Supporting Information

Fog collection on polyethylene terephthalate (PET) fibres: Influence of cross-section and surface structure

M. A. K. Azad^{\dagger^*}, Tobias Krause^{\dagger^{\ddagger}}, Leon Danter^{δ}, Albert Baars^{δ}, Kerstin Koch^{\pounds} & Wilhelm Barthlott^{\dagger}

[†]Nees Institute for Biodiversity of Plants, Rheinische Friedrich-Wilhelms-University, Bonn, Germany

[‡]Department of Mechanical Engineering, Westphalian University of Applied Sciences, Bocholt, Germany

[§]Department of Biomimetics, Faculty of Nature and Technique, Bremen University of Applied Sciences, Bremen, Germany

[£]Faculty of Life Sciences, Rhine-Waal University of Applied Sciences. Kleve, Germany

*Corresponding author: Dr. M. A. K. Azad, email: azad@uni-bonn.de; Prof. Dr. Kerstin Koch, email: kerstin.koch@hochschule-rhein-waal.de

Figure S1: Scanning electron micrographs (SEMs) of the surfaces of 9 fiber profiles having smooth surfaces. Figures (a-i) represent the fiber profiles 1, 3, 4, 5, 6, 7, 9, 13 and 14, respectively.

Figure S2: Schematic of the cross section of fibre profile 2. Shorter sides of the rectangular fibre have round edges.

Figure S3: Schematic of the cross section of fibre profile 14. Channels on the shorter sides of the rectangular fiber can be seen from the top to the bottom.