SUPPLEMENTARY INFORMATION

Charge Transport in $\mathbf{M o S}_{2} / \mathbf{W S e}_{2}$ van der Waals Heterostructure with Tunable Inversion Layer

Manh-Ha Doan ${ }^{\dagger, \dagger,}$, Youngjo Jin ${ }^{\dagger, \dagger}$, Subash Adhikari ${ }^{\dagger, \dagger,}$, Sanghyub Lee ${ }^{\dagger, \dagger,}$, Jiong Zhao ${ }^{\dagger, \dagger}$, Seong Chu Lim ${ }^{\dagger, \dagger}$, and Young Hee Lee ${ }^{\dagger, \hbar, \xi, \xi^{*}}$
${ }^{\dagger}$ Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea. ${ }^{\dagger}$ Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea. ${ }^{\S}$ Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea.

* Email: leeyoung@skku.edu

Figure S1. Cross-sectional TEM images of the $\mathrm{MoS}_{2} / \mathrm{WSe}_{2}$ interface in small and large magnification observation (left and right panels, respectively). The atomically contacted interface is visible as show in the left image.

Figure S2. Energy dispersive spectroscopy (EDS) mappings of the $\mathrm{MoS}_{2} / \mathrm{WSe}_{2}$ interface after stacking and annealing. The buried interface was formed, which is similar with the observation in graphene/h-BN heterostructure fabricated by dry transfer and thermal annealing. ${ }^{1}$

Figure S3. Raman peaks of WSe_{2} at the positions with and without MoS_{2} stacking. A broad peak appeared in the both positions. The peak of pristine WSe_{2} was deconvoluted into three peaks; $\mathrm{E}_{2 \mathrm{~g}}{ }^{1}$ near $251 \mathrm{~cm}^{-1}$, $\mathrm{A}_{1 \mathrm{~g}}$ near $260 \mathrm{~cm}^{-1}$, and 2LA(M) near $269 \mathrm{~cm}^{-1} .{ }^{2,3}$ The split of $\mathrm{A}_{1 \mathrm{~g}}$ into two peaks of 257 and $262 \mathrm{~cm}^{-1}$ is ascribed to the contribution from SiO_{2} substrate where p-doped WSe_{2} is further blueshifted by losing charges to the substrate (brown color), in other words, phonon stiffening. ${ }^{4}$ The $\mathrm{E}_{2 \mathrm{~g}}{ }^{1}$ peak at the overlapped region is redshifted by $4.5 \mathrm{~cm}^{-1}$, indicating a tensile strain. ${ }^{4}$ The intensity is reduced by the strain and interlayer coupling with MoS_{2}. The redshift of the $\mathrm{A}_{1 \mathrm{~g}}$ peak indicates phonon softening by dedoped WSe_{2} (charge compensation) due to electrons transferred from MoS_{2}, which is consistent with the Raman peak shift of MoS_{2} discussed in the main text. The 2LA(M) peak position is also redshifted by the phonon softening without altering intensity. The SiO_{2} related peak near $262 \mathrm{~cm}^{-1}$ is also redshifted, indicating that the charges transferred from MoS_{2} is widely spread to the substrate.

Figure S4. Interlayer tunneling at the overlapped $\mathbf{M o S}_{\mathbf{2}}$ and $\mathbf{W S e} \mathbf{2}_{2}$ channels. (a) Transfer curves of the pristine and overlapped channels. The on-currents were reduced, the threshold voltages were shifted, and the additional shoulders appeared in the overlapped channels due to interfacial charge transfer and interlayer tunneling. (b, c) Band diagrams of the overlapped MoS_{2} and WSe_{2} channels under equilibrium and an applied source-drain bias. The shoulders observed in the transfer curves correspond to the gate voltages in which the conduction (valence) band of $\mathrm{MoS}_{2}\left(\mathrm{WSe}_{2}\right)$ is aligned with the one of $\mathrm{WSe}_{2}\left(\mathrm{MoS}_{2}\right)$ as marked by the two broad lines in (a).

Supplementary references

1. Haigh, S. J.; Gholinia, A.; Jalil, R.; Romani, S.; Britnell, L.; Elias, D. C.; Novoselov, K. S.; Ponomarenko, L. A.; Geim A. K.; Gorbachev, R. Cross-Sectional Imaging of Individual Layers and Buried Interfaces of Graphene-Based Heterostructures and Superlattices. Nat. Mater. 2012, 11, 764-767.
2. Zhao, W.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice Dynamics in Mono- and Few-Layer Sheets of WS_{2} and WSe_{2}. Nanoscale 2013, 5, 9677-9683.
3. Tonndorf, P.; Schmidt, R.; Bottger, P.; Zhang, X.; Borner, J.; Liebig, A.; Albrecht, M.;

Kloc, C.; Gordan, O.; Zahn, D. R. T.; Vasconcellos, S. M.; Bratschitsch, R. Photoluminescence Emission and Raman Response of Monolayer $\mathrm{MoS}_{2}, \mathrm{MoSe}_{2}$, and WSe_{2}. Opt. Exp. 2013, 21, 4908-4916.
4. Zhang, X.; Qiao, X.-F.; Shi, W.; Wu, J.-B.; Jiang, D.-S.; Tan, P.-H. Phonon and Raman Scattering of Two-Dimensional Transition Metal Dichalcogenides from Monolayer, Multilayer to Bulk Material. Chem. Soc. Rev. 2015, 44, 2757-2785.

