ($250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$); column temperature $30{ }^{\circ} \mathrm{C}$; flow rate $0.5 \mathrm{~mL} / \mathrm{min}$; detection UV 254 nm ; mobile phase: solvent $\mathrm{A}=$ ethanol (30%), solvent $\mathrm{B}=n$-hexane (70%) ; total run time $30.0 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.76-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.27(\mathrm{~m}, 20 \mathrm{H}), 6.73(\mathrm{~s}$, $1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{dd}, J=5.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=14.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=$ $14.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / z$ calcd for $\mathrm{C}_{42} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 695.2210$, found 695.2209.(S)-2-(1-(aminooxy)-2-(methylthio)ethyl)-4,5-bis(benzhydryloxy)pyridine 1-Oxide ((S)79). Compound (S)-79 (390 mg, 82\%) was prepared from (S)-72a (583 mg, 0.84 mmol) and
85% hydrazine hydrate ($0.05 \mathrm{~mL}, 0.87 \mathrm{mmol}$) in the same manner as described for $\mathbf{3 1 b}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.28(\mathrm{~m}, 20 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H})$, $6.18(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=7.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 2.96(\mathrm{dd}, J=14.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.62$ (dd, $J=14.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.01(\mathrm{~s}, 3 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]{ }^{+}$ 565.2156, found 565.2156.
(S,Z)-4,5-Bis(benzhydryloxy)-2-(1-(((carboxy(2-(tritylamino)thiazol-4-yl)methylene)ami no)oxy)-2-(methylthio)ethyl)pyridine 1-Oxide (28-1). Compound 28-1 ($522 \mathrm{mg}, 85 \%$) was prepared from $(S)-79(360 \mathrm{mg}, 0.64 \mathrm{mmol})$ and $29(265 \mathrm{mg}, 0.64 \mathrm{mmol})$ in the same manner as described for 32a. mp: $185-187^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.93(\mathrm{~s}, 1 \mathrm{H}), 8.00$ $(\mathrm{s}, 1 \mathrm{H}), 7.63-7.05(\mathrm{~m}, 35 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.97 (d, $J=14.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.71 (dd, $J=14.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.93 (s, 3H). MS (ESI): $m / z 959$ [$\mathrm{M}-\mathrm{H}]^{-}$.
4,5-Bis(benzhydryloxy)-2-((S)-1-((()Z)-2-(((S)-2,2-dimethyl-4-0xo-1-(sulfooxy)azetidin-3-yl)amino)-2-oxo-1-(2-(tritylamino)thiazol-4-yl)ethylidene)amino)oxy)-2-(methylthio)ethy l)pyridine 1-Oxide (28-2). Compound 28-2 ($505 \mathrm{mg}, 92 \%$) was prepared from 28-1 (460 mg , $0.48 \mathrm{mmol})$ and $30(151 \mathrm{mg}, 0.72 \mathrm{mmol})$ in the same manner as described for $\mathbf{3 3 a} . \mathrm{mp}$: $180{ }^{\circ} \mathrm{C}$ decomp. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.79(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $8.90(\mathrm{~s}, 1 \mathrm{H})$, $8.02(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.18(\mathrm{~m}, 35 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 5.56(\mathrm{dd}, J=6.8$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=14.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=14.8,6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 1151[\mathrm{M}-\mathrm{H}]{ }^{-}$.

III. Spectral data of BAL30072

(S,Z)-3-(2-(2-Aminothiazol-4-yl)-2-(((1,5-dihydroxy-4-oxo-1,4-dihydropyridin-2-yl)meth oxy)imino)acetamido)-2,2-dimethyl-4-oxoazetidin-1-yl Hydrogen Sulfate (BAL30072). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}$, $1 \mathrm{H}), 5.33(\mathrm{~s}, 2 \mathrm{H}), 4.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 169.47,162.27,161.92,157.61,150.72,145.07,142.86,139.81,128.15,111.68$, $111.15,69.24,68.31,61.24,23.87,20.86$. HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{~S}_{2}[\mathrm{M}-$ $\mathrm{H}]^{-} 517.0453$, found 517.0462.

IV. X-ray structure of (S)-75

V. HPLC analysis for tested compounds

Method: PLATISIL ODS ($250 \times 4.6 \mathrm{~mm}$, particle size $5 \mu \mathrm{~m}$); mobile phase: eluent A, methanol; eluent B, buffer solution ($0.1 \% \mathrm{CF}_{3} \mathrm{COOH}$ and $0.1 \% \mathrm{NH}_{4} \mathrm{OH}$ in water, pH 3.5); isocratic (30:70) with a flow rate of $1 \mathrm{~mL} \mathrm{~min}^{-1}$ and detection at 254 nm ; column temperature, $30^{\circ} \mathrm{C}$.

Table S2. HPLC analysis for tested compounds

Compd	Purity	Compd	Purity	Compd	Purity
$\mathbf{8}$	95.8%	$\mathbf{1 4 a}$	98.2%	$\mathbf{2 0}$	95.7%
$\mathbf{9}$	95.7%	$\mathbf{1 4 b}$	98.0%	$\mathbf{2 1}$	96.1%
$\mathbf{1 0}$	95.4%	$\mathbf{1 4 c}$	96.6%	$\mathbf{2 2}$	95.9%
$\mathbf{1 1}$	95.2%	$\mathbf{1 5 a}$	96.8%	$\mathbf{2 3}$	96.4%
$\mathbf{1 2 a}$	97.6%	$\mathbf{1 5 b}$	96.4%	$\mathbf{2 4}$	96.8%
12b	97.1%	$\mathbf{1 5 c}$	98.3%	$\mathbf{2 5}$	98.3%
12c	96.4%	$\mathbf{1 6 a}$	95.6%	$\mathbf{2 6}$	98.2%
12d	95.1%	$\mathbf{1 6 b}$	95.4%	$\mathbf{2 7}$	97.2%
12e	99.3%	$\mathbf{1 6 c}$	96.2%	$\mathbf{2 8}$	97.4%
13a	95.1%	$\mathbf{1 7}$	95.1%	BAL30072	98.7%
13b	96.0%	$\mathbf{1 8}$	95.8%		
13c	95.2%	$\mathbf{1 9}$	95.5%		

HPLC Traces of Representative Compounds

8

10

12c

12e

13a (eluent A / eluent B 40/60)

13b (eluent A / eluent B 40/60)

13c

15b

15c

$16 c$

19 (eluent A / eluent B 40/60)

20

21

22

BAL30072

